
SIAM J. APPL. MATH.
Vol. 28, No. 4, June 1975

TWO-GRAPHS, SWITCHING CLASSES AND
EULER GRAPHS ARE EQUAL IN NUMBER*

C. L. MALLOWS AND N. J. A. SLOANEI"

Abstract. Seidel has shown that the number t. of two-graphs on n nodes is equal to the number
of switching classes of graphs on n nodes. Robinson, and independently Liskovec, have given an

explicit formula for the number e. of Euler graphs on n nodes. It is shown here that t, e, for all n.

1. Introduction.
DEFINITION 1. A two-graph [9] consists of a set f of nodes together with a

collection of triples of elements of f such that each 4-element subset of f contains
an even number of these triples.

DEFINITION 2. Let G be an (ordinary) graph with node set f (containing no
loops or multiple edges). Let co be a node in f and suppose co is adjacent in G
to the (possibly empty) subset X g f. The operation of switching at node co
([5], [9]) transforms G by deleting the edges from co to X, and adding edges from
co to f- X. In other words, take the complement of the edges incident with
node co.
(i) 0 0

0 0

FIG. 1. The three switching classes for n 4

We define an equivalence relation on graphs by saying that G’ is equivalent
to G if there exists a sequence of nodes cox, co2, such that G’ is obtained from
G by switching at cox, co2, Figure shows the three equivalence classes (or
switching classes) of graphs with n 4 nodes.

Seidel [9] showed that the number of switching classes of graphs with n
nodes is equal to the number of two-graphs with n nodes. The values of tx, "", t7
were given in [5], and of 8, t9 (found by F. C. Bussemaker) in [9].

DEFINITION 3. An Euler graph ([7], [11, p. 20]) is a graph in which every
node has even degree.

Robinson [8] and independently Liskovec [6] have given formulas for the
number en of Euler graphs on n nodes. Robinson’s formula is

2v()-,()
(1) e. ,
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the sum being over all ordered n-tuples a (a l, "’, a.) such that n i iai,
where

(2) v(o’) aia(i,j) + + ai+ +
i< 2

(3)

sgn(x)=0 ifx=0, lifx>0,

and (i,j) is the greatest common divisor of and j. Both 8] and [6] give the values
of e, ..., e8 (The value of e8 is given incorrectly in [4, p. 117] .) Values of e, for

_< n =< 21, obtained from (1), are given in Table 1.

TABLE
The number t. of two-graphs, switching classes, or Euler graphs

on n nodes

n

2
3 2
4 3
5 7
6 16
7 54
8 243
9 2,038
10 33,120
11 1,182,004
12 87,723,296
13 12,886,193,064
14 3,633,057,074,584
15 1,944,000,150,734,320
16 1,967,881,448,329,407,496
17 3,768,516,017,219,786,199,856
18 13,670,271,807,937,483,065,795,200
19 94,109,042,015,724,412,679,233,018,144
20 1,232,069,666,043,220,685,614,640,133,362,240
21 30,739,974,599,837,035,594,494,908,346,443,726,272

In collecting data for a supplement to [12] it was observed that the numbers
e, and t, agree for =< n =< 8. It is the object of this note to prove the following.

THEOREM 1. e, t, for all n.
This result had already been established by Seidel [10] for n odd. However,

the result when n is even seems to lie much deeper. Indeed, when n is odd, it is not
difficult to show that there is a unique Euler graph in each switching class, thus
establishing a 1-1 correspondence between the two families. But for n even, we
have been unable to find such a correspondence.
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2. The labeled case. Before proving Theorem 1, we consider the corre-
sponding problem when the nodes of the graph are labeled, say with the labels
{1, 2,..., n}. Define, set of all labeled graphs on n nodes,

f, set of all Euler graphs in
set of switching classes in

cg, set of all cocycles in c, (I3, p. 381, I1, p. 131. In the notation of Ill, p. 28,
cg, cutsets of the complete graph on 1, ...,
For A, B ,, define A + B e c, to be the graph containing the edges in

either A or B but not both. With this definition of addition, c,, f,, cg, are ele-

mentary abelian groups of type (1, 1,..., 1) of orders G, 2(), E, 2("1),
C, 2"- respectively 1], 113.

Observe that two graphs are in the same switching class if and only if their

2()/2 2("sum is a cocycle. Hence c,/cg,, and has order T, 1) E,.
It is easy to construct a 1-1 correspondence between g, and ,. Let r denote

the tree with edges 12, 13, ..., ln, and let the edges/j (1 < < j) not in r be called
(in this section only) chords. As a basis for , take the fundamental circuits [11,

n-1
p. 27] 1,"" d, d each consisting of a chord and the two co-

2
terminal edges of r. Any element of , can be written uniquely as

ai 0 or 1. Each switching class contains exactly one chordal graph that has no
edges of ; as a basis for these graphs we take the unichordal graphs
that each consist of a single chord. Then each chordal graph can be written
uniquely as ,d.= aiOi, ai 0 or 1. Thus we have proved the following.

THEOP.EM 2. There is a 1-1 correspondence between the 2(" x) labeled Euler
graphs and labeled switching classes on n nodes.

Figure 2 shows the correspondence when n 4.

3. The unlabeled case: Proof of Theorem 1. For a subset C
___

{1, ..., n},
let X(C) denote the operation of switching at all the nodes of C (in any order).
X(C) induces a permutation (which we also denote X(C)) on the set , of all
labeled graphs. Note that X(C) and X(C) are the same permutation (where is
the complement of C).

The number t, of switching classes is the number of equivalence classes in, under the combined action of all X(C) and all permutations n of the n nodes.
The set of all X(C) and all n generate a group of order 2"- in I, consisting of pairs
(n, C). By Burnside’s lemma [2],

(4) t,
2"n ’ f(n C)

eSen C =-{ ,’",n}

where f(n, C) is the number of graphs that are fixed under the operation of first
permuting the nodes according to n and then switching at the nodes in C. We
proceed to calculate f(n, C).

Suppose n permutes the nodes in a cycles (called node-cycles) of length i,
for 1 i<= n. Let fl, f12,’’’, tic be the (node-) cycles of n, with lengths
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b,, b2, b respectively (c ai, E bj- n), and let 7(fli, C) be the number
of nodes of fli that are in C.

Chordal
representative

Euler of switching
graph class a a a

o 0 2 o 0 2

o o4 3 o o4
0 0 0

0 0

0 0

o o

0 0

0

0

0

FIG. 2. 1-1 correspondence between labeled Euler graphs and labeled switching classes on four nodes

Under the action of rt, the edges of the complete graph are permuted in cycles
(called edge-cycles). It is shown in I8] that the total number of edge-cycles is v(a).

(i) If fl (a 1,’", a2i) is a node-cycle of length b 2i, the edges aua
(1 __< # < v __< 2i) are permuted in distinct edge-cycles of length 2i, and one
edge-cycle (the cycle of diameters) of length i. Then as a diameter traverses the
edge-cycle of length under repeated applications of (Tt, C), it is switched 7(fl, C)
times. Thus in order for it to be possible for a graph to be fixed under (rt, C),
7(fl, C) must be even. An edge which is not a diameter will be switched 27(fl, C)
times, which is always even. Thus if 7(fl, C) is even, there are 2 ways of inserting
the chords of fl so that this subgraph is fixed under (rt, C); if 7(fl, C) is odd, there
are no such ways.

(ii) The edges joining the nodes of a node-cycle of length 2i + comprise
distinct edge-cycles each oflength 2i + 1. An edge in one of these cycles is switched
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an even number of times during 2i + successive applications of (z, C). Thus
there are 2 ways of inserting the chords of such a node-cycle, for any C.

(iii) Let fl (a,,..., ab), fl’ (a’ 1,’", a,,) be distinct node-cycles. Let
(b, b’), and write

b rt, b’ r’t, where(r,r’)= 1.

The bb’ edges auau, are permuted in distinct edge-cycles of length rr’t each.
As an edge traverses its edge-cycle, it is switched p r’7(fl, C)+ rT(fl’, C)

times. If both b and b’ are even, and an invariant subgraph is possible, both 7(/3, C)
and 7(fl’, C) must be even by (i). If b is even and b’ odd, r and 7(fl, C) must be even.
But if both b and b’ are odd, so r, r’ are odd, then for p to be even, 7(fl, C) and
7(fl’, C) must both be even or both odd. Therefore if an invariant subgraph is to
be possible, all node-cycles of odd length must contain an even number of points
of C, or all must contain an odd number of points of C. If this holds, the number
of ways of drawing an invariant subgraph of edges from fl to fl’ is 2’.

(iv) Putting all this together, the number of ways of drawing a graph that is
invariant under (n, C) is f(n, C) 2v()(n, C), where (n, C) 0 or 1, and if
and only if 7(fli, C) is even whenever bi is even, and {7(flj, C): bj odd} are all even
or all odd together. It follows that

(, C) 2"-
c

Hence from (4) and (1),

which collapses to (1), and the theorem is proved.
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