
Mathematical Modelling and Numerical Analysis ESAIM: M2AN
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TWO-GRID FINITE-ELEMENT SCHEMES FOR THE TRANSIENT
NAVIER-STOKES PROBLEM
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Abstract. We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional
polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear
problem is semi-discretized on a coarse grid, with mesh-size H. In the second step, the problem is
linearized by substituting into the non-linear term, the velocity uH computed at step one, and the
linearized problem is semi-discretized on a fine grid with mesh-size h. This approach is motivated by
the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of
uH to the error analysis is measured in the L2 norm in space and time, and thus, for the lowest-degree
elements, is of the order of H2. Hence, an error of the order of h can be recovered at the second step,
provided h = H2.
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0. Introduction

Let us consider a non-linear Partial Differential Equation (called PDE). We want to find an approximation
of the solution, say u (or of a solution, properly defined). A very general strategy can be based on a two-grid
approach. In a first step, our approximation, say uH , is computed on a coarse grid of mesh-size H, using the
fully non-linear PDE. In a second step, one linearizes the PDE “around” uH (this can be done in infinitely many
ways), and one computes an approximation of the linear problem on a fine grid of mesh-size h. Let us denote
by ulin

h this solution. Then under quite general circumstances, one can show that if h and H are chosen in an
adequate fashion, then the error ‖u−ulin

h ‖ is of the same order as ‖u−uh‖, where uh denotes the approximation
of the fully non-linear PDE computed on the fine grid. Of course, the computation of uH and ulin

h involves
much less “work” than the direct computation of uh!

The above strategy is valid for stationary PDE’s and for evolution (transient) equations as well.
This “two-grid strategy” or “two-step strategy” has been widely studied for steady semi-linear elliptic equa-

tions, cf. for example the work of Xu [45], [46] and Niemistö [40], and for the steady Navier-Stokes problem,
cf. the work of Layton [24], Layton and Lenferink [25], [26] and Girault and Lions [16]. We want to apply here
this strategy to non-linear PDE’s of evolution. More precisely, we have chosen to develop this strategy for the
Navier-Stokes equations.
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Let Ω be a Lipschitz-continuous domain (cf. Grisvard [20]) of R3 with a polyhedral boundary ∂Ω and unit
exterior normal n, and let [0, T ] be a given time-interval. Consider the time-dependent Navier-Stokes equations:

∂

∂t
u(x, t)− ν∆ u(x, t) + u(x, t) · ∇u(x, t) +∇ p(x, t) = f(x, t) in Ω×]0, T ] , (0.1)

with the incompressibility condition:

div u(x, t) = 0 in Ω×]0, T ] , (0.2)

the homogeneous Dirichlet boundary condition:

u(x, t) = 0 on ∂Ω×]0, T ] , (0.3)

and the initial condition

u(x, 0) = 0 in Ω , (0.4)

where the notation u · ∇u means

u · ∇u =
3∑
i=1

ui
∂

∂xi
u .

The existence of solutions to (0.1–0.4) is a fundamental question, and the existence-uniqueness of solutions is
still an open problem. Weak solutions were introduced by Leray [27–29] in a series of classical papers. Further
properties of the “Leray” solution (that he calls “turbulent solution”) have been given by Ladyzenskaya [23] and
Lions [30] and [31], Chapter 1. Under various hypotheses on the data, more or less “strong ” solutions can be
obtained, but whether or not singularities can develop in time and be accompanied by loss of uniqueness remains
an open problem. Further results were obtained by Lions [33], who also dealt in [34] with many situations for
compressible fluids (in particular, the reader can also refer to [35] for a list of interesting open questions).

Of course, due to the crucial importance of Navier-Stokes equations in very many applications, a huge
amount of papers has been devoted to numerical schemes for approximating these equations. Approximation
algorithms were already introduced in [23], [30] and [31], and much more developed in Temam [43], Girault and
Raviart [17], and Pironneau [41] where in particular, the “pressure formulation” was studied in depth. The first
“splitting” procedure (called the “projection method”) for dissociating the incompressibility constraint from
the non-linearity, was introduced by Chorin [8] and Temam [44]. Further on, Foias et al. [14] developed what
became known later as the Nonlinear Galerkin Method (NLG), that is mildly related to the methods we shall
study here. A good description of the NLG method can be found in Marion and Temam [38]; we also refer the
reader to their previous works [36] and [37]. We mention here that a very complete reference on the numerical
approximation of the steady or unsteady Navier-Stokes equations, by Glowinski, will appear in [19].

We recall now the classical formulation of the equations. Let V be the space of vector-valued functions
v = (v1, v2, v3) such that:

vi ∈ H1
0 (Ω) , i.e.

∂vi
∂xj
∈ L2(Ω), 1 ≤ j ≤ 3 , vi = 0 on ∂Ω ,

and such that
div v = 0 , in Ω .

The “classical” variational formulation of (0.1–0.4) is as follows: Find u = u(t) with values in V such that

∀v ∈ V, (u′(t),v) + ν(∇u(t),∇v) + (u(t) · ∇u(t),v) = 〈f(t),v〉 in ]0, T ] , (0.5)
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and
u(0) = 0 ,

where u′ = ∂u
∂t . Of course, setting X = H1

0 (Ω)3 and

M = {q ∈ L2(Ω) ;
∫

Ω

q dx = 0} ,

this formulation is equivalent to looking for u satisfying

∀v ∈ X , (u′(t),v) + ν(∇u(t),∇v) + (u(t) · ∇u(t),v) − (p(t),div v) = 〈f(t),v〉 in ]0, T ] , (0.6)

∀q ∈M , (q,div u(t)) = 0 , in ]0, T ] , (0.7)

and
u(0) = 0 .

It is well-known that, in general, the most straightforward semi-discrete analogues of the above formulations
are not equivalent. Indeed, when discretized, condition (0.7) does not imply that the divergence is zero, unless
polynomials of high degree are used. To achieve equivalence, we must work with an adequate approximation
of space V . Without going into details, let us present quickly a semi-discretization. Let η be a discretization
parameter, Tη a triangulation of Ω, and let Vη, Xη and Mη be finite-element spaces approximating respectively
V , X and M (all this will be made precise below). The semi-discrete analogue of (0.5) is then: find uη(t) ∈ Vη
satisfying

∀vη ∈ Vη , (u′η(t),vη) + ν(∇uη(t),∇vη) + (uη(t) · ∇uη(t),vη) = 〈f(t),vη〉 in ]0, T ] , (0.8)

and the semi-discrete analogue of (0.6),(0.7) is: find uη(t) ∈ Xη satisfying

∀vη ∈ Xη , (u′η(t),vη) + ν(∇uη(t),∇vη) + (uη(t) · ∇uη(t),vη)− (pη(t),div vη) = 〈f(t),vη〉 in ]0, T ] ,
(0.9)

and

∀qη ∈Mη , (qη,div uη(t)) = 0 in ]0, T ] . (0.10)

Of course, in both formulations, we add

uη(0) = 0 . (0.11)

Remark 0.1. The zero initial velocity is only a matter of simplification. The contents of this article can be
readily adapted to non-zero initial data.

We present now our two-grid scheme for the pressure approximation (0.9–0.11). Let TH be a coarse trian-
gulation of Ω and let XH and MH be suitable finite-element spaces for discretizing the velocity u and pressure
p. Similarly, let Th be a fine triangulation, with corresponding finite-element spaces Xh and Mh. The two-grid
algorithm for semi-discretizing (0.1–0.4) is:
Step One (non-linear problem on coarse grid): Find (uH , pH) with values in XH ×MH for each t ∈ [0, T ],
solution of

∀vH ∈ XH , (u′H(t),vH) + ν(∇uH(t),∇vH) + (uH(t) · ∇uH(t),vH)− (pH(t),div vH) = 〈f(t),vH 〉 in ]0, T ] ,
(0.12)
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∀qH ∈MH , (qH ,div uH(t)) = 0 in ]0, T ] , (0.13)

uH(x, 0) = 0 in Ω . (0.14)

Step Two (linearized problem on fine grid): Find (uh, ph) with values in Xh×Mh for each t ∈ [0, T ], solution of

∀vh ∈ Xh , (u′h(t),vh) + ν(∇uh(t),∇vh) + (uH(t) · ∇uh(t),vh)− (ph(t),div vh) = 〈f(t),vh〉 in ]0, T ] ,
(0.15)

∀qh ∈Mh , (qh,div uh(t)) = 0 in ]0, T ] , (0.16)

uh(x, 0) = 0 in Ω . (0.17)

Remark 0.2. One has to be careful with the notation. The function uH in (0.12–0.14) coincides with the
function uη in (0.9–0.11) if η = H. But the function uh defined in Step Two does not coincide with uη for
η = h, i.e. uh 6= uη,η=h.

Remark 0.3. The convection terms in (0.12) and (0.15) are not antisymmetric. Indeed, as mentioned above,
(0.13) does not necessarily imply that div uH = 0; therefore in general

(uH · ∇uH ,uH) 6= 0 .

Then deriving a priori estimates for the solution of Step One is not a matter of routine. We shall see below
how this can be settled.

Of course, one can make the whole approximation antisymmetric, thus simplifying the analysis. But since it
can be justified, formulation (0.12) is simpler and it is actually widely used in practice.

The main result in the present article is that if one chooses:

h = H2 , (0.18)

and the mesh is regular, then the error (estimated in suitable norms) is the same for u− uh as for u− uη,η=h.
Interestingly, this result for the velocity is obtained without requiring a uniformly regular (or quasi-uniform)
triangulation. The proof uses in the first place precise error estimates for u−uH , where uH is the solution (whose
existence we establish) of Step One. They are somewhat similar to those derived by Heywood and Rannacher
in [22], but they are slightly more complex because the convection term in (0.12) is not antisymmetric. Then
the proof relies on estimates which are more of the Functional Analysis type, using among others, Sobolev
inequalities.

Of course, we have at our disposal the choice of the finite elements. In this article, we have chosen the
“mini-element” (cf. Arnold et al. [3], Brezzi and Fortin [7] or Girault and Raviart [18]) for the spaces XH and
MH , and Xh and Mh, but the subsequent analysis can be adapted to other stable pairs of finite-element spaces.
In addition, for convenient computation, we assume that the fine grid is a refinement of the coarse grid, and
hence XH ⊂ Xh and MH ⊂Mh.

A few remarks are now in order.

Remark 0.4. As we have already mentioned, the “two-grid strategy” has been widely studied before. In [16],
we have obtained a result analogous to the above with the choice:

h = H3/2 , (0.19)
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a result which appears less favourable at first sight than (0.18). For instance, if we take H = 2−4 then (0.18)
gives h = 2−8, a much better precision than (0.19) which only gives h = 2−6. But there is a subtle difference.
In the stationary case, the result (0.19) of [16] is obtained under hypotheses on the data which imply the desired
regularity properties for the velocity and for the pressure, whatever the angles of the domain. In this respect,
this result is optimal. This is not the case in what follows. Here, the main result for the velocity is obtained on
a convex domain and a regular triangulation, assuming that some minimal regularity properties for the velocity
and pressure are satisfied. Of course, these can be guaranteed by imposing stronger regularity assumptions on
the force f , such as in Lemma 4.6 and Remark 5.3, but we do not know whether or not they are really necessary.

Depending on the error estimates available for u− uH (where uH is given by Step One), one can obtain the
main result for h = H3/2 or for h = H2. This is presented in Section 1 below for the variational formulation
without pressure, in order to simplify the presentation, and assuming that VH is contained in V .

Remark 0.5. For the transient Navier-Stokes equations studied in the present paper, there does not appear
to be much literature on the two-grid algorithm, but we can quote two references in a related direction, both
inspired by the Nonlinear Galerkin Method (NLG); as mentioned above, we refer to [38] for a good description
of NLG.

The first one is the work by Ait Ou Amni and Marion [2] on the two-dimensional Navier-Stokes equations,
that is also based on a coarse-grid space XH and a fine-grid space Xh. More precisely, they introduce XH

h , the
L2 orthogonal complement of XH in Xh:

Xh = XH ⊕XH
h ,

they define the bilinear form:
a(u,v) = ν(∇u,∇v) ,

and the antisymmetric trilinear form:

c(u; v,w) =
1
2
(
(u · ∇v,w) − (u · ∇w,v)

)
,

and their scheme is:
NLG - Preliminary Step Solve (0.1–0.4) starting with u(0) = u0 given at time t = 0 (instead of u(0) = 0),
up a given time t0, by a classical Galerkin semi-discrete method with the pair of spaces (Xh,Mh); let (uh, ph)
be the solution.
NLG - Steps One and Two For t ≥ t0, find vH ∈ XH , wh ∈ XH

h and ph ∈ Mh, solution of the coupled
system:

∀ϕ ∈ XH , (v′H , ϕ) + a(vH + wh, ϕ) + c(vH + wh; vH , ϕ) + c(vH ; wh, ϕ)− (ph,divϕ) = (f , ϕ) , (0.20)

∀χ ∈ XH
h , a(vH + wh, χ) + c(vH ; vH , χ)− (ph,divχ) = (f , χ) , (0.21)

∀q ∈Mh , (div(vH + wh), q) = 0 , (0.22)

vH(t0) = PH(uh(t0)) , (0.23)

where PH is the orthogonal projection for the L2 norm onto XH . Note that (0.20) and (0.21) are coupled and
for this reason, we do not dissociate Step One from Step Two.

For u0 given in H2(Ω)2 ∩V , f given in L2(Ω)2, independent of t, and (Xh,Mh) a stable pair of finite element
spaces with either constant or P1 pressure in each element, on a uniformly-regular triangulation, Ait Ou Amni
and Marion prove that

∀t ≥ t0 , ‖u(t)− uh(t)‖H1(Ω) ≤ κ(t)(H2 + h) ,
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∀t > t0 , ‖p(t)− ph(t)‖L2(Ω) ≤ τ(t)−1/2κ(t)(H2 + h) ,

where τ(t) = t−t0 and κ(t) is a continuous function of t for t > 0 (that depends on u0). Thus, in two dimensions,
the error of this NLG scheme is of the order of h, provided h = H2, a result that is similar to Theorem 24.1,
p. 648 of [38]. Note that we achieve the same order of accuracy for the velocity in three dimensions, without
requiring a uniformly regular triangulation and with the advantage that our two steps are decoupled.

The second one is the Post-Processing Method (PP) of Garcia-Archilla and Titi [15] for semi-linear scalar
elliptic equations in any dimension. In terms of operators, let A be the linear elliptic operator in the equation
and F the non-linear operator:

d
dt
u+ νAu+ F (u) = 0 , u(0) = u0 .

The operator F is either of the form F (u) = g(u) for a smooth real-valued function g or of the form

F (u) = g(u) + b(u) · ∇u , (0.24)

for a smooth vector-valued function b. Let SH be a space of continuous finite element functions on a coarse
grid; then the scheme is:
PP - Step One Find uH with values in SH for all t ∈ [0, T ] solution of the non-linear elliptic equation:

d
dt
uH + νAHuH + PH(F (uH)) = 0 , uH(0) = RH(u0) , (0.25)

where PH and RH are respectively the L2 and H1
0 orthogonal projection operators onto SH . Although we

use the same notation for PH as in NLG, the operator PH is not the same here since the functions of SH are
scalar-valued.
PP - Step Two Find ũ solution of the linear elliptic equation:

νA ũ = −F (uH(T ))− d
dt
uH(T ) , (0.26)

where ũ is approximated in a suitable fine-grid space. There are similarities between (0.20), (0.21) and (0.25),
(0.26), but the great advantage of this post-processing approach is that (0.25) and (0.26) are decoupled.

Among other results, Garcia-Archilla and Titi show that, when F has the form (0.24), for all H sufficiently
small and for smooth enough u, if the functions of SH are polynomials of degree r with r ≥ 2 on a uniformly
regular triangulation, this post-processed Galerkin approximation ũ satisfies the error bound:

‖u(T )− ũ‖H1(Ω) ≤ CHr+1|log(H)| .

When ũ is approximated by polynomials of degree r in a fine-grid space, say ũh ∈ Sh, the error ‖u(T )− ũh‖H1(Ω)

is of the order of hr provided hr = Hr+1|log(H)|. Thus, if r = 2, h and H must be related by

h = H3/2|log(H)|1/2 .

This result is not as sharp as ours, considering that the degree of the polynomials must be at least two and
the triangulation must be uniformly regular. If this scheme were to be applied to the Navier-Stokes equations,
the first step would correspond to a formulation without pressure, whereas the second step would read: Find
ũh(T ) ∈ Vh such that

∀vh ∈ Vh , ν(∇ ũh(T ),∇vh) = −(uH(T ) · ∇uH(T ),vh)− (u′H(T ),vh) + (f(T ),vh) . (0.27)
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Remark 0.6. In the present paper, only semi-discretizations are studied and no aim at effective computation
has been pursued. The emphasis for the time being, is on error estimates, presented under precise assumptions
on the regularity of the velocity and pressure. Nevertheless, here is a simple fully discrete scheme. Let ∆t =
T/(N + 1) for some positive integer N , let tn = n∆t, and suppose that unh has been computed. Then, we set:

unH = R(unh) ,

where R is a suitable restriction from Xh into XH , and we propose the following two-grid algorithm:
Step One (non-linear problem on coarse grid): Find (un+1

H , pn+1
H ) with values in XH ×MH , solution of

∀vH ∈ XH ,
1

∆t
(un+1
H − unH ,vH) + ν(∇un+1

H ,∇vH) + (un+1
H · ∇un+1

H ,vH)− (pn+1
H ,div vH) = 〈f(tn+1),vH〉 ,

(0.28)

∀qH ∈MH , (qH ,div un+1
H ) = 0 . (0.29)

Step Two (linearized problem on fine grid): Find (un+1
h , pn+1

h ) with values in Xh ×Mh, solution of

∀vh ∈ Xh ,
1

∆t
(un+1
h − unh,vh) + ν(∇un+1

h ,∇vh) + (un+1
H · ∇un+1

h ,vh)− (pn+1
h ,div vh) = 〈f(tn+1),vh〉 ,

(0.30)

∀qh ∈Mh , (qh,div un+1
h ) = 0 . (0.31)

This is a simple example in which both equations use the same time step and are both of order one with respect
to time. A more elaborate idea for Step Two would be to use a scheme of second-order in time with the same
time step, or some time-splitting scheme of order one.

Remark 0.7. Among other applications, this two-grid scheme can be used for solving higher-order equations
such as the Kuramoto-Shivashinsky’s equation. It could also be used, for instance, in all the Global Circulation
Models appearing in climatology, including the coupled ocean-atmosphere models. This is not developed here.

The remainder of this article is organized as follows. In Section 1, we describe the main steps in the proof
of the error estimates for the two-grid method in the simplified case where VH and Vh are contained in V , i.e.
the discrete functions have exactly zero divergence. The technically more difficult, though more important and
more realistic, formulations with the pressure and discrete velocities with non-zero divergence are studied in the
next sections. In Section 2, we derive by two different methods a priori estimates for the (unique) solution of
Step One. Section 3 is devoted to proving error estimates and Sections 4 and 5 to proving the duality argument.
The pressure is estimated in Section 6 and Step Two is studied in Section 7. Finally, an Appendix discusses
briefly the approximation properties of a regularization operator acting on L1 functions in three dimensions.

As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time
interval ]a, b[ with values in a functional space, say X (cf. Lions and Magenes [32]). More precisely, let ‖ · ‖X
denote the norm of X ; then for any number r, 1 ≤ r ≤ ∞, we define

Lr(a, b;X) = {f measurable in ]a, b[ ;
∫ b

a

‖f(t)‖rXdt <∞}

equipped with the norm

‖f‖Lr(a,b;X) =

(∫ b

a

‖f(t)‖rXdt

)1/r

,
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with the usual modification if r =∞. It is a Banach space if X is a Banach space. Here X is usually a Sobolev
space, such as (cf. Adams [1] or Nečas [39]):

Wm,r(Ω) = {v ∈ Lr(Ω) ; ∂kv ∈ Lr(Ω) ∀|k| ≤ m} ,

where (k1, k2, k3) is a triple of non-negative integers, |k| = k1 + k2 + k3 and

∂kv =
∂|k|v

∂xk1
1 ∂x

k2
2 ∂x

k3
3

.

This space is equipped with the seminorm

|v|Wm,r(Ω) =

 ∑
|k|=m

∫
Ω

|∂kv|r dx

1/r

,

and is a Banach space for the norm

‖v‖Wm,r(Ω) =

 ∑
0≤k≤m

|v|rWk,r(Ω)

1/r

.

When r = 2, this space is the Hilbert space Hm(Ω). In particular, the scalar product of L2(Ω) is denoted by
(·, ·). Similarly, L2(a, b;Hm(Ω)) is a Hilbert space and in particular L2(a, b;L2(Ω)) coincides with L2(Ω×]a, b[).
The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but with the
following modification for the norms in the non-Hilbert case. Let u = (u1, u2, u3); then we set

‖u‖Lr(Ω) =
[∫

Ω

‖u(x)‖r dx
]1/r

,

where ‖ · ‖ denotes the Euclidean vector norm.
For vanishing boundary values, we define

H1
0 (Ω) = {v ∈ H1(Ω) ; v|∂Ω = 0} ,

and its dual space, H−1(Ω). Recall Sobolev’s imbeddings: in three dimensions, for any real number 1 ≤ r ≤ 6,
there exists a constant Sr such that

∀v ∈ H1
0 (Ω) , ‖v‖Lr(Ω) ≤ Sr|v|H1(Ω) , (0.32)

where

|v|H1(Ω) = ‖∇ v‖L2(Ω) . (0.33)

When r = 2, (0.32) reduces to Poincaré’s inequality and S2 is Poincaré’s constant. Owing to Poincaré’s
inequality, the seminorm | · |H1(Ω) is a norm on H1

0 (Ω) and we use it to define the dual norm:

‖f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈f, v〉
|v|H1(Ω)

,
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where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). Also, recall the spaces we introduced at

the beginning:
V = {v ∈ H1

0 (Ω)3 ; div v = 0 in Ω} ,

L2
0(Ω) = {q ∈ L2(Ω) ;

∫
Ω

q dx = 0} ,

and the orthogonal complement of V in H1
0 (Ω)3:

V ⊥ = {v ∈ H1
0 (Ω)3 ; ∀w ∈ V , (∇v,∇w) = 0} .

Finally, the next theorem and its corollary collect some regularity properties of the solution of the steady
Stokes problem:

−ν∆ v +∇ q = g , div v = 0 in Ω , (0.34)

v = 0 on ∂Ω , (0.35)

and of every solution of the steady Navier-Stokes problem:

−ν∆ v + v · ∇v +∇ q = g , div v = 0 in Ω , (0.36)

where v is subject to boundary condition (0.35).

Theorem 0.8. If g ∈ L3/2(Ω)3, the solution (v, q) of (0.34), (0.35) belongs to H3/2(Ω)3 × H1/2(Ω), without
restrictions on the angles of ∂Ω. If g ∈ L2(Ω)3 and Ω is convex then (v, q) ∈ H2(Ω)3 ×H1(Ω).

Here H3/2(Ω) and H1/2(Ω) denote the interpolation spaces just “in the middle” between H2(Ω) and H1(Ω),
and respectively H1(Ω) and L2(Ω) (cf. [32]). The proof of the first part is due to Dauge and Costabel; it is
presented in [16]. The proof of the second part is due to Dauge [12]. Then the corollary below is established by
a bootstrap argument.

Corollary 0.9. The statement of Theorem 0.8 is valid for any solution (v, q) of (0.36), (0.35).

Proof. Let v ∈ H1(Ω)3 and q ∈ L2(Ω) be any solution of (0.36), (0.35). Then v · ∇v belongs to L3/2(Ω)3 and

‖v · ∇v‖L3/2(Ω) ≤ ‖v‖L6(Ω)‖∇v‖L2(Ω) .

Hence the pair (v, q) is the solution of the Stokes problem:

−ν∆ v +∇ q = g− v · ∇v , div v = 0 in Ω ,

with data in L3/2(Ω)3. Thus Theorem 0.8 implies that (v, q) belongs to H3/2(Ω)3 ×H1/2(Ω). Furthermore by
Sobolev’s imbedding theorem for interpolated spaces in three dimensions, we have

H3/2(Ω) ⊂W 1,3Ω) .

As a consequence, v · ∇v belongs to L2(Ω)3 and

‖v · ∇v‖L2(Ω) ≤ ‖v‖L6(Ω)‖∇v‖L3(Ω) .

Then the fact that (v, q) ∈ H2(Ω)3 ×H1(Ω) follows from another application of Theorem 0.8.
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1. Error estimates for the variational formulation without pressure

In this section, we shall exceptionally work with divergence-free discrete velocities, in other words, we shall
work with subspaces VH and Vh of V . This will not be the case in the subsequent sections, but we propose
this here in order to highlight some important steps in the derivation of the error estimates without too many
technical details. Let us denote by w ∈ V any given approximation of u over the interval ]0, T [; in the application
we have in mind, w will be given by

w = uH ,

where uH(t) ∈ VH is a semi-discrete approximation of u(t) on the coarse grid with mesh-size H. We shall specify
below the error estimates satisfied by w. As w is known, we define uh as being the solution of: uh(t) ∈ Vh,
such that

∀vh ∈ Vh , (u′h,vh) + a(uh,vh) + b(w; uh,vh) = 〈f ,vh〉 , in ]0, T [ , (1.1)

uh(t)|t=0 = 0 ,

where

a(uh,vh) = ν

∫
Ω

∇uh · ∇vh dx ,

b(w; uh,vh) =
∫

Ω

(w · ∇uh) · vh dx .

Since w is given, (1.1) is a square system of linear ordinary differential equations in the finite-dimensional space
Vh. It is easy to check that it has a unique solution. We want to estimate u− uh in suitable norms, and under
appropriate regularity assumptions on u (and w).

Let us choose v = vh in (0.5), a choice which is possible because Vh ⊂ V , then subtract (1.1) from (0.5):

∀vh ∈ Vh , (u′ − u′h,vh) + a(u− uh,vh) + b(u; u,vh)− b(w; uh,vh) = 0 . (1.2)

Let zh be given arbitrarily in Vh. We can rewrite (1.2) in the equivalent form:

∀vh ∈ Vh , ((u− zh + zh − uh)′,vh) + a(u− zh + zh − uh,vh) + b(u−w; u,vh)

+ b(w; u− zh + zh − uh,vh) = 0 .
(1.3)

We choose vh = zh − uh in (1.3). As div w = 0, we have

∀vh ∈ Vh , b(w; vh,vh) = 0 . (1.4)

Therefore (1.3) becomes

1
2

d
dt
‖zh − uh‖2L2(Ω) + ν|zh − uh|2H1(Ω) + Z1 + Z2 = 0 , (1.5)

where
Z1 = ((u− zh)′, zh − uh) + a(u− zh, zh − uh) ,

and in view of (1.4),
Z2 = b(u−w; u, zh − uh) + b(w; u− zh, zh − uh) .

For estimating the linear term Z1, we use the fact that

|((u− zh)′, zh − uh)| ≤ ‖(u− zh)′‖H−1(Ω)|zh − uh|H1(Ω) .
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Hence
|((u− zh)′, zh − uh)| ≤ ν

8
|zh − uh|2H1(Ω) +

2
ν
‖(u− zh)′‖2H−1(Ω) .

Similarly,
|a(u− zh, zh − uh)| ≤ ν

8
|zh − uh|2H1(Ω) + 2ν|u− zh|2H1(Ω) .

Thus

|Z1| ≤
ν

4
|zh − uh|2H1(Ω) +

2
ν
‖(u− zh)′‖2H−1(Ω) + 2ν|u− zh|2H1(Ω) . (1.6)

For estimating the non-linear term Z2, we split it into two parts: Z2 = Z21 + Z22, where

Z21 = b(u−w; u, zh − uh) , Z22 = b(w; u− zh, zh − uh) . (1.7)

There is not much choice for estimating Z22, since (1.6) already includes the terms |u − zh|2H1(Ω) and |zh −
uh|2H1(Ω). Therefore

|Z22| ≤ ‖w‖L3(Ω)‖zh − uh‖L6(Ω)|u− zh|H1(Ω) .

Since by the Sobolev imbedding (0.32),

‖zh − uh‖L6(Ω) ≤ S6|zh − uh|H1(Ω) ,

and if we assume that

w ∈ L∞(0, T ;L3(Ω)3) , (1.8)

we have finally

|Z22| ≤
ν

8
|zh − uh|2H1(Ω) +

2
ν
S2

6‖w‖2L∞(0,T ;L3(Ω)3)|u− zh|2H1(Ω) . (1.9)

Estimates for Z21 can be obtained in several different ways, depending on the information we have on u. For
instance, we can write:

|Z21| ≤ |u|H1(Ω)‖u−w‖L3(Ω)‖zh − uh‖L6(Ω) , (1.10)

or we can write:

|Z21| ≤ |u|W1,3(Ω)‖u−w‖L2(Ω)‖zh − uh‖L6(Ω) . (1.11)

Therefore, if we assume that

u ∈ L∞(0, T ;H1(Ω)3) , (1.12)

we derive from (1.10)

|Z21| ≤
ν

8
|zh − uh|2H1(Ω) +

2
ν
S2

6‖u‖2L∞(0,T ;H1(Ω)3)‖u−w‖2L3(Ω) , (1.13)

or if u satisfies the stronger assumption:

u ∈ L∞(0, T ;W 1,3(Ω)3) , (1.14)
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we derive from (1.11)

|Z21| ≤
ν

8
|zh − uh|2H1(Ω) +

2
ν
S2

6‖u‖2L∞(0,T ;W1,3(Ω)3)‖u−w‖2L2(Ω) . (1.15)

Now, substituting (1.6), (1.9) and (1.13) or (1.15) into (1.5), we obtain after integration over ]0, t[:

‖(zh − uh)(t)‖2L2(Ω) + ν

∫ t

0

|(zh − uh)(s)|2H1(Ω)ds ≤
4
ν

∫ t

0

‖(u− zh)′(s)‖2H−1(Ω)ds

+ 4(ν +
S2

6

ν
‖w‖2L∞(0,T ;L3(Ω)3))

∫ t

0

|(u− zh)(s)|2H1(Ω)ds

+ 4
S2

6

ν
Cρ

∫ t

0

‖(u−w)(s)‖2Lρ(Ω)ds ,

(1.16)

where ρ = 3 and Cρ = ‖u‖2L∞(0,T ;H1(Ω)3) if we assume (1.12), or ρ = 2 and Cρ = ‖u‖2L∞(0,T ;W1,3(Ω)3) if we
assume (1.14). We shall see in the next sections that if the finite-element space Vh is well-chosen and if u has
the regularity:

u ∈ L2(0, T ;H2(Ω)3) , u′ ∈ L2(Ω×]0, T [)3 ,

then by applying the triangular inequality and taking the infimum with respect to zh ∈ Vh in (1.16), we obtain

‖(u− uh)(t)‖2L2(Ω) + ν

∫ t

0

|(u− uh)(s)|2H1(Ω)ds ≤ C1h
2 + C2

∫ t

0

‖(u−w)(s)‖2Lρ(Ω)ds . (1.17)

We now use estimates on ‖u−w‖L2(0,T ;Lρ(Ω)3) that can “reasonably” be expected, when w is a “reasonable”
approximation of u computed on the coarse grid with mesh-size H on a convex domain. We may expect that
(and this is the tricky part of the proof):

‖u−w‖L2(0,T ;L2(Ω)3) ≤ C3H
2 , (1.18)

and

‖u−w‖L2(0,T ;H1(Ω)3) ≤ C4H . (1.19)

Now if we use the space H1/2(Ω), we have:

‖ϕ‖H1/2(Ω) ≤ C5‖ϕ‖1/2H1(Ω)‖ϕ‖
1/2
L2(Ω) ,

so that (1.18) and (1.19) imply that

‖u−w‖L2(0,T ;H1/2(Ω)3) ≤ C6H
3/2 . (1.20)

But using Sobolev’s imbedding theorem for interpolated spaces, we have in three dimensions

H1/2(Ω) ⊂ L3(Ω) ,

so that we obtain finally
‖u−w‖L2(0,T ;L3(Ω)3) ≤ C7H

3/2 .

When substituted into (1.17), these estimates imply:

‖u− uh‖2L∞(0,T ;L2(Ω)3) + ν‖u− uh‖2L2(0,T ;H1(Ω)3) ≤
C(h2 +H3) under (1.12)
C(h2 +H4) under (1.14) , (1.21)
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hence the choice

h = H3/2 under (1.12) , (1.22)

and

h = H2 under (1.14) . (1.23)

Remark 1.1. The choice (1.22) is the “transient analogue” of what we have obtained in [16] for the steady
(stationary) case, where the regularity properties for u follow exclusively from standard hypotheses on the data,
without restriction on the angles of ∂Ω. Similarly, the choice (1.23) was also obtained in [16] for the steady
problem on a convex domain.

Remark 1.2. In what follows, we shall obtain (1.23) for the formulation with pressure and with discrete
velocities with non-zero divergence.

2. A priori estimates for the solution of Step One

First, we describe the finite-element spaces. Since the notationH is somewhat cumbersome for a discretization
parameter, we denote it by η as in (0.9–0.11). Thus, let η > 0 be a discretization parameter, that will tend to
zero, and for each η, let Tη be a regular triangulation of Ω, consisting of tetrahedra with diameters bounded
by η. As usual, any pair of tetrahedra of Tη are either disjoint or share a whole face, a whole edge or a vertex.
For any tetrahedron κ, we denote by ηκ the diameter of κ and by ρκ the diameter of its inscribed sphere. By
regular we mean (cf. Ciarlet [9]): there exists a constant σ > 0, independent of η such that

∀κ ∈ Tη ,
ηκ
ρκ

= σκ ≤ σ . (2.1)

Let Pk denote the space of polynomials in three variables with total degree less than or equal to k. In each
tetrahedron κ, the pressure p is a polynomial of P1 and each component of the velocity is the sum of a polynomial
of P1 and a “bubble” function. Denoting the vertices of κ by ai, 1 ≤ i ≤ 4, and its corresponding barycentric
coordinate by λi, the basic bubble function bκ is the polynomial of degree four

bκ(x) = λ1(x)λ2(x)λ3(x)λ4(x) ,

that vanishes on the boundary of κ. Thus, we take

Xη = {vη ∈ H1
0 (Ω)3 ; ∀κ ∈ Tη , vη|κ ∈ (P1 ⊕Vect(bκ))3} , (2.2)

Mη = {qη ∈ H1(Ω) ∩ L2
0(Ω) ; ∀κ ∈ Tη , qη|κ ∈ P1} . (2.3)

As Xη contains all polynomials of degree one in each κ, there exists an operator Πη ∈ L(H1
0 (Ω)3;Xη) such that

for any real number s ∈ [1, 2]:

∀v ∈
[
Hs(Ω) ∩H1

0 (Ω)
]3
, |Πη(v) − v|Hm(Ω) ≤ C ηs−m|v|Hs(Ω) , m = 0, 1 . (2.4)

Similarly, as Mη contains all polynomials of degree zero in each κ, there exists an operator rη ∈ L(L2
0(Ω);Mη)

such that for any real number s ∈ [0, 1]:

∀q ∈ Hs(Ω) ∩ L2
0(Ω) , ‖rη(q)− q‖L2(Ω) ≤ C ηs|q|Hs(Ω) . (2.5)
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Furthermore, the pair (Xη,Mη) satisfies a uniform inf-sup condition: there exists a constant β∗ > 0, independent
of η, such that:

∀qη ∈Mη , sup
vη∈Xη

1
|vη|H1(Ω)

∫
Ω

qηdiv vη dx ≥ β∗‖qη‖L2(Ω) . (2.6)

In addition, we can construct an operator Pη ∈ L(H1
0 (Ω)3;Xη) such that (cf. [18]):

∀v ∈ H1
0 (Ω)3 , ∀qη ∈Mη ,

∫
Ω

qηdiv(Pη(v)− v) dx = 0 , (2.7)

and for k = 0 or 1 (cf. for instance [16]):

∀v ∈
[
H1+k(Ω) ∩H1

0 (Ω)
]3
, ‖Pη(v) − v‖L2(Ω) ≤ C η1+k|v|H1+k(Ω) , (2.8)

and for any number r ≥ 2, k = 0 or 1,

∀v ∈
[
W 1+k,r(Ω) ∩H1

0 (Ω)
]3
, |Pη(v)− v|W1,r(Ω) ≤ Cr ηk|v|W1+k,r(Ω) , (2.9)

with constants independent of η. In particular, if we approximate V by:

Vη = {vη ∈ Xη ; ∀qη ∈Mη ,

∫
Ω

qηdiv vη dx = 0} , (2.10)

then Pη ∈ L(V ;Vη).

Remark 2.1. Note that Vη is not a subspace of V , because Mη does not contain enough functions to enforce
a zero divergence. Thus Vη with η = H does not refer to the space VH of Section 1.

Remark 2.2. The operator Pη is not unique. It is constructed by suitably correcting a regularization operator
and it depends upon the regularization operator chosen. In particular if we choose an extension of the regu-
larization operator of Scott and Zhang (cf. [42]) as in Section 3, then Pη can be defined on L1(Ω)3, instead of
H1(Ω)3.

Now, let us reformulate Step One more conveniently. First, we assume that f ∈ L2(0, T ;H−1(Ω)3). Let Nη
be the dimension of Vη and let {wj}Nηj=1 be a basis of Vη. Then uη has the form:

uη(t) =
Nη∑
j=1

gj(t)wj , (2.11)

and the initial condition (0.14) reads

gj(0) = 0 , 1 ≤ j ≤ Nη . (2.12)

Thus choosing the test functions vη in Vη, the equations of Step One become: Find uη of the form (2.11) with
the unknown coefficients gj ∈ C0([0, T ]) satisfying (2.12) and

∀vη ∈ Vη , (u′η(t),vη) + ν(∇uη(t),∇vη) + (uη(t) · ∇uη(t),vη) = 〈f(t),vη〉 in ]0, T ] . (2.13)

The inf-sup condition (2.6) implies that (2.11–2.13) is equivalent to (0.12–0.14) (cf. Babuška [4], Brezzi [6], [18]
or Brenner and Scott [5]). Now, (2.11–2.13) is a square system of Nη ordinary non-linear differential equations



TWO-GRID FINITE-ELEMENT SCHEMES FOR THE TRANSIENT NAVIER-STOKES PROBLEM 959

of order one, with a constant non-singular matrix multiplying the derivative and the remaining coefficients at
least in L2(0, T ). Therefore, Carathéodory’s Theorem (cf. Coddington and Levinson [10]) implies that it has a
local maximal solution uη(t) in an interval [0, Tη[, where 0 < Tη ≤ T . It remains to prove that, at best Tη = T ,
or at least Tη can be bounded below by a constant T ? > 0, independent of η. This is achieved by means of
a priori estimates.

But the trouble is that Vη is not a subspace of V , and the choice vη = uη in (2.13) does not eliminate the
non-linear term as in (1.4). More precisely, for uη ∈ Vη,

∀wη ∈ Xη ,

∫
Ω

uη · ∇wη ·wηdx = −1
2

∫
Ω

div uη‖wη‖2dx ,

and it is shown in [16] that there exists a constant Ĉ, independent of η such that, for all uη ∈ Vη,

∀wη ∈ Xη , |
∫

Ω

uη · ∇wη ·wηdx| ≤ 1
2
Ĉη1/2‖div uη‖L2(Ω)|wη|2H1(Ω) . (2.14)

(We also refer to Crouzeix [11], Lemme 5.1, p. 214, for a related inequality). Thus for deriving an a priori
estimate from (2.13), we must establish the uniform bound

η1/2‖div uη‖L∞(0,Tη;L2(Ω)) ≤ C . (2.15)

Actually, we are going to prove that

‖uη‖L∞(0,Tη ;H1(Ω)3) ≤ C , C independent of η , (2.16)

which is stronger than (2.15). It is likely that (2.15) is true under weaker hypotheses than those used in proving
(2.16), but this is an open problem. Here we propose two proofs of (2.16), each one with a different set of
assumptions.

Theorem 2.3. Let f belong to H1(0, T ;H−1(Ω)3) and assume that f(0) belongs to L2(Ω)3. If η ≤ η0, where

η0 =
1
3
(S3S6

Ĉ

)2
, (2.17)

Ĉ is the constant of (2.14) and if√
2
3ν
‖f‖L2(0,T ;H−1(Ω)3)

(
‖f(0)‖2L2(Ω) +

2
ν
‖f ′‖2L2(0,T ;H−1(Ω)3)

)1/2 +
1
ν
‖f‖2L∞(0,T ;H−1(Ω)3) < (

ν

2
)3(

1
S3S6

)2 , (2.18)

then Tη = T , the discrete solution uη is unique and is bounded uniformly with respect to η in L∞(0, T ;H1(Ω)3).
In addition, u′η is bounded uniformly with respect to η in L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1(Ω)3).

Proof. The proof is based on differentiating (2.13) with respect to t. Taking the t-derivative of the variational
approximation is a standard procedure, cf. for instance [30], Chapter 10, Theorem 6.2, and the bibliography
therein. A slightly different approach to t-differentiation can be found in [23], Chapter 6, Section 4, pp.162,163,
and in its references. We give here a detailed proof in order to arrive at the precise estimate (2.18).

Note that f belongs to C0([0, T ];H−1(Ω)3). Therefore u′η is in C0([0, Tη[;Vη); hence we can differentiate
(2.13) with respect to t and choose vη = u′η(t). Applying (2.14) and Hölder’s inequality, we obtain at any time
t ∈ [0, Tη[:

d
dt
‖u′η(t)‖2L2(Ω) + 2ν |u′η(t)|2H1(Ω) − 2 |uη(t)|H1(Ω)‖u′η(t)‖L6(Ω)‖u′η(t)‖L3(Ω)

− Ĉη1/2‖div uη(t)‖L2(Ω)|u′η(t)|2H1(Ω) ≤ 2‖f ′(t)‖H−1(Ω)|u′η(t)|H1(Ω) .
(2.19)
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But
‖u′η(t)‖L6(Ω)‖u′η(t)‖L3(Ω) ≤ S6S3|u′η(t)|2H1(Ω) ,

and since uη(0) = 0, by continuity there exists a time T̃η, 0 < T̃η ≤ Tη such that

∀t ∈ [0, T̃η] , |uη(t)|H1(Ω) <
ν

2S3S6
. (2.20)

Moreover, we derive from (2.20) and (2.14) that, if η ≤ η0, with η0 defined by (2.17), then

∀wη ∈ Xη , |
∫

Ω

uη(t) · ∇wη ·wηdx| ≤ ν

4
|wη|2H1(Ω) . (2.21)

Let us prove that, if η ≤ η0 and the data satisfies (2.18), then (2.20) holds on [0, Tη], which in turn implies
that Tη = T . The proof proceeds by contradiction. Suppose there exists T ?, 0 < T ? ≤ Tη such that

∀t ∈ [0, T ?[ , |uη(t)|H1(Ω) <
ν

2S3S6
and |uη(T ?)|H1(Ω) =

ν

2S3S6
. (2.22)

Then, (2.19) and (2.22) imply for all t ∈ [0, T ?]:

d
dt
‖u′η(t)‖2L2(Ω) +

ν

2
|u′η(t)|2H1(Ω) ≤ ε |u′η(t)|2H1(Ω) +

1
ε
‖f ′(t)‖2H−1(Ω) . (2.23)

In addition, substituting vη = u′η(0) into (2.13) at time t = 0, we obtain

‖u′η(0)‖L2(Ω) ≤ ‖f(0)‖L2(Ω) .

Then the choice ε = ν/2 in (2.23) yields

∀t ∈ [0, T ?] , ‖u′η(t)‖2L2(Ω) ≤ ‖f(0)‖2L2(Ω) +
2
ν
‖f ′‖2L2(0,T ;H−1(Ω)3) . (2.24)

Similarly, the choice ε = ν/4 in (2.23) yields:

∀t ∈ [0, T ?] ,
∫ t

0

|u′η(s)|2H1(Ω)ds ≤
4
ν

(
‖f(0)‖2L2(Ω) +

4
ν
‖f ′‖2L2(0,T ;H−1(Ω)3)

)
. (2.25)

Next, let us choose vη = uη(t) in (2.13); in view of (2.21), we obtain for η ≤ η0:

d
dt
‖uη(t)‖2L2(Ω) +

3
2
ν |uη(t)|2H1(Ω) ≤ ε |uη(t)|2H1(Ω) +

1
ε
‖f(t)‖2H−1(Ω) .

Therefore

∀t ∈ [0, T ?] , ‖uη(t)‖2L2(Ω) ≤
2
3ν
‖f‖2L2(0,T ;H−1(Ω)3) . (2.26)

Finally, the same choice in (2.13) also gives

(u′η(t),uη(t)) +
3
4
ν |uη(t)|2H1(Ω) ≤

1
2

(ε |uη(t)|2H1(Ω) +
1
ε
‖f(t)‖2H−1(Ω)) .

Thus the choice ε = ν/2 implies

ν

2
|uη(t)|2H1(Ω) ≤

1
ν
‖f(t)‖2H−1(Ω) + ‖u′η(t)‖L2(Ω)‖uη(t)‖L2(Ω) .
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This inequality together with (2.26) and (2.24) give for all t ∈ [0, T ?]

|uη(t)|H1(Ω) ≤
√

2
ν

(1
ν
‖f‖2L∞(0,T ;H−1(Ω)3) +

√
2
3ν
‖f‖L2(0,T ;H−1(Ω)3)

(
‖f(0)‖2L2(Ω) +

2
ν
‖f ′‖2L2(0,T ;H−1(Ω)3)

)1/2)1/2
.

Since this inequality is valid at t = T ?, (2.18) contradicts the equality in (2.22).
This establishes global existence of a discrete solution. Uniqueness follows easily from the above estimates

and Gronwall’s Lemma.

Remark 2.4. The solution (u, p) of (0.1–0.4) is unique if the data f and ν satisfy the conditions of Theorem 2.3;
in fact, the smallness condition on the data is a little less restrictive than (2.18) because the non-linear term
is exactly antisymmetric. Furthermore u ∈ L∞(0, T ;H1(Ω)3) and u′ ∈ L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1(Ω)3)
(cf. [43]). Therefore, it follows from Corollary 0.9 that if in addition f ∈ Lr(0, T ;L3/2(Ω)3) for any number
r ≥ 2, then (u, p) ∈ Lr(0, T ;H3/2(Ω)3) × Lr(0, T ;H1/2(Ω)), without restrictions on the angles of ∂Ω. Indeed,
passing u′(t) to the right-hand side, we can write for almost every t ∈]0, T [:

−ν∆ u(t) + u(t) · ∇u(t) +∇ p(t) = f(t)− u′(t) in Ω ,

div u(t) = 0 in Ω ,

u(t) = 0 on ∂Ω ,

i.e. the pair (u(t), p(t)) is the solution of a Navier-Stokes equation parametrized by t. Similarly, if in addition,
f ∈ Lr(0, T ;L2(Ω)3) and Ω is convex then (u, p) ∈ Lr(0, T ;H2(Ω)3)× Lr(0, T ;H1(Ω)).

The second proof of (2.16) follows an idea introduced by Heywood in [21] for the continuous Navier-Stokes
problem, and used by [22] for a discrete Navier-Stokes problem on a single grid. Beforehand, recall the definition
of a uniformly regular triangulation: in addition to (2.1), there exists a constant τ > 0, independent of η, such
that

∀κ ∈ Tη , τ η ≤ ηκ ≤ σκρκ . (2.27)

Theorem 2.5. Let f belong to L2(Ω×]0, T [)3 and assume that Ω is convex and the triangulation Tη satisfies
(2.27). Then there exists a time T ? > 0, depending on the data, but independent of η, such that uη is unique
and is bounded uniformly with respect to η in L∞(0, T ?;H1(Ω)3). In addition, uη and u′η are bounded uniformly
with respect to η in L2(0, T ?;W 1,6(Ω)3) and L2(Ω×]0, T ?[)3 respectively.

Proof. The idea of the proof in [21] consists in taking the scalar product of (0.1) by the Helmholtz decomposition
of ν∆ u(t). In the discrete case, this is not possible because ∆ uη(t) does not belong to L2(Ω)3. We replace it
by the unique solution wη(t) ∈ Vη of

∀vη ∈ Vη , (wη(t),vη) = ν (∇uη(t),∇vη) . (2.28)

As Vη is a finite-dimensional space, wη(t) is uniquely defined by (2.28). Note that wη depends on t because uη
depends on t and thus wη ∈ C0([0, Tη[;Vη). For establishing the theorem, we need to extend to ‖∇uη‖L3(Ω) the
well-known consequence of Sobolev’s inequality:

∀g ∈ H1(Ω) , ‖g‖L3(Ω) ≤ C‖g‖1/2L2(Ω)|g|
1/2
H1(Ω) . (2.29)

Specifically, let us prove that there exists a constant K, independent of η and t, such that

‖∇uη(t)‖L3(Ω) ≤ K‖∇uη(t)‖1/2L2(Ω)‖wη(t)‖1/2L2(Ω) . (2.30)
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Since

‖∇uη(t)‖L3(Ω) ≤ ‖∇uη(t)‖1/2L2(Ω)‖∇uη(t)‖1/2L6(Ω) , (2.31)

we must find a suitable estimate for ‖∇uη(t)‖L6(Ω).
To simplify the notation, we drop t for the time being. We associate with wη the solution (u(η), p(η)) ∈

H1
0 (Ω)3 × L2

0(Ω) of the Stokes problem:

−ν∆ u(η) +∇ p(η) = wη , div u(η) = 0 in Ω .

Then u(η) and uη are related by:

∀vη ∈ Vη,∀qη ∈Mη , ν (∇(uη − u(η)),∇vη) + (p(η)− qη,div vη) = 0 .

Hence,

|uη − Pη(u(η))|H1(Ω) ≤ |u(η)− Pη(u(η))|H1(Ω) +
√

3
ν
‖p(η)− rη(p(η))‖L2(Ω) . (2.32)

Now the convexity assumption on Ω implies that (u(η), p(η)) ∈ H2(Ω)3 × H1(Ω) (cf. [12]) and there exists a
constant c1 that depends only on Ω such that

|u(η)|H2(Ω) + |p(η)|H1(Ω) ≤ c1‖wη‖L2(Ω) . (2.33)

Therefore, applying (2.5) with s = 1, (2.9) with r = 2 and k = 1, and (2.33) and substituting into (2.32), we
obtain, with a constant c2 independent of η:

|uη − Pη(u(η))|H1(Ω) ≤ c2η‖wη‖L2(Ω) . (2.34)

Let us write
‖∇uη‖L6(Ω) ≤ ‖∇(uη − Pη(u(η)))‖L6(Ω) + ‖∇Pη(u(η))‖L6(Ω) .

The uniform regularity (2.27) of the triangulation implies the inverse inequality: there exists a constant c3,
independent of η, such that

‖∇(uη − Pη(u(η)))‖L6(Ω) ≤
1
η
c3‖∇(uη − Pη(u(η)))‖L2(Ω) . (2.35)

Together with (2.34) and (2.9) with r = 6 and k = 0, this inequality implies

‖∇uη‖L6(Ω) ≤ c4‖wη‖L2(Ω) , (2.36)

with a constant c4, independent of η and t. Then (2.30) with K =
√
c4 follows by substituting (2.36) into (2.31).

Now, we choose vη = wη(t) in (2.13). On one hand, (2.28) yields

(u′η(t),wη(t)) = ν(∇u′η(t),∇uη(t)) =
ν

2
d
dt
|uη(t)|2H1(Ω) ,

ν(∇uη(t),∇wη(t)) = ‖wη(t)‖2L2(Ω) ,

and on the other hand, (2.30) implies

|
∫

Ω

uη(t) · ∇uη(t) ·wη(t)dx| ≤ 3
4
‖wη(t)‖2L2(Ω) +

1
4

(KS6)4|uη(t)|6H1(Ω) . (2.37)
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Hence

ν
d
dt
|uη(t)|2H1(Ω) + 2‖wη(t)‖2L2(Ω) ≤

3
2
‖wη(t)‖2L2(Ω) +

1
2

(KS6)4|uη(t)|6H1(Ω) + ε‖wη(t)‖2L2(Ω) +
1
ε
‖f(t)‖2L2(Ω) ,

and the choice ε = 1/2 gives

|uη(t)|2H1(Ω) ≤ ψ(t) ,

where ψ is the solution of the differential equation

ψ′(t) =
2
ν
‖f(t)‖2L2(Ω) +

1
2ν

(KS6)4ψ(t)3 for t > 0 ,

ψ(0) = 0 .

Then, if f ∈ L2(Ω×]0, T [)3, for any constant C > 0, there exists a time T ? depending only on C and the
constant coefficients of this equation (and hence independent of η) such that

∀t ∈ [0, T ?] , |uη(t)|2H1(Ω) ≤ C . (2.38)

In turn, the choice ε = 1/4 and (2.38) give

‖wη‖L2(Ω×]0,T?[) ≤ c5 , (2.39)

and then (2.36) implies that

‖uη‖L2(0,T?;W1,6(Ω)3) ≤ c4c5 . (2.40)

As far as u′η is concerned, the choice vη = u′η(t) in (2.13) yields

‖u′η(t)‖2L2(Ω) +
ν

2
d
dt
|uη(t)|2H1(Ω) ≤ ‖u′η(t)‖L2(Ω)

(
‖f(t)‖L2(Ω) + ‖uη(t)‖L6(Ω)|uη(t)|W1,3(Ω)

)
,

and (2.40) and (2.38) readily imply that

‖u′η‖L2(Ω×]0,T?[) ≤ c6 . (2.41)

Remark 2.6. To avoid a multiplicity of notation, we choose for constant in (2.38):

C =
( ν

2S3S6

)2
.

Then (2.21) holds for η ≤ η0, η0 defined by (2.17).

Remark 2.7. The assumptions of Theorem 2.5, namely Ω convex and f in L2(Ω×]0, T [)3, also imply that
the solution (u, p) of (0.1–0.4) satisfies u in L∞(0, T ?;H1(Ω)3) ∩ L2(0, T ?;H2(Ω)3), u′ in L2(Ω×]0, T ?[)3, p in
L2(0, T ?;H1(Ω)) and of course the solution is unique.



964 V. GIRAULT AND J.-L. LIONS

3. Error estimates for the solution of Step One

In this section, we suppose that the assumptions of either Theorem 2.3 or Theorem 2.5 are valid. To unify
the notation, in the case of Theorem 2.5, we denote T ? by T . Under both sets of assumptions, we have
u′ ∈ L2(Ω×]0, T [)3 at least.

Let Pη be an approximation operator satisfying (2.7–2.9). As mentioned in Remark 2.2, this operator is
not unique, because it is constructed by correcting a regularization operator that can be chosen according to
convenience. In the theorem below, we need to apply Pη to u′ that belongs only to L2(Ω)3; thus we must define
a regularization operator on L2(Ω). The reader will find in the Appendix a brief derivation of an extension of
the Scott and Zhang operator [42], that we denote by Rη. It is defined for v ∈ L1(Ω) and we can force the
boundary value of Rη(v) to vanish, so that Rη ∈ L(L1(Ω)3;Xη). Now we define:

Pη(v) = Rη(v) +
∑
κ∈Tη

cκbκ , (3.1)

where

∀κ ∈ Tη , cκ =
1∫

κ
bκdx

∫
κ

(v −Rη(v))dx . (3.2)

Then Pη ∈ L(L1(Ω)3;Xη); it satisfies (2.7–2.9) and in addition, for each number r ≥ 1, there exists a constant ĉ,
independent of η and κ, such that for all v ∈ Lr(Ω)3,

∀κ ∈ Tη , ‖Pη(v) − v‖Lr(κ) ≤ ĉ‖Rη(v)− v‖Lr(κ) . (3.3)

Moreover, it follows from (3.2) that

∀κ ∈ Tη ,
∫
κ

(Pη(v)− v)dx = 0 . (3.4)

This readily implies that, for a constant C independent of η

∀v ∈ L2(Ω)3 , ‖Pη(v) − v‖H−1(Ω) ≤ Cη‖Pη(v)− v‖L2(Ω) . (3.5)

Theorem 3.1. Suppose that the assumptions of Theorems 2.3 or 2.5 are valid and let Pη be defined by (3.1)
and (3.2). Then if η ≤ η0, there exist three constants C1, C2 and C3, independent of η, such that

‖uη − Pη(u)‖2L∞(0,T ;L2(Ω)3) +
ν

2
‖uη − Pη(u)‖2L2(0,T ;H1(Ω)3)

≤ exp
(
(

2
7ν

+
C1

ν3
)T
)( 7
ν
C2η

2‖u′‖2L2(Ω×]0,T [)

+ (
ν

7
+ C3)‖u− Pη(u)‖2L2(0,T ;H1(Ω)3) +

21
ν
‖p− rη(p)‖2L2(Ω×]0,T [)

)
.

(3.6)

Proof. First note that

(Pη(u))′ = Pη(u′) ,

because the same property is true for Rη owing to (A.2). Then we take the scalar product of (0.1) with a test
function vη ∈ Vη and we take the difference between the resulting equation and (2.13). By inserting (Pη(u))′

in the first term and Pη(u) in the other terms, choosing vη = uη − Pη(u), applying (2.21) and using (2.10), we
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obtain:

1
2

d
dt
‖uη − Pη(u)‖2L2(Ω) +

3
4
ν|uη − Pη(u)|2H1(Ω)

≤
(
‖u′ − Pη(u′)‖H−1(Ω) + ν|u− Pη(u)|H1(Ω) +

√
3‖p− rη(p)‖L2(Ω)

)
|uη − Pη(u)|H1(Ω)

+ ((u− Pη(u)) · ∇u,uη − Pη(u))− ((uη − Pη(u)) · ∇Pη(u),uη − Pη(u))

+ (Pη(u) · ∇(u− Pη(u)),uη − Pη(u)) . (3.7)

Let us bound the non-linear terms in (3.7). Since u ∈ L∞(0, T ;H1(Ω)3) in view of Remarks 2.4 and 2.7, we set

c1 = ‖u‖L∞(0,T ;H1(Ω)3) .

Therefore, for any ε1 > 0 and δ1 > 0, we have

|((u − Pη(u)) · ∇u,uη − Pη(u))| ≤ c1S3/2
6 |u− Pη(u)|H1(Ω)‖uη − Pη(u)‖1/2L2(Ω)|uη − Pη(u)|1/2H1(Ω)

≤ c1
2
S

3/2
6

( 1
ε1
|u− Pη(u)|2H1(Ω) +

ε1

2
(δ1|uη − Pη(u)|2H1(Ω) +

1
δ1
‖uη − Pη(u)‖2L2(Ω))

)
.

Similarly, set
c2 = ‖Pη(u)‖L∞(0,T ;H1(Ω)3) ,

which is also bounded in view of (2.9) with k = 0 and r = 2. Then

|((uη − Pη(u)) · ∇Pη(u),uη − Pη(u))|

≤ c2
2
S

3/2
6

( 1
ε2
|uη − Pη(u)|2H1(Ω) +

ε2

2
(δ2|uη − Pη(u)|2H1(Ω) +

1
δ2
‖uη − Pη(u)‖2L2(Ω))

)
,

|(Pη(u) · ∇(u− Pη(u)),uη − Pη(u))|

≤ c2
2
S

3/2
6

( 1
ε3
|u− Pη(u)|2H1(Ω) +

ε3

2
(δ3|uη − Pη(u)|2H1(Ω) +

1
δ3
‖uη − Pη(u)‖2L2(Ω))

)
.

The linear terms are easily bounded; in particular, the fact that u′ is in L2(Ω×]0, T [)3, (3.3), (3.5) and (A.5)
with p = 2 yield

‖u′ − Pη(u′)‖L2(0,T ;H−1(Ω)3) ≤ c3η‖u′‖L2(Ω×]0,T [) .

Then (3.6) follows readily by substituting these inequalities with a suitable choice of parameters εi and δi into
(3.7) and applying Gronwall’s Lemma.

Corollary 3.2. In addition to the assumptions of Theorem 3.1, suppose that (u, p) ∈ L2(0, T ;H2(Ω)3) ×
L2(0, T ;H1(Ω)). Then, if η ≤ η0, there exists a constant C(u, p, ν) independent of η, such that

‖uη − u‖2L∞(0,T ;L2(Ω)3) +
ν

2
‖uη − u‖2L2(0,T ;H1(Ω)3) ≤ C(u, p, ν)η2 . (3.8)

Remark 3.3. If the assumptions of Theorem 2.5 hold then (u, p) has the above regularity provided f ∈
L2(Ω×]0, T [)3. If the assumptions of Theorem 2.3 hold, the same conclusion is valid if in addition Ω is
convex.

Remark 3.4. The advantage of Theorem 2.3 versus Theorem 2.5 is that it does not require the uniformity
assumption (2.27) on the triangulation. For this reason, we shall not use Theorem 2.5 in the sequel.
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4. Some error estimates for the Stokes problem

The error estimate of order two in L2(Ω×]0, T [)3), that we shall derive in the next section, is based on a
duality argument for the transient Stokes problem:

∂

∂t
v(x, t) − ν ∆ v(x, t) +∇ q(x, t) = g(x, t) in Ω×]0, T ] , (4.1)

div v(x, t) = 0 in Ω×]0, T ] , (4.2)

v(x, t) = 0 on ∂Ω×]0, T ] , (4.3)

v(x, 0) = 0 in Ω . (4.4)

The first lemma recalls the regularity of its solution.

Lemma 4.1. If g ∈ L2(Ω×]0, T [)3, then the solution (v, q) of the Stokes problem (4.1–4.4) belongs to L2(0, T ;
H3/2(Ω)3) × L2(0, T ;H1/2(Ω)), v belongs to L∞(0, T ;H1(Ω)3) and v′ to L2(Ω×]0, T [)3, with continuous de-
pendence on g. If Ω is convex, then (v, q) ∈ L2(0, T ;H2(Ω)3) × L2(0, T ;H1(Ω)). If in addition, g′ ∈
L2(0, T ;H−1(Ω)3), g ∈ Lr(0, T ;L2(Ω)3) for some number r ≥ 2 and g(0) ∈ L2(Ω)3, then (v, q) ∈ Lr(0, T ;
H2(Ω)3) × Lr(0, T ;H1(Ω)) and v′ ∈ Lr(0, T ;L2(Ω)3) with continuous dependence on g. Finally, without con-
vexity assumption, if g ∈ H1(0, T ;H−1(Ω)3) and g(0) ∈ L2(Ω)3, then v′ ∈ L∞(0, T ;L2(Ω)3)∩L2(0, T ;H1(Ω)3).

Proof. Assume that g ∈ L2(Ω×]0, T [)3 and consider a Galerkin discretization of (4.1) in a suitable finite-
dimensional subspace of V , say Vm. Let vm be the Galerkin solution and multiply the discrete equation by v′m.
We obtain

‖v′m‖2L2(Ω×]0,T [) + ν‖vm‖2L∞(0,T ;H1(Ω)3) ≤ ‖g‖2L2(Ω×]0,T [) .

This uniform estimate shows that in the limit, v′ belongs to L2(Ω×]0, T [)3 and

‖v′‖2L2(Ω×]0,T [) + ν‖v‖2L∞(0,T ;H1(Ω)3) ≤ ‖g‖2L2(Ω×]0,T [) . (4.5)

Therefore, almost everywhere in ]0, T [, the pair (v(t), q(t)) is the solution of the Stokes problem

−ν∆ v(t) +∇ q(t) = g(t)− v′(t) in Ω ,

div v(t) = 0 in Ω ,

v(t) = 0 on ∂Ω ,

where t is a parameter as in Remark 2.4. Depending on the hypotheses made on Ω (Lipschitz or convex),
Theorem 0.8 implies that

√
νv is bounded in L2(0, T ;H3/2(Ω)3) or L2(0, T ;H2(Ω)3) and q is bounded in

L2(0, T ;H1/2(Ω)) or L2(0, T ;H1(Ω)).
Finally, if in addition g′ ∈ L2(0, T ;H−1(Ω)3) and g(0) ∈ L2(Ω)3, then g satisfies in particular the regularity

assumptions of the data of Theorem 2.3. Since the problem is linear, the analogue of (2.24) holds in [0, T ]:

‖v′m‖2L∞(0,T ;L2(Ω)3) ≤ ‖g(0)‖2L2(Ω) +
1
2ν
‖g′‖2L2(0,T ;H−1(Ω)3) . (4.6)

Thus, in the limit v′ belongs to L∞(0, T ;L2(Ω)3) and when g belongs to Lr(0, T ;L2(Ω)3) for some number
r ≥ 2, the above interpretation of (v(t), q(t)) gives the desired regularity.
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Similarly, if g ∈ H1(0, T ;H−1(Ω)3) and g(0) ∈ L2(Ω)3, the last conclusion holds owing to:

ν‖v′m‖2L2(0,T ;H1(Ω)3) ≤ ‖g(0)‖2L2(Ω) +
1
ν
‖g′‖2L2(0,T ;H−1(Ω)3) .

We discretize (4.1–4.4) by the scheme of Step One without the non-linear term: Find (vη, qη) with values in
Xη ×Mη for each t ∈ [0, T ], solution of

∀wη ∈ Xη , (v′η(t),wη) + ν(∇vη(t),∇wη)− (qη(t),div wη) = 〈g(t),wη〉 in ]0, T ] , (4.7)

∀λη ∈Mη , (λη,div vη(t)) = 0 in ]0, T ] , (4.8)

vη(x, 0) = 0 in Ω . (4.9)

As this is a linear problem, it has a unique solution over the interval [0, T ], and it satisfies the following error
estimate (cf. for instance [43]):

Lemma 4.2. Let g ∈ L2(Ω×]0, T [)3 and suppose Ω is convex. Let (v, q) and (vη, qη) be the respective solutions
of (4.1–4.4) and (4.7–4.9). There exists a constant C, independent of η such that

‖vη − v‖L∞(0,T ;L2(Ω)3) +
√
ν‖vη − v‖L2(0,T ;H1(Ω)3) ≤ Cη‖g‖L2(Ω×]0,T [) . (4.10)

The next theorem establishes that the error satisfies an estimate of order two in L2(Ω×]0, T [)3.

Theorem 4.3. We retain the assumptions and notation of Lemma 4.2. There exists a constant C, independent
of η such that

‖vη − v‖L2(Ω×]0,T [) ≤ Cη2‖g‖L2(Ω×]0,T [) . (4.11)

Proof. Following [22], we use the following parabolic duality argument: for any t ∈]0, T ], let (w, λ) be the
solution of the backward Stokes system:

∂

∂t
w + ν∆ w−∇λ = vη − v in Ω×]0, t] , (4.12)

div w = 0 in Ω×]0, t] ,

w = 0 on ∂Ω×]0, t] ,

w(x, t) = 0 in Ω .

As vη − v belongs to L2(Ω×]0, T [)3 and Ω is convex, Lemma 4.1 implies that (w, λ) ∈ L2(0, t;H2(Ω)3) ×
L2(0, t;H1(Ω)), w′ ∈ L2(Ω×]0, t[)3 and

‖w′‖L2(Ω×]0,t[) + ‖w‖L2(0,t;H2(Ω)3) + ‖λ‖L2(0,t;H1(Ω)) ≤ c1‖vη − v‖L2(Ω×]0,t[) . (4.13)

Now, on one hand, we take the scalar product of (4.1) with a test function zη ∈ Vη and we take the difference
between the resulting equation and (4.7). This gives

∀zη ∈ Vη , (v′η − v′, zη) + ν(∇(vη − v),∇ zη) = −(q − rη(q),div zη) . (4.14)
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On the other hand, we multiply (4.12) by vη − v and we obtain for any zη ∈ Vη:

‖vη − v‖2L2(Ω) = (w′,vη − v) − ν(∇w,∇(vη − v)) + (λ,div(vη − v))

= (w′ − z′η,vη − v)− ν(∇(w − zη),∇(vη − v))

+ (λ− rη(λ),div(vη − v)) + (z′η ,vη − v)− ν(∇ zη ,∇(vη − v)) .

(4.15)

Using (4.14), we have the identity

(z′η,vη − v) =
d
dt

(zη,vη − v) − (zη,v′η − v′)

=
d
dt

(zη,vη − v) + ν(∇ zη,∇(vη − v)) + (q − rη(q),div(zη −w)) .

Therefore, for all zη ∈ Vη,

‖vη − v‖2L2(Ω) = (w′ − z′η,vη − v) − ν(∇(w − zη),∇(vη − v)) + (λ− rη(λ),div(vη − v))

+
d
dt

(zη,vη − v) + (q − rη(q),div(zη −w)) .

By choosing zη = Pη(w), integrating both sides of this equation from 0 to t and applying (3.5), (2.5) and (2.9),
the initial condition for v, vη and the final condition for w, we find

‖vη − v‖2L2(Ω×]0,t[) ≤
∫ t

0

|vη − v|H1(Ω)

(
‖w′ − Pη(w′)‖H−1(Ω) + ν|w − Pη(w)|H1(Ω) +

√
3‖λ− rη(λ)‖L2(Ω)

)
dτ

+
√

3
∫ t

0

‖q − rη(q)‖L2(Ω)|w− Pη(w)|H1(Ω)dτ

≤ c2η
∫ t

0

[
|vη − v|H1(Ω)(‖w′‖L2(Ω) + |w|H2(Ω) + |λ|H1(Ω)) + ‖q − rη(q)‖L2(Ω)|w|H2(Ω)

]
dτ .

Then (4.11) follows from (4.13), (4.10) and (2.5).

Finally, the error also satisfies an estimate in L∞(0, T ;H1(Ω)3). The proof uses the following variant of the
Stokes projection (cf. [22]): for any pair (u, p) ∈ V × L2

0(Ω), Sη(u) ∈ Vη is defined by

∀vη ∈ Vη , ν(∇(Sη(u)− u),∇vη) = −(p,div vη) . (4.16)

Clearly Sη(u) is uniquely defined by (u, p) (to simplify the notation, we do not indicate the dependence on p).
In addition, it satisfies the following error bounds. We skip the proof, because it is the same as for the standard
Stokes projection.

Lemma 4.4. Let the pair (u, p) be given in V × L2
0(Ω). Then Sη(u) defined by (4.16) satisfies:

|Sη(u)− u|H1(Ω) ≤ 2|Pη(u)− u|H1(Ω) +
√

3
ν
‖rη(p)− p‖L2(Ω) . (4.17)

If in addition, Ω is convex, there exists a constant C, independent of η, such that

‖Sη(u)− u‖L2(Ω) ≤ Cη
(
|Sη(u)− u|H1(Ω) + ‖rη(p)− p‖L2(Ω)

)
. (4.18)
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Lemma 4.5. In addition to the hypotheses of Lemma 4.2, suppose that g is in L∞(0, T ;L2(Ω)3), g′ ∈ L2(0, T ;
H−1(Ω)3) and q′ in L2(Ω×]0, T [). Then there exists a constant C, independent of η, such that

‖v′η − v′‖L2(Ω×]0,T [) +
√
ν‖vη − v‖L∞(0,T ;H1(Ω)3)

≤ Cη
(
‖g‖L∞(0,T ;L2(Ω)3) + ‖g′‖L2(0,T ;H−1(Ω)3) + ‖q′‖L2(Ω×]0,T [)

)
.

(4.19)

Proof. First note that, in view of Lemma 4.1 and the above assumptions, q ∈ C0([0, T ];L2(Ω)). Hence q(0) is
well-defined, and since, again by Lemma 4.1, q ∈ L∞(0, T ;H1(Ω)), then q(0) belongs to H1(Ω).

Now, taking the difference between (4.1) and (4.7) multiplied by a test function wη ∈ Vη, inserting Sη(v)
defined by (v, q), choosing wη = v′η − Sη(v)′, and observing that here again Sη(v)′ = Sη(v′), we obtain:

‖v′η − Sη(v′)‖2L2(Ω) +
ν

2
d
dt
|vη − Sη(v)|2H1(Ω) ≤ ‖v′ − Sη(v′)‖L2(Ω)‖v′η − Sη(v′)‖L2(Ω) .

Therefore

‖v′η − Sη(v′)‖2L2(0,t;L2(Ω)3) + ν|(vη − Sη(v))(t)|2H1(Ω)

≤ ‖v′ − Sη(v′)‖2L2(0,t;L2(Ω)3) + ν|vη(0)− Sη(v)(0)|2H1(Ω) .
(4.20)

But (4.18) applied to v′ gives a.e. in ]0, T [:

‖v′ − Sη(v′)‖L2(Ω) ≤ Cη
(
|v′|H1(Ω) + ‖q′‖L2(Ω)

)
,

and (4.16) gives immediately

|vη(0)− Sη(v)(0)|H1(Ω) ≤
√

3
ν
‖rη(q(0))− q(0)‖L2(Ω) ≤ Cη|q(0)|H1(Ω) ,

with another constant C independent of η. Then (4.19) follows by substituting these bounds into (4.20).

The following lemma gives a sufficient condition for q′ in L2(Ω×]0, T [).

Lemma 4.6. If g ∈ H1(0, T ;L2(Ω)3) and g(0) ∈ V , then q′ ∈ L2(0, T ;H1/2(Ω)/R). If in addition, Ω is convex,
then q′ ∈ L2(0, T ;H1(Ω)/R).

Proof. As in Lemma 4.1, we consider the Galerkin discretization of (4.1–4.4), but here we define it in the basis
of the eigenfunctions of the Stokes operator: wi ∈ V ,

−∆ wi +∇πi = λiwi .

This basis is orthonormal in L2(Ω)3 and orthogonal in H1(Ω)3. Then for any t ∈ [0, T ], we have:

(v′m(t),wi) + ν(∇vm(t),∇wi) = (g(t),wi) , 1 ≤ i ≤ m. (4.21)

In particular, at time t = 0, since vm(0) = 0, we see that v′m(0) = Pmg(0), the orthogonal projection of g(0)
onto Vm for the L2 norm. Then on one hand,

‖v′m(0)‖L2(Ω) ≤ ‖g(0)‖L2(Ω) ,

and on the other hand,

‖∇v′m(0)‖2L2(Ω) =
m∑
i=1

(v′m(0),wi)2‖∇wi‖2L2(Ω) =
m∑
i=1

(g(0),wi)2λi ≤ ‖∇g(0)‖2L2(Ω) ,
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since g(0) ∈ V . Therefore,

|v′m(0)|H1(Ω) ≤ |g(0)|H1(Ω) . (4.22)

Hence differentiating (4.21) with respect to t, we obtain

‖v′′m(t)‖2L2(Ω) + ν
d
dt
|v′m(t)|2H1(Ω) ≤ ‖g′(t)‖2L2(Ω) ,

and next integrating this last equation with respect to t and using (4.22):∫ t

0

‖v′′m(s)‖2L2(Ω)ds+ ν|v′m(t)|2H1(Ω) ≤ ν|g(0)|2H1(Ω) +
∫ t

0

‖g′(s)‖2L2(Ω)ds . (4.23)

Passing to the limit with respect to m, (4.23) implies that v′′ ∈ L2(Ω×]0, T [)3, v′ ∈ L∞(0, T ;H1
0 (Ω)3) and

v′(0) = g(0). Thus, for almost every t, v′(t) is the solution of the Stokes problem (0.34), (0.35) with data
g′ − v′′ instead of g. Since g′ − v′′ ∈ L2(Ω×]0, T [)3, the lemma follows from Theorem 0.8.

Remark 4.7. The result of Lemma 4.6 is stronger than what is really needed, namely q′ ∈ L2(Ω×]0, T [), but
so far we do not know what minimal conditions guarantee exactly this regularity.

5. An error estimate of order two in L2(Ω×]0, T [)3

We are going to derive an estimate of order two for the L2 norm of uη−u with uη introduced in Section 2. As
in [22], we split the error into a linear contribution and a non-linear one. The linear contribution, which is the
discrete solution of the Stokes part of (0.1), is estimated by Theorem 4.3. Then we prove a “superconvergence”
result for the error of the non-linear part. More precisely, let vη ∈ Vη be defined by

∀wη ∈ Vη , (v′η(t),wη) + ν(∇vη(t),∇wη) = 〈f(t),wη〉 − (u(t) · ∇u(t),wη) in ]0, T ] , (5.1)

vη(x, 0) = 0 in Ω . (5.2)

Then vη satisfies (4.7) with data g = f − u · ∇u and Theorem 4.3 has the following corollary.

Corollary 5.1. In addition to the assumptions of Theorem 2.3, suppose that Ω is convex and f ∈ L2(Ω×]0, T [)3.
Then

‖vη − u‖L2(Ω×]0,T [) ≤ Cη2
(
‖f‖L2(Ω×]0,T [) + S6‖u‖L∞(0,T ;H1(Ω)3)‖u‖L2(0,T ;W1,3(Ω)3)

)
, (5.3)

where C is the constant of Theorem 4.3.

Similarly, Lemma 4.5 has the following consequence.

Corollary 5.2. In addition to the assumptions of Theorem 2.3, suppose that Ω is convex, f ∈ L∞(0, T ;L2(Ω)3)
and p′ ∈ L2(Ω×]0, T [). Then, there exists a constant C, independent of η, such that

‖vη − u‖L∞(0,T ;H1(Ω)3) ≤ Cη
(
‖f‖L∞(0,T ;L2(Ω)3) + ‖f ′‖L2(0,T ;H−1(Ω)3) + ‖p′‖L2(Ω×]0,T [)

)
. (5.4)

Remark 5.3. Lemma 4.6 implies that if f ∈ H1(0, T ;L2(Ω)3) and f(0) ∈ V , then p′ ∈ L2(0, T ;H1/2(Ω)/R).
Indeed, under these assumptions, we easily prove that u · ∇u ∈ H1(0, T ;L2(Ω)3). Since u · ∇u(0) = 0, the
assumptions of Lemma 4.6 are satisfied. Similarly, if in addition, Ω is convex, then p′ ∈ L2(0, T ;H1(Ω)/R).
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In view of (5.3), it remains to derive a sharp bound for uη − vη in L2(Ω×]0, T [)3. First, we observe that,
owing to Remark 2.4, the assumptions of Corollary 5.2 imply that:

u ∈ L∞(0, T ;H2(Ω)3) . (5.5)

Theorem 5.4. Under the assumptions of Corollary 5.2, and if η ≤ η1, where

η1 = min
(
η0,

1
3

ν2

C̃2Ĉ2

)
, (5.6)

Ĉ is the constant of (2.14), η0 the constant of (2.17) and

C̃ = ‖vη‖L∞(0,T ;H1(Ω)3) ,

there exists a constant C, that depends on ‖f‖L∞(0,T ;L2(Ω)3), ‖f ′‖L2(0,T ;H−1(Ω)3) and ‖p′‖L2(Ω×]0,T [), but not on
η, such that

‖vη − uη‖L∞(0,T ;L2(Ω)3) +
√
ν‖vη − uη‖L2(0,T ;H1(Ω)3) ≤ Cη2 . (5.7)

Proof. Subtracting (2.13) from (5.1), we have for all wη ∈ Vη:

(v′η − u′η,wη) + ν(∇(vη − uη),∇wη) = ((uη − vη) · ∇uη,wη) + (vη · ∇(uη − vη),wη)

+ ((vη − u) · ∇(vη − u),wη) + ((vη − u) · ∇u,wη) + (u · ∇(vη − u),wη) .
(5.8)

Let us bound the right-hand side of (5.8) taking wη = vη − uη. The first term is absorbed by the left-hand
side; indeed, set

c1 = ‖uη‖L∞(0,T ;H1(Ω)3) ,

then as in the proof of Theorem 3.1, we have

|((uη − vη) · ∇uη,vη − uη)| ≤ c1
2
S

3/2
6

(1
ε
|vη − uη|2H1(Ω) +

ε

2
(δ|vη − uη|2H1(Ω) +

1
δ
‖vη − uη‖2L2(Ω))

)
.

The second term is also absorbed by the left-hand side, in view of (2.14) and the fact that vη is bounded in
L∞(0, T ;H1(Ω)3); indeed

|(vη · ∇(uη − vη),vη − uη)| ≤
√

3
2
η1/2C̃Ĉ|vη − uη|2H1(Ω) ≤

ν

2
|vη − uη|2H1(Ω) ,

owing to (5.6). The third term is bounded by virtue of Lemma 4.2 and Corollary 5.2:

|((vη − u) · ∇(vη − u),vη − uη)| ≤ S3S6‖vη − u‖L∞(0,T ;H1(Ω)3)|vη − u|H1(Ω)|vη − uη|H1(Ω)

≤ η2C(f , f ′, p′)S3S6|vη − uη|H1(Ω) .

The fourth term is bounded by virtue of Corollary 5.1 and (5.5); set

c2 = ‖u‖L∞(0,T ;W1,3(Ω)3) , (5.9)

then

|((vη − u) · ∇u,vη − uη)| ≤ c2S6‖vη − u‖L2(Ω×]0,T [)|vη − uη|H1(Ω) ≤ η2C(f , f ′)c2S6|vη − uη|H1(Ω) .
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Finally, the last term is bounded by Green’s formula, Corollary 5.1 and (5.5); set:

c3 = ‖u‖L∞(Ω×]0,T [)3) ,

then
|(u · ∇(vη − u),vη − uη)| = |(u · ∇(vη − uη),vη − u)| ≤ η2c3C(f , f ′)|vη − uη|H1(Ω) .

Then (5.7) follows from these bounds with a suitable choice of parameters ε and δ.

Corollary 5.1 and Theorem 5.4 imply:

Corollary 5.5. Under the assumptions of Theorem 5.4, there exists a constant C that depends on
‖f‖L∞(0,T ;L2(Ω)3), ‖f ′‖L2(0,T ;H−1(Ω)3) and ‖p′‖L2(Ω×]0,T [), but not on η, such that

‖u− uη‖L2(Ω×]0,T [) ≤ Cη2 . (5.10)

6. An estimate for the pressure

The results of the preceding section allow one to establish an error estimate for the pressure. We start with
a general bound.

Lemma 6.1. Let (u, p) and (uη, pη) be the respective solutions of (0.1–0.4) and (0.12–0.14). Under the as-
sumptions of Theorem 2.3, we have

‖pη − rη(p)‖L2(Ω×]0,T [) ≤
1
β∗
(√

3‖p− rη(p)‖L2(Ω×]0,T [) + ‖u′ − u′η‖L2(0,T ;H−1(Ω)3) + ν‖u− Pη(u)‖L2(0,T ;H1(Ω)3)

+ S6(‖u‖L∞(0,T ;H1(Ω)3)‖u− uη‖L2(0,T ;L3(Ω)3) + ‖uη‖L∞(0,T ;L3(Ω)3)‖u− uη‖L2(0,T ;H1(Ω)3))
)
,

(6.1)

where β∗ is the constant of the inf-sup condition (2.6).

Proof. Taking the difference between (0.1) and (0.12) multiplied by a test function wη ∈ Xη and inserting
rη(p), we obtain

(rη(p)− pη,div wη) = (u′ − u′η,wη) + ν(∇(u− uη),∇wη) + (u · ∇u− uη · ∇uη,wη) + (rη(p)− p,div wη) .
(6.2)

Owing to the inf-sup condition (2.6), there exists a function wη ∈ V ⊥η , the discrete analogue of V ⊥, such that

(rη(p)− pη,div wη) = ‖rη(p)− pη‖2L2(Ω) , |wη|H1(Ω) ≤
1
β∗
‖rη(p)− pη‖L2(Ω) .

Then (6.1) readily follows by substituting this function into (6.2) and bounding the non-linear term in the
right-hand side by

|(u · ∇u− uη · ∇uη,wη)| ≤
(
‖u− uη‖L3(Ω)|u|H1(Ω) + ‖uη‖L3(Ω)|u− uη|H1(Ω)

)
‖wη‖L6(Ω) .

Clearly, the difficulty lies in estimating u′ − u′η in L2(0, T ;H−1(Ω)3). Unfortunately, exploiting the weaker
norm H−1(Ω) is not easy and we shall evaluate this quantity in L2(Ω×]0, T [)3. This estimate is proven assuming
the triangulation satisfies a milder regularity property than uniform regularity (2.27): in addition to (2.1), there
exists a constant τ̃ independent of η such that

ρmin ≥ τ̃ η1+1/3, where ρmin = inf
κ∈Tη

ρκ . (6.3)
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More precisely, this assumption is used in proving that uη is bounded in L∞(0, T ;W 1,3(Ω)3).

Lemma 6.2. Under the assumptions of Theorem 5.4 and if Tη satisfies (6.3), there exists a constant C that
depends on ‖f‖L∞(0,T ;L2(Ω)3), ‖f ′‖L2(0,T ;H−1(Ω)3) and ‖p′‖L2(Ω×]0,T [), but not on η, such that

‖uη‖L∞(0,T ;W1,3(Ω)3) ≤ C . (6.4)

Proof. We write

|uη|W1,3(Ω) ≤ |uη − vη|W1,3(Ω) + |vη − Pη(u)|W1,3(Ω) + |Pη(u)− u|W1,3(Ω) + |u|W1,3(Ω) .

Consider a tetrahedron κ. Since uη − vη belongs to a finite-dimensional space on the reference tetrahedron κ̂
where all norms are equivalent, we can write:

|uη − vη|W1,3(κ) ≤ C|κ|1/3
1
ρκ
‖ûη − v̂η‖L2(κ̂) ,

where C denotes various constants independent of η; reverting to κ, this becomes

|uη − vη|W1,3(κ) ≤ C|κ|−1/6 1
ρκ
‖uη − vη‖L2(κ) .

Summing over all κ ∈ Tη, applying Jensen’s inequality and the regularity of Tη, we obtain the inverse inequality:

|uη − vη|W1,3(Ω) ≤ C
1

ρ
3/2
min

‖uη − vη‖L2(Ω) .

Similarly,

|vη − Pη(u)|W1,3(Ω) ≤ C
1

ρ
1/2
min

|vη − Pη(u)|H1(Ω) .

Hence

|uη|W1,3(Ω) ≤ C
(
ρ
−3/2
min ‖uη − vη‖L2(Ω) + ρ

−1/2
min |vη − u|H1(Ω) + ρ

−1/2
min |Pη(u)− u|H1(Ω)

)
+ |Pη(u)− u|W1,3(Ω) + |u|W1,3(Ω) .

(6.5)

Then (6.3), (5.7), (5.4) and (2.9) imply

|uη|W1,3(Ω) ≤ C1(f , f ′, p′, τ̃) + C2|u|W1,3(Ω) .

Remark 6.3. Observe that (6.3) is less restrictive than (2.27). Its use is made possible here because the
negative exponents of ρmin in (6.5) are balanced by error terms of higher order. This is not the case in the proof
of Theorem 2.5 where the denominator and numerator in (2.35) are of the same order.

Lemma 6.4. Under the assumptions of Theorem 5.4 and if Tη satisfies (6.3), there exists a constant C that
depends on ‖f‖L∞(0,T ;L2(Ω)3), ‖f ′‖L2(0,T ;H−1(Ω)3) and ‖p′‖L2(Ω×]0,T [), but not on η, such that

‖u′ − u′η‖L2(Ω×]0,T [) +
√
ν‖u− uη‖L∞(0,T ;H1(Ω)3) ≤ Cη . (6.6)
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Proof. The proof is similar to that of Lemma 4.5, except that here we have to find a bound in L2(Ω×]0, T [)
for the difference of the non-linear terms. Indeed, we have

1
2
‖u′η − Sη(u′)‖2L2(Ω) +

ν

2
d
dt
|uη − Sη(u)|2H1(Ω) ≤ ‖u′ − Sη(u′)‖2L2(Ω) + ‖u · ∇u− uη · ∇uη‖2L2(Ω) .

Now,
u · ∇u− uη · ∇uη = u · ∇(u− uη) + (u− uη)∇uη .

First
‖u · ∇(u− uη)‖L2(Ω) ≤ ‖u‖L∞(Ω)|u− uη|H1(Ω) ≤ c1|u− uη|H1(Ω) .

Next, we write
‖(u− uη)∇uη‖L2(Ω) ≤ ‖u− uη‖L6(Ω)|uη|W1,3(Ω) ≤ S6C|u− uη|H1(Ω) ,

where C is the constant of Lemma 6.2. Therefore

‖u′η − Sη(u′)‖2L2(Ω) + ν
d
dt
|uη − Sη(u)|2H1(Ω) ≤ 2‖u′ − Sη(u′)‖2L2(Ω) + c2|u− uη|2H1(Ω) .

Then the proof finishes as in Lemma 4.5.

From these three lemmas, we easily derive an estimate of order one for the pressure.

Theorem 6.5. Under the assumptions of Theorem 5.4 and if Tη satisfies (6.3), there exists a constant C,
independent of η such that

‖p− pη‖L2(Ω×]0,T [) ≤ Cη . (6.7)

7. Two-grid algorithm

Let us recall the two-grid algorithm described in the Introduction.
• Find (uH , pH) ∈ XH ×MH for each t ∈ [0, T ], solution of (0.12–0.14):

∀vH ∈ XH , (u′H ,vH) + ν(∇uH ,∇vH) + (uH · ∇uH ,vH)− (pH ,div vH) = 〈f ,vH〉 ,

∀qH ∈MH , (qH ,div uH) = 0 ,
uH(x, 0) = 0 in Ω .

• Find (uh, ph) ∈ Xh ×Mh for each t ∈ [0, T ], solution of (0.15–0.17):

∀vh ∈ Xh , (u′h,vh) + ν(∇uh,∇vh) + (uH · ∇uh,vh)− (ph,div vh) = 〈f ,vh〉 ,

∀qh ∈Mh , (qh,div uh) = 0 ,
uh(x, 0) = 0 in Ω .

We retain the assumptions of Theorem 2.3. Then the function uH exists on the interval [0, T ], and since
(0.15) is a system of linear differential equations with smooth enough coefficients, it has a unique solution over
the whole interval [0, T ]. Therefore we can estimate directly the error of Step Two, but as we wish to use the
bound (5.10) for u− uη,η=H , we shall need the hypotheses of Theorem 5.4.

Theorem 7.1. Under the assumptions of Theorem 5.4, the solution (uh, ph) of (0.15–0.17) satisfies the error
bound:

‖uh − u‖L∞(0,T ;L2(Ω)3) +
√
ν‖uh − u‖L2(0,T ;H1(Ω)3) ≤ C(H2 + h) , (7.1)

with a constant C independent of h and H.
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Proof. Taking the difference between (0.1) multiplied by a test function vh ∈ Vh and (0.15), inserting Ph(u) ∈ Vh
and rh(p), and choosing vh = uh − Ph(u), we obtain

1
2

d
dt
‖uh − Ph(u)‖2L2(Ω) + ν|uh − Ph(u)|2H1(Ω)

= ν(∇(u − Ph(u)),∇(uh − Ph(u))) + (rh(p)− p,div(uh − Ph(u)))

+ (u′ − Ph(u′),uh − Ph(u)) + ((uH − u) · ∇(uh − Ph(u)),uh − Ph(u))

+ (uH · ∇(Ph(u)− u),uh − Ph(u)) + ((uH − u) · ∇u,uh − Ph(u)) .

(7.2)

Let us estimate the non-linear terms in the right-hand side. Comparing with (1.7), we see that the first term
appears here because div uH 6= 0. But it can be absorbed by the left-hand side:

|((uH − u) · ∇(uh − Ph(u)),uh − Ph(u))| ≤ S3/2
6 |uH − u|H1(Ω)|uh − Ph(u)|3/2H1(Ω)‖uh − Ph(u)‖1/2L2(Ω) ;

and according to Theorem 2.3,

‖uH − u‖L∞(0,T ;H1(Ω)3) ≤ c1 . (7.3)

Therefore

2|((uH − u) · ∇(uh − Ph(u)),uh − Ph(u))| ≤ c1S3/2
6

( 1
ε1
|uh − Ph(u)|2H1(Ω)

+
ε1

2
(δ|uh − Ph(u)|2H1(Ω) +

1
δ
‖uh − Ph(u)‖2L2(Ω))

)
.

Next, the analogue of (1.8) holds; thus setting

c2 = ‖uH‖L∞(0,T ;L3(Ω)3) ,

we obtain the analogue of (1.9)

2|(uH · ∇(Ph(u)− u),uh − Ph(u))| ≤ c2S6(ε2|uh − Ph(u)|2H1(Ω) +
1
ε2
|Ph(u)− u|2H1(Ω)) .

Finally, since the assumptions of Theorem 5.4 are strong enough, we have the analogue of (1.14) and we set

c3 = ‖u‖L∞(0,T ;W1,3(Ω)3) ,

then
2|((uH − u) · ∇u,uh − Ph(u))| ≤ c3S6(ε3|uh − Ph(u)|2H1(Ω) +

1
ε3
‖uH − u‖2L2(Ω)) .

The linear terms are bounded as in Theorem 3.1. Then collecting these inequalities, substituting into (7.2),
applying Corollary 5.5 with η = H, choosing suitably the parameters εi and δ, and integrating over [0, T ], we
readily derive (7.1).

Thus, if h = H2, then

‖uh − u‖L∞(0,T ;L2(Ω)3) +
√
ν‖uh − u‖L2(0,T ;H1(Ω)3) = O(h) .

Remark 7.2. We could have improved (7.3) by applying (6.6), and it would have led to smaller constants. But
(6.6) is proven under the assumption that Tη satisfies (6.3) and we wish to avoid this restriction.
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Finally, we consider the error of the pressure. As in Section 6, the pressure satisfies the following bound.

Lemma 7.3. Let (u, p) and (uh, ph) be the respective solutions of (0.1–0.4) and (0.15–0.17). Under the as-
sumptions of Theorem 2.3, and if in addition f ∈ L∞(0, T ;L3/2(Ω)3), we have

‖ph − rh(p)‖L2(Ω×]0,T [) ≤
1
β?
(√

3‖p− rh(p)‖L2(Ω×]0,T [) + ‖u′ − u′h‖L2(0,T ;H−1(Ω)3)

+ ν‖u− Ph(u)‖L2(0,T ;H1(Ω)3) + S6‖u‖L∞(0,T ;W1,3(Ω)3)‖u− uH‖L2(Ω×]0,T [)

+ S6‖u− uh‖L2(0,T ;H1(Ω)3)(‖u− uH‖L∞(0,T ;L3(Ω)3) + ‖u‖L∞(0,T ;L3(Ω)3))
)
.

(7.4)

Proof. The only difference with the proof of Lemma 6.1 concerns the non-linear term. Here we write

|(u · ∇u− uH · ∇uh,wh)| ≤
(
‖u− uH‖L2(Ω)|u|W1,3(Ω) + |u− uh|H1(Ω)(‖u− uH‖L3(Ω) + ‖u‖L3(Ω))

)
‖wh‖L6(Ω),

whence (7.4)

Therefore, here again, we must derive an estimate for ‖u′−u′h‖L2(0,T ;H−1(Ω)3), and we derive it in L2(Ω×]0, T [)3

because the norm of H−1(Ω) does not appear to bring any improvement. We write the proof for a uniformly
regular triangulation, i.e. satisfying (2.27).

Lemma 7.4. Under the assumptions of Theorem 5.4 and if Th satisfies (2.27), we have

‖u′ − u′h‖L2(Ω×]0,T [) +
√
ν‖u− uh‖L∞(0,T ;H1(Ω)3) ≤ C(h+ h1/2H +H3/2 +H2) , (7.5)

with a constant C independent of h and H.

Proof. The proof is similar to that of Lemma 6.4, except for the treatment of the non-linear term. We write:

uH · ∇uh − u · ∇u = (uH − u) · ∇(uh − u) + (uH − u) · ∇u + u · ∇(uh − u) .

The worst term is the second one and it accounts for the term H3/2 in (7.5). Setting

c1 = ‖u‖L∞(0,T ;W1,6(Ω)3) ,

we have

‖(uH − u) · ∇u‖L2(Ω) ≤ c1‖uH − u‖L3(Ω) . (7.6)

As in Section 1, Corollaries 3.2 and 5.5 give

‖uH − u‖L3(Ω) ≤ c2H3/2 .

Thus
‖(uH − u) · ∇u‖L2(Ω) ≤ c1c2H3/2 .

Next, setting
c3 = ‖u‖L∞(Ω×]0,T [) ,

and applying (7.1), we find

‖u · ∇(uh − u)‖L2(Ω) ≤ c3|uh − u|H1(Ω) ≤ c4(H2 + h) .

Finally, applying Lemma 6.4, an inverse inequality and (7.1), we derive

‖(uH − u) · ∇(uh − u)‖L2(Ω) ≤ ‖uH − u‖L6(Ω)|uh − u|W1,3(Ω) ≤ c5H(h1/2 +H) .
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Hence

‖uH · ∇uh − u · ∇u‖L2(Ω×]0,T [) ≤ c2H3/2 + c4(H2 + h) + c5H(h1/2 +H) . (7.7)

Then (7.5) follows readily from (7.7) and the argument of Lemma 4.5.

These two lemmas yield immediately the following theorem.

Theorem 7.5. Under the assumptions of Lemma 7.4, we have

‖p− ph‖L2(Ω×]0,T [) ≤ C(h+ h1/2H +H3/2 +H2) , (7.8)

with a constant C independent of h and H.

Remark 7.6. As a consequence, if h = H2, then

‖p− ph‖L2(Ω×]0,T [) = O(h3/4) . (7.9)

However, if u ∈ L∞(0, T ;W 1,∞(Ω)3), then (7.6) is replaced by

‖(uH − u) · ∇u‖L2(Ω) ≤ ‖uH − u‖L2(Ω)|u|W1,∞(Ω) ≤ CH2 ,

and (7.9) is replaced by:
‖p− ph‖L2(Ω×]0,T [) = O(h) .

Appendix

Let us describe briefly our extension of the Scott and Zhang operator to L1 functions. The details of the
proofs can be found in [42]. Here we denote the mesh-size by h and we assume that the triangulation is regular,
i.e. it satisfies (2.1). Let v ∈ L1(Ω); since we can take for Rh(v) a polynomial of degree one in each tetrahedron,
it suffices to regularize the “nodal values” of v on all the vertices of Th. Let a be any vertex of Th. If a ∈ ∂Ω,
we set Rh(v)(a) = 0. If a is an interior vertex of Th, we choose freely a tetrahedron, say κa with vertex a. Let
ψa be the dual basis function, piecewise P1, of the four Lagrange basis functions ϕb (also piecewise P1) that
take the value one at the vertex b and zero at all other vertices:∫

κa

ψa(x)ϕb(x)dx = δa,b . (A.1)

We set

Rh(v)(a) =
∫
κa

v(x)ψa(x)dx ,

i.e.

Rh(v)(x) =
∑

a∈T int
h

(
∫
κa

v(y)ψa(y)dy)ϕa(x) , (A.2)

where T int
h denotes the set of interior vertices of Th.

First observe that, if v ∈ Lp(Ω), for some p ≥ 1, we have

|Rh(v)(a)| ≤ C|κa|−1/p‖v‖Lp(κa) , (A.3)
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where here and in the sequel, C denotes various constants independent of h. Consequently, for any tetrahedron κ,
for m = 0 or 1, for any number p ≥ 1 and for any function v ∈ Wm,p(κ), we have, using the regularity (2.1)
of Th:

|Rh(v)|Wm,p(κ) ≤ Ch−mκ ‖v‖Lp(Dκ) , (A.4)

where Dκ denotes the union of all the tetrahedra of Th that share a vertex, an edge or a face with κ. Since Ω is
a Lipschitz continuous polyhedron, Dκ is connected. As the triangulation is regular, the number of tetrahedra
in a given Dκ is bounded by a constant independent of Dκ and h, and the number of occurrences of a given
tetrahedron in all the Dκ is also bounded by a constant independent of κ and h. Therefore, (A.4) implies that
Rh is stable in Lp(Ω) for any number p ≥ 1:

∀v ∈ Lp(Ω) , ‖Rh(v)‖Lp(Ω) ≤ C‖v‖Lp(Ω) . (A.5)

Next, observe that, in view of (A.1) and (A.2), Rh is a projection on the space

Θh = {v ∈ C0(Ω) ; ∀κ ∈ Th, v|κ ∈ P1 , v|∂Ω = 0} :

∀v ∈ Θh , Rh(v) = v .

Now, let v be function in W k+1,p(Ω)∩W 1,p
0 (Ω), for k = 0 or 1 and a number p ≥ 1, where the index zero means

that the function has a zero trace on the boundary ∂Ω. Note that the functions of W 1,1(Ω) have a trace. Let
κ be a tetrahedron with no vertex on ∂Ω; then by construction

∀q ∈ P1 , Rh(q)|κ = q .

Therefore, for m = 0 or 1 and for all q ∈ P1, applying (A.4), we have

|Rh(v)− v|Wm,p(κ) = |Rh(v − q)− (v − q)|Wm,p(κ) ≤ |v − q|Wm,p(κ) + Ch−mκ ‖v − q‖Lp(Dκ) .

As Dκ is connected, we can apply the argument of Dupont and Scott [13] that gives:

inf
q∈P1

(|v − q|Wm,p(κ) + h−mκ ‖v − q‖Lp(Dκ)) ≤ Chk+1−m
κ |v|Wk+1,p(Dκ) . (A.6)

Hence

|Rh(v)− v|Wm,p(κ) ≤ Chk+1−m
κ |v|Wk+1,p(Dκ) . (A.7)

If κ has at least one vertex on ∂Ω, say a0, then Dκ contains at least one tetrahedron κa0 with a face, say F0,
containing a0 and lying on ∂Ω. But the trace on ∂Ω of v ∈W 1,1

0 (Ω) is well-defined and is zero, therefore Rh(v)
satisfies trivially

0 = Rh(v)(a0) =
∫
F0

v(σ)ψa0(σ)dσ , (A.8)

where ψa0 denotes the dual P1 basis function on F0 of the three P1 Lagrange basis functions on F0. Clearly,
this is valid if κ has more than one vertex on ∂Ω. In other words, for functions in W 1,1

0 (Ω), Rh(v) has the same
degrees of freedom on ∂Ω as the Scott and Zhang operator, defined in [42]. Thus we can apply to it the results
of this reference. On one hand, with the formulation (A.8),

∀q ∈ P1 , Rh(q)|κ = q .
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On the other hand, in view of (A.8), we have

|Rh(v)(a0)| ≤ C|κa0 |−1/p
(
‖v‖Lp(κa0) + hκa0

|v|W1,p(κa0)

)
.

Therefore, combining this bound with (A.3), we obtain:

|Rh(v)|W1,p(κ) ≤ Ch−1
κ

(
‖v‖Lp(Dκ) + hκ|v|W1,p(Dκ)

)
.

Collecting these results, we find

|Rh(v)− v|W1,p(κ) = |Rh(v − q)− (v − q)|W1,p(κ) ≤ |v − q|W1,p(κ) + Ch−1
κ

(
‖v − q‖Lp(Dκ) + hκ|v − q|W1,p(Dκ)

)
.

Then (A.6) implies

|Rh(v)− v|Wm,p(κ) ≤ Chk+1−m
κ |v|Wk+1,p(Dκ) , (A.9)

which together with (A.7) yields for m = 0 or 1, k = 0 or 1 and any number p ≥ 1:

∀v ∈W k+1,p(Ω) ∩W 1,p
0 (Ω) , |Rh(v) − v|Wm,p(Ω) ≤ Chk+1−m|v|Wk+1,p(Ω) . (A.10)
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