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TWO-GRID FINITE-ELEMENT SCHEMES FOR THE TRANSIENT
NAVIER-STOKES PROBLEM

VIVETTE GIRAULT! AND JACQUES-LoUuIs Lions?2

Abstract. We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional
polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear
problem is semi-discretized on a coarse grid, with mesh-size H. In the second step, the problem is
linearized by substituting into the non-linear term, the velocity ug computed at step one, and the
linearized problem is semi-discretized on a fine grid with mesh-size h. This approach is motivated by
the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of
ugy to the error analysis is measured in the L? norm in space and time, and thus, for the lowest-degree
elements, is of the order of H2. Hence, an error of the order of h can be recovered at the second step,
provided h = H2.
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0. INTRODUCTION

Let us consider a non-linear Partial Differential Equation (called PDE). We want to find an approximation
of the solution, say u (or of a solution, properly defined). A very general strategy can be based on a two-grid
approach. In a first step, our approximation, say ug, is computed on a coarse grid of mesh-size H, using the
fully non-linear PDE. In a second step, one linearizes the PDE “around” uy (this can be done in infinitely many
ways), and one computes an approximation of the linear problem on a fine grid of mesh-size h. Let us denote
by u}" this solution. Then under quite general circumstances, one can show that if h and H are chosen in an
adequate fashion, then the error ||u—uji|| is of the same order as ||u—uy||, where uj, denotes the approximation
of the fully non-linear PDE computed on the fine grid. Of course, the computation of uy and ul}i“ involves
much less “work” than the direct computation of up!

The above strategy is valid for stationary PDE’s and for evolution (transient) equations as well.

This “two-grid strategy” or “two-step strategy” has been widely studied for steady semi-linear elliptic equa-
tions, cf. for example the work of Xu [45], [46] and Niemisto [40], and for the steady Navier-Stokes problem,
cf. the work of Layton [24], Layton and Lenferink [25], [26] and Girault and Lions [16]. We want to apply here
this strategy to mon-linear PDE’s of evolution. More precisely, we have chosen to develop this strategy for the

Navier-Stokes equations.
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Let © be a Lipschitz-continuous domain (cf. Grisvard [20]) of R?® with a polyhedral boundary 92 and unit
exterior normal n, and let [0, 7] be a given time-interval. Consider the time-dependent Navier-Stokes equations:

%u(x,t) —vAux,t) +ux,t) - Vu(x,t) + Vp(x,t) = f(x,t) in Qx]0,T7], (0.1)

with the incompressibility condition:
divu(x,t) =0 in Qx]0,7T], (0.2)
the homogeneous Dirichlet boundary condition:
u(x,t) =0 on 002x]0,T7], (0.3)
and the initial condition
u(x,0) =0 1in Q, (0.4)

where the notation u -V u means

.9
u-Vu= izzluzaxiu.

The existence of solutions to (0.1-0.4) is a fundamental question, and the existence-uniqueness of solutions is
still an open problem. Weak solutions were introduced by Leray [27-29] in a series of classical papers. Further
properties of the “Leray” solution (that he calls “turbulent solution”) have been given by Ladyzenskaya [23] and
Lions [30] and [31], Chapter 1. Under various hypotheses on the data, more or less “strong ” solutions can be
obtained, but whether or not singularities can develop in time and be accompanied by loss of uniqueness remains
an open problem. Further results were obtained by Lions [33], who also dealt in [34] with many situations for
compressible fluids (in particular, the reader can also refer to [35] for a list of interesting open questions).

Of course, due to the crucial importance of Navier-Stokes equations in very many applications, a huge
amount of papers has been devoted to numerical schemes for approximating these equations. Approximation
algorithms were already introduced in [23], [30] and [31], and much more developed in Temam [43], Girault and
Raviart [17], and Pironneau [41] where in particular, the “pressure formulation” was studied in depth. The first
“splitting” procedure (called the “projection method”) for dissociating the incompressibility constraint from
the non-linearity, was introduced by Chorin [8] and Temam [44]. Further on, Foias et al. [14] developed what
became known later as the Nonlinear Galerkin Method (NLG), that is mildly related to the methods we shall
study here. A good description of the NLG method can be found in Marion and Temam [38]; we also refer the
reader to their previous works [36] and [37]. We mention here that a very complete reference on the numerical
approximation of the steady or unsteady Navier-Stokes equations, by Glowinski, will appear in [19].

We recall now the classical formulation of the equations. Let V be the space of vector-valued functions
v = (v1,v2,v3) such that:

v; € HY(Q), e %ELZ(Q),lgjg?),vi:OonaQ,
J

and such that
divv =0, in Q.

The “classical” variational formulation of (0.1-0.4) is as follows: Find u = u(¢) with values in V such that

Vv eV, (W(t),v)+v(Vu(t),Vv)+ (u(t) - Vu(t),v) = (f(t),v) in]0,T], (0.5)
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and

where u’ = ‘?}—;‘. Of course, setting X = Hg () and

M={qeL2<9>;/ﬂqu=0},

this formulation is equivalent to looking for u satisfying

Ve X, (Wt),v)+v(Vu(t),Vv)+ (ult) - Vu(t),v) — (pt),divv) = (f(t),v) in]0,T], (0.6)
Vge M, (q,divu(t)) =0, in ]0,7T], (0.7)
and
u(0)=0.

It is well-known that, in general, the most straightforward semi-discrete analogues of the above formulations
are not equivalent. Indeed, when discretized, condition (0.7) does not imply that the divergence is zero, unless
polynomials of high degree are used. To achieve equivalence, we must work with an adequate approximation
of space V. Without going into details, let us present quickly a semi-discretization. Let 1 be a discretization
parameter, 7, a triangulation of Q, and let Vi, Xy and M, be finite-element spaces approximating respectively
V, X and M (all this will be made precise below). The semi-discrete analogue of (0.5) is then: find u,(t) € V,
satisfying

Vv € Vs (uy(8), vi) + v (Vg (1), V vy) + (ay(t) - Vauy(t), viy) = (£(2), vy)  in]0, 77, (0.8)
and the semi-discrete analogue of (0.6),(0.7) is: find u,(t) € X,, satisfying

Vv, € Xy, (), vy) +v(Vuy(t), Vvy) + (u,(t) - Vuy(t), vy) — (py(t),divv,) = (£(t),v,) in]0,T],

(0.9)
and
Vg, € M, , (gy,divu,(t)) =0 in]0,T]. (0.10)
Of course, in both formulations, we add
u,(0)=0. (0.11)

Remark 0.1. The zero initial velocity is only a matter of simplification. The contents of this article can be
readily adapted to non-zero initial data. O

We present now our two-grid scheme for the pressure approximation (0.9-0.11). Let 7y be a coarse trian-
gulation of Q and let Xy and My be suitable finite-element spaces for discretizing the velocity u and pressure
p. Similarly, let 7 be a fine triangulation, with corresponding finite-element spaces X, and Mj. The two-grid
algorithm for semi-discretizing (0.1-0.4) is:

Step One (non-linear problem on coarse grid): Find (ug,py) with values in Xy x My for each t € [0,T],
solution of

Vg € Xg , (Wy(t),ve) +v(Vup(t),Vvy)+ (ug(t) - Vug(t),ve) — (pu(t),divvy) = (£(t),vg) in]0,T7],
(0.12)
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Vag € My , (qu,divag(t)) =0 in]0,T], (0.13)

ug(x,0)=0 in (. (0.14)
Step Two (linearized problem on fine grid): Find (up, py) with values in X}, x M}, for each t € [0, T, solution of

Vv € Xp, (u)(8),vi) + v(Vur(t),Vvy) + (ug(t) - Vup(t), vi) — (pr(t),divvy) = (£(t), vy) in 0,77,

(0.15)
Yan € My, , (qn,divug(t)) =0 in ]0,7T], (0.16)
un(x,0) =0 in Q. (0.17)

Remark 0.2. One has to be careful with the notation. The function uy in (0.12-0.14) coincides with the
function u, in (0.9-0.11) if » = H. But the function uy, defined in Step Two does not coincide with u, for
n=nh, i.e up # Wy y=n. 0

Remark 0.3. The convection terms in (0.12) and (0.15) are not antisymmetric. Indeed, as mentioned above,
(0.13) does not necessarily imply that divug = 0; therefore in general

(uH~VuH,uH) #0

Then deriving a priori estimates for the solution of Step One is not a matter of routine. We shall see below
how this can be settled.

Of course, one can make the whole approximation antisymmetric, thus simplifying the analysis. But since it
can be justified, formulation (0.12) is simpler and it is actually widely used in practice. O

The main result in the present article is that if one chooses:
h=H?, (0.18)

and the mesh is reqular, then the error (estimated in suitable norms) is the same for u —uy, as for u —uy, ,—p.
Interestingly, this result for the velocity is obtained without requiring a uniformly regular (or quasi-uniform)
triangulation. The proof uses in the first place precise error estimates for u—uy, where ugy is the solution (whose
existence we establish) of Step One. They are somewhat similar to those derived by Heywood and Rannacher
n [22], but they are slightly more complex because the convection term in (0.12) is not antisymmetric. Then
the proof relies on estimates which are more of the Functional Analysis type, using among others, Sobolev
inequalities.

Of course, we have at our disposal the choice of the finite elements. In this article, we have chosen the
“mini-element” (cf. Arnold et al. [3], Brezzi and Fortin [7] or Girault and Raviart [18]) for the spaces Xy and
My, and Xj, and My, but the subsequent analysis can be adapted to other stable pairs of finite-element spaces.
In addition, for convenient computation, we assume that the fine grid is a refinement of the coarse grid, and
hence Xy C Xy, and My C M;,.

A few remarks are now in order.

Remark 0.4. As we have already mentioned, the “two-grid strategy” has been widely studied before. In [16],
we have obtained a result analogous to the above with the choice:

h=H?, (0.19)
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a result which appears less favourable at first sight than (0.18). For instance, if we take H = 27* then (0.18)
gives h = 278, a much better precision than (0.19) which only gives h = 275. But there is a subtle difference.
In the stationary case, the result (0.19) of [16] is obtained under hypotheses on the data which imply the desired
regularity properties for the velocity and for the pressure, whatever the angles of the domain. In this respect,
this result is optimal. This is not the case in what follows. Here, the main result for the velocity is obtained on
a convex domain and a reqular triangulation, assuming that some minimal regularity properties for the velocity
and pressure are satisfied. Of course, these can be guaranteed by imposing stronger regularity assumptions on
the force f, such as in Lemma 4.6 and Remark 5.3, but we do not know whether or not they are really necessary.

Depending on the error estimates available for u — uy (where uy is given by Step One), one can obtain the
main result for h = H3/2 or for h = H?. This is presented in Section 1 below for the variational formulation
without pressure, in order to simplify the presentation, and assuming that V is contained in V. O

Remark 0.5. For the transient Navier-Stokes equations studied in the present paper, there does not appear
to be much literature on the two-grid algorithm, but we can quote two references in a related direction, both
inspired by the Nonlinear Galerkin Method (NLG); as mentioned above, we refer to [38] for a good description
of NLG.

The first one is the work by Ait Ou Amni and Marion [2] on the two-dimensional Navier-Stokes equations,
that is also based on a coarse-grid space Xy and a fine-grid space Xj,. More precisely, they introduce X, the
L? orthogonal complement of Xz in Xp:

Xp=Xupo® X},
they define the bilinear form:
a(u,v) =v(Vu,Vv),
and the antisymmetric trilinear form:

cw;v,w)==((u-Vv,w) — (u-Vw,v)),

N =

and their scheme is:

NLG - Preliminary Step Solve (0.1-0.4) starting with u(0) = ug given at time ¢t = 0 (instead of u(0) = 0),
up a given time tg, by a classical Galerkin semi-discrete method with the pair of spaces (X, My); let (up, pr)
be the solution.

NLG - Steps One and Two For t > tg, find vy € Xy, wp, € X}{{ and p, € Mj, solution of the coupled
system:

Vo € Xu, (Vig, ) +a(ve + Wi, @) + (v + Wi v, @) + c(vis wh, ) — (pr, dive) = (£, ¢), (0.20)
Vx € Xil, a(vir +wn, X) + (Vi v, x) — (pn, divx) = (£, ), (0.21)

Vg € My, , (div(vg +wp),q) =0, (0.22)

v (to) = Pr(un(to)) (0.23)

where Py is the orthogonal projection for the L? norm onto X . Note that (0.20) and (0.21) are coupled and
for this reason, we do not dissociate Step One from Step Two.

For ug given in H?(Q2)?2NV, f given in L?(Q2)?, independent of ¢, and (X, M},) a stable pair of finite element
spaces with either constant or P; pressure in each element, on a uniformly-regular triangulation, Ait Ou Amni
and Marion prove that

vt > o, lu(t) — un (Ol o) < KEOH? +h),
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vt > o, [p(t) - pr(®)l 2@y < 7O V2R()(H2 + 1),
where 7(t) = t—tp and k(t) is a continuous function of ¢ for ¢ > 0 (that depends on ugp). Thus, in two dimensions,
the error of this NLG scheme is of the order of h, provided h = H?, a result that is similar to Theorem 24.1,
p. 648 of [38]. Note that we achieve the same order of accuracy for the velocity in three dimensions, without
requiring a uniformly regular triangulation and with the advantage that our two steps are decoupled.

The second one is the Post-Processing Method (PP) of Garcia-Archilla and Titi [15] for semi-linear scalar
elliptic equations in any dimension. In terms of operators, let A be the linear elliptic operator in the equation
and F' the non-linear operator:

d
Eu—f—VAu—l—F(u) =0, u(0) =wug.
The operator F is either of the form F'(u) = g(u) for a smooth real-valued function g or of the form

F(u) =g(u) +b(u) - Vu, (0.24)

for a smooth vector-valued function b. Let Sy be a space of continuous finite element functions on a coarse
grid; then the scheme is:
PP - Step One Find uy with values in Sy for all ¢ € [0, T] solution of the non-linear elliptic equation:

d
&uH—l—VAHuH—l—PH(F(uH)) =0, ug(0) = Ry (ug), (0.25)

where Py and Ry are respectively the L? and H{ orthogonal projection operators onto Sp. Although we
use the same notation for Py as in NLG, the operator Py is not the same here since the functions of Sy are
scalar-valued.

PP - Step Two Find u solution of the linear elliptic equation:

vAd = —F(ug(T)) - %UH(T), (0.26)

where @ is approximated in a suitable fine-grid space. There are similarities between (0.20), (0.21) and (0.25),
(0.26), but the great advantage of this post-processing approach is that (0.25) and (0.26) are decoupled.

Among other results, Garcia-Archilla and Titi show that, when F' has the form (0.24), for all H sufficiently
small and for smooth enough u, if the functions of Sy are polynomials of degree r with r» > 2 on a uniformly
regular triangulation, this post-processed Galerkin approximation 4 satisfies the error bound:

[u(T) = all 1 () < CH™ [log(H)] -

When 1 is approximated by polynomials of degree r in a fine-grid space, say iy, € Sy, the error ||u(T) —tn | g1 (o)
is of the order of A" provided h" = H"*!|log(H)|. Thus, if r = 2, h and H must be related by

h = H?|log(H)|*/2 .
This result is not as sharp as ours, considering that the degree of the polynomials must be at least two and
the triangulation must be uniformly regular. If this scheme were to be applied to the Navier-Stokes equations,
the first step would correspond to a formulation without pressure, whereas the second step would read: Find
ap(T') € Vj, such that
Vv, € Vi, v(Vup(T),Vvy) = —(ug(T) - Vuy(T),vn) — (W (T),vp) + (£(T),vh) . (0.27)

O
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Remark 0.6. In the present paper, only semi-discretizations are studied and no aim at effective computation
has been pursued. The emphasis for the time being, is on error estimates, presented under precise assumptions
on the regularity of the velocity and pressure. Nevertheless, here is a simple fully discrete scheme. Let At =
T/(N + 1) for some positive integer N, let ¢,, = nAt, and suppose that u}’ has been computed. Then, we set:

uyr = R(up),

where R is a suitable restriction from X}, into Xg, and we propose the following two-grid algorithm:

Step One (non-linear problem on coarse grid): Find (u"HH, pzﬂ) with values in Xz x My, solution of

1 .
Vg € Xu , Kt(uzﬂ —uly,vy) +v(Vut Vvg) + (uy™ - vaitt ve) — (0 divve) = E(twsa), va)
(0.28)

Yag € My , (qm,div u?j'l) =0. (0.29)

Step Two (linearized problem on fine grid): Find (uZH, pZH) with values in X}, x Mj, solution of

1
Vv, € Xy, E(UZH —up,vp) +v(V uZ‘H, V) + (u?fl . VuZ'H,vh) — (pZH,div vi) = £(tnt1), vh),
(0.30)

Yan € My, (qn,divu}™) =0. (0.31)

This is a simple example in which both equations use the same time step and are both of order one with respect
to time. A more elaborate idea for Step Two would be to use a scheme of second-order in time with the same
time step, or some time-splitting scheme of order one. O

Remark 0.7. Among other applications, this two-grid scheme can be used for solving higher-order equations
such as the Kuramoto-Shivashinsky’s equation. It could also be used, for instance, in all the Global Circulation

Models appearing in climatology, including the coupled ocean-atmosphere models. This is not developed here.
O

The remainder of this article is organized as follows. In Section 1, we describe the main steps in the proof
of the error estimates for the two-grid method in the simplified case where Vg and V}, are contained in V| i.e.
the discrete functions have exactly zero divergence. The technically more difficult, though more important and
more realistic, formulations with the pressure and discrete velocities with non-zero divergence are studied in the
next sections. In Section 2, we derive by two different methods a priori estimates for the (unique) solution of
Step One. Section 3 is devoted to proving error estimates and Sections 4 and 5 to proving the duality argument.
The pressure is estimated in Section 6 and Step Two is studied in Section 7. Finally, an Appendix discusses
briefly the approximation properties of a regularization operator acting on L' functions in three dimensions.

As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time
interval Ja, b[ with values in a functional space, say X (c¢f. Lions and Magenes [32]). More precisely, let || - || x
denote the norm of X; then for any number r, 1 < r < oo, we define

b
L"(a,b; X) = {f measurable in ]a, b[; / £ )|k dt < oo}

b 1/r
ey = ( / If(t)l’;}dt> ,

equipped with the norm
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with the usual modification if = co. It is a Banach space if X is a Banach space. Here X is usually a Sobolev
space, such as (¢f. Adams [1] or Necas [39]):

W™ (Q) = {ve L"(Q); 0" € L"(Q) V|k| < m},

where (k1, ko, k3) is a triple of non-negative integers, |k| = k1 + k2 + k3 and

dlkly
" = F1n k2n ks
Oz} Oxy> 0xs®
This space is equipped with the seminorm
1/r
ol = | > / |oFo|mdx |
|k|=m a2
and is a Banach space for the norm
1/r
lollwmry = | D [0l
0<k<m

When r = 2, this space is the Hilbert space H™ (). In particular, the scalar product of L2(Q) is denoted by
(-,+). Similarly, L?(a, b; H™(Q2)) is a Hilbert space and in particular L?(a,b; L?(Q)) coincides with L?(Q2x]a, b[).
The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but with the
following modification for the norms in the non-Hilbert case. Let u = (u1, uz2, ug); then we set

1/r
lallor = [ / ||u<x>|’“dx] ,

where || - || denotes the Euclidean vector norm.

For vanishing boundary values, we define
Hy () = {v € H'(Q); vloa = 0},

and its dual space, H~1(Q). Recall Sobolev’s imbeddings: in three dimensions, for any real number 1 < r < 6,
there exists a constant S, such that

Vo e Hy(Q) , [[vllzr) < Srlvlmie), (0.32)

where
vl ) = [V ollz20) - (0.33)
When r = 2, (0.32) reduces to Poincaré’s inequality and S; is Poincaré’s constant. Owing to Poincaré’s

inequality, the seminorm |- |41 () is a norm on Hg () and we use it to define the dual norm:

U
Wl = sup 22
veri(@) [vla (@)



TWO-GRID FINITE-ELEMENT SCHEMES FOR THE TRANSIENT NAVIER-STOKES PROBLEM 953

where (-, -) denotes the duality pairing between H~1(2) and H}(2). Also, recall the spaces we introduced at
the beginning:
V={veH}?; divv=0in Q},
L§©) = g € %) [ adx =0},
Q
and the orthogonal complement of V in H}(Q2)3:
Vi={ve (0 YweV, (Vv,Vw)=0}.

Finally, the next theorem and its corollary collect some regularity properties of the solution of the steady
Stokes problem:

—vAv+Vg=g,divv=0 inQ, (0.34)

v=0 ondQ, (0.35)
and of every solution of the steady Navier-Stokes problem:
—VvAv+v-Vv+Vqg=g,6 divv=0 inQ, (0.36)

where v is subject to boundary condition (0.35).

Theorem 0.8. If g € L3/%(Q)3, the solution (v,q) of (0.34), (0.35) belongs to H3/?(Q)> x HY?(Q), without
restrictions on the angles of 0. If g € L2(2)3 and Q is convex then (v,q) € H*(Q)3 x HL(Q).

Here H3/2(Q) and H'/?(£2) denote the interpolation spaces just “in the middle” between H?(Q) and H' (),
and respectively H1(Q2) and L?(Q) (cf. [32]). The proof of the first part is due to Dauge and Costabel; it is
presented in [16]. The proof of the second part is due to Dauge [12]. Then the corollary below is established by
a bootstrap argument.

Corollary 0.9. The statement of Theorem 0.8 is valid for any solution (v,q) of (0.36), (0.35).
Proof. Let v € H'(Q)% and ¢ € L?(Q) be any solution of (0.36), (0.35). Then v - Vv belongs to L3/2(Q)3 and

V-V lpsrz) < IViiLs@llV Vi) -
Hence the pair (v, q) is the solution of the Stokes problem:
—vAv+Vg=g—v-Vv, divv=0 inQ,

with data in L3/2(Q)3. Thus Theorem 0.8 implies that (v,q) belongs to H*>/2(Q)3 x H'/?(Q). Furthermore by
Sobolev’s imbedding theorem for interpolated spaces in three dimensions, we have

H32(Q) c Wwh3Q).
As a consequence, v - Vv belongs to L?(2)? and
Iv- Vvl < IVIiLe@ IV vllLa@) -

Then the fact that (v,q) € H?(Q)3 x H'(2) follows from another application of Theorem 0.8. O
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1. ERROR ESTIMATES FOR THE VARIATIONAL FORMULATION WITHOUT PRESSURE

In this section, we shall exceptionally work with divergence-free discrete velocities, in other words, we shall
work with subspaces Vg and V}, of V. This will not be the case in the subsequent sections, but we propose
this here in order to highlight some important steps in the derivation of the error estimates without too many
technical details. Let us denote by w € V any given approximation of u over the interval |0, T'[; in the application
we have in mind, w will be given by

W =1upy,
where ug (t) € Vi is a semi-discrete approximation of u(t) on the coarse grid with mesh-size H. We shall specify
below the error estimates satisfied by w. As w is known, we define u;, as being the solution of: u(t) € Vj,
such that

Vv, € Vi, (0}, vi) + a(up, vi) + b(wiap, vi) = (£,vp), in]0, 77, (1.1)

up(t)|t=0 =0,

where
a(up, vy) = 1// Vuy - Vv,dx,
Q

b(w;up, vp) = /(W -Vuy) - vpdx.
Q

Since w is given, (1.1) is a square system of linear ordinary differential equations in the finite-dimensional space
Vi,. Tt is easy to check that it has a unique solution. We want to estimate u — uy, in suitable norms, and under
appropriate regularity assumptions on u (and w).

Let us choose v = v, in (0.5), a choice which is possible because V;, C V, then subtract (1.1) from (0.5):

Vv, € Vi, (0 =), vi) +a(u—up, vp) + b(u;u, vi) — b(wiug, vi) =0. (1.2)
Let zj, be given arbitrarily in V;,. We can rewrite (1.2) in the equivalent form:

Vi € Vi, (W =2 + 21 —up)', vi) + a(u— 2z, + 2, — up, viy) + b(u — wiu, vy,)

+b(w;u—2p + 2, —up,vy) =0. (13)
We choose vi, =z, —uy, in (1.3). As divw = 0, we have
Vvy € Vi, b(w; vy, vp) =0. (1.4)
Therefore (1.3) becomes
1d 9 9
Sqplzn = unllza(e) +vlzn = Unlip o) + 21+ 22 =0, (1.5)

where
Z1=((u—2zp),2zp —up) +alu—zp,2z, —up),
and in view of (1.4),
Zy =blu—w;u,z, —uyp) + b(w;u—2zp,2, —uy).

For estimating the linear term Z7, we use the fact that

[(w—2zn)" 20 —un)| < [(W—23)" | 5-1(0) |2 — Wn|m1 () -
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Hence 5
v
|((w—=2n)", 20 —wn)| < Zlzn — o) + 0w = 20) 510 -
Similarly,
v
la(u — zp, 2z, —up)| < §|zh — uh|§{1(9) +2vju — zhﬁ{l(g) .
Thus

v 2
1Z1] < Z'Zh - uhﬁ{l(ﬂ) + ;H(u - Zh)IH%{fl(Q) +2vju — Zhﬁ{l(ﬂ) ‘ (1.6)
For estimating the non-linear term Zs, we split it into two parts: Zy = Za1 + Zoo, where
Zo1 =blu—w;u,zp —up) , Zoo =b(w;u—zp,2, —up). (1.7)

There is not much choice for estimating Zss, since (1.6) already includes the terms |u — zhﬁ{l(ﬂ) and |zj, —
uh|§{1(9). Therefore

|Zo2| < [Wllza@llzn — unllLs@)lu — zalm () -
Since by the Sobolev imbedding (0.32),

zn — unlls(o) < S6lzn — wnlm (),
and if we assume that
w € L>(0,T; L*(Q)?), (1.8)
we have finally
v 2
| Z22| < §|Zh - uhﬁ{l(ﬂ) + ;Sg||w||%°°(0,T;L3(Q)3)|u - Zhﬁ{l(ﬂ) : (1.9)

Estimates for Z3; can be obtained in several different ways, depending on the information we have on u. For
instance, we can write:

|Za1| < Julg()llu— wllLs@lzn — anllLsq) (1.10)
or we can write:
|Zo1| < Juwrs@llu—wllL2)llzn — unllLeq) - (1.11)
Therefore, if we assume that
ue L>0,T; H(Q)?), (1.12)
we derive from (1.10)
|Z21] < %|Zh - uhﬁ{l(g) + %S(%HUH%OO(O,T;HI(Q)B)”u - W||%3(Q) ) (1.13)

or if u satisfies the stronger assumption:

uc L>0,T; WH(Q)*), (1.14)
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we derive from (1.11)

v 2
|Z21] < §|Zh — up i) + ;Sg”uH%OO(O,T;Wlﬁ(QP)”u —wl|Z20 - (1.15)

Now, substituting (1.6), (1.9) and (1.13) or (1.15) into (1.5), we obtain after integration over |0, t[:

t 4 t
Iz — w) ()220 + v / (on — ) (3) 3 oyl < / 0 = 20) (3)]13 1 s
Sé 2 ¢ 2
+4(v + 7”WHL°°(O,T;L3(Q)3))/O |(a = 22)(8) |1 () ds (1.16)
s2 [t )
420, [ = w)(5) s

where p = 3 and C, = ||u|\%w(07T;H1(Q)3) if we assume (1.12), or p = 2 and C, = ||u|\%w(07T;W1,3(Q)3) if we
assume (1.14). We shall see in the next sections that if the finite-element space V}, is well-chosen and if u has
the regularity:

uc L*0,T; HA(Q)®*) , v € L*(Qx]0,T|)?,
then by applying the triangular inequality and taking the infimum with respect to z, € V}, in (1.16), we obtain

t t
I(a= ) O+ [ 0= ) @) yds < O +.Ca [ = w)(s)pds. (147

We now use estimates on |[u — W||2(0,7;10(0)3) that can “reasonably” be expected, when w is a “reasonable”
approximation of u computed on the coarse grid with mesh-size H on a convex domain. We may expect that
(and this is the tricky part of the proof):

Hu—W|‘L2(07T;L2(Q)3) < CgHQ, (1.18)
and
lu— W||L2(0,T;H1(Q)3) < C4H. (1.19)

Now if we use the space H/2(Q), we have:

1/2 1/2
lellzr1/20) < Csllelliioy el g

so that (1.18) and (1.19) imply that
||u—W||L2(07T;H1/2(Q)3) S CGH3/2 . (1.20)
But using Sobolev’s imbedding theorem for interpolated spaces, we have in three dimensions
HY2(Q) c L3(Q),

so that we obtain finally
||u — W||L2(O,T;L3(Q)3) § C7H3/2 .
When substituted into (1.17), these estimates imply:

C(h? + H?) under (1.12
[u— uhH%w(o,T;LQ(Q)i‘) +vfu- uh||2L2(O,T;H1(Q)3) < CEhz + H4§ under 51'14;7 (1.21)
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hence the choice
h = H%? under (1.12) , (1.22)
and
h = H? under (1.14) . (1.23)

Remark 1.1. The choice (1.22) is the “transient analogue” of what we have obtained in [16] for the steady
(stationary) case, where the regularity properties for u follow exclusively from standard hypotheses on the data,
without restriction on the angles of 9. Similarly, the choice (1.23) was also obtained in [16] for the steady
problem on a convex domain. O

Remark 1.2. In what follows, we shall obtain (1.23) for the formulation with pressure and with discrete
velocities with non-zero divergence. O

2. A priori ESTIMATES FOR THE SOLUTION OF STEP ONE

First, we describe the finite-element spaces. Since the notation H is somewhat cumbersome for a discretization
parameter, we denote it by 1 as in (0.9-0.11). Thus, let 7 > 0 be a discretization parameter, that will tend to
zero, and for each n, let 7, be a regular triangulation of Q, consisting of tetrahedra with diameters bounded
by 7. As usual, any pair of tetrahedra of 7;, are either disjoint or share a whole face, a whole edge or a vertex.
For any tetrahedron k, we denote by 7, the diameter of x and by p, the diameter of its inscribed sphere. By
regular we mean (c¢f. Ciarlet [9]): there exists a constant o > 0, independent of 7 such that

VeeT,, L =g <o. (2.1)

Pk

Let P; denote the space of polynomials in three variables with total degree less than or equal to k. In each
tetrahedron k, the pressure p is a polynomial of P; and each component of the velocity is the sum of a polynomial
of P; and a “bubble” function. Denoting the vertices of k by a;, 1 < ¢ < 4, and its corresponding barycentric
coordinate by A;, the basic bubble function b,; is the polynomial of degree four

br(x) = A1 (x) A2 (x) Az (x) Aa(x) ,
that vanishes on the boundary of x. Thus, we take

X, ={v, € H}(Q)?; Yk € T, vy|x € (P1 ® Vect(b,))*}, (2.2)

an{anHl(Q)ﬂL%(Q);V&E%,qﬂﬁepl}. (2.3)

As X, contains all polynomials of degree one in each x, there exists an operator I1,, € £(H{(2)3; X,;) such that
for any real number s € [1,2]:

Vv e [H(Q)N H&(Q)]?’ , Iy (V) = V]gm@) < Cn° ™ v]gs) , m=0,1. (2.4)

Similarly, as M,, contains all polynomials of degree zero in each r, there exists an operator r,, € L(L3(2); M,,)
such that for any real number s € [0, 1]:

Vg € H*(Q) N L§(Q) , [Iry(a) — allz2) < Cn°lalms(o) - (2.5)
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Furthermore, the pair (X,,, M,) satisfies a uniform inf-sup condition: there exists a constant 5* > 0, independent
of 1, such that:

1
Vg, € My, sup ———
Vil (@)

/ qudiv vy dx > 8%|lqyllL2(q) - (2.6)
vnEXy Q

In addition, we can construct an operator P, € L(H}(2)3; X,;) such that (cf. [18]):
Vv € HE ()3, Vg, € M, , /Qq,,diV(P,,(v) —v)dx =0, (2.7)
and for k =0 or 1 (¢f. for instance [16]):
wv e [HHQ) N HEQ)) , [1Py(v) = Vliza) < CnFv]mer) (2.8)
and for any number 7 > 2, k=0 or 1,
vv e (W Q) N HIQ)]  [Py(v) = Viwrr@) < GVl (2.9)

with constants independent of n. In particular, if we approximate V' by:
Vi ={vy, € X;,; Vg, € M, / qpdiv v, dx = 0}, (2.10)
Q

then P, € L(V; V).

Remark 2.1. Note that V;, is not a subspace of V', because M,, does not contain enough functions to enforce
a zero divergence. Thus V;, with 7 = H does not refer to the space Vy of Section 1. O

Remark 2.2. The operator P, is not unique. It is constructed by suitably correcting a regularization operator
and it depends upon the regularization operator chosen. In particular if we choose an extension of the regu-
larization operator of Scott and Zhang (cf. [42]) as in Section 3, then P, can be defined on L'(Q)3, instead of
HY(Q)3. O

Now, let us reformulate Step One more conveniently. First, we assume that f € L2(0,T; H~1(Q)3). Let N,
be the dimension of V;, and let {w; }jvz’l be a basis of V;,. Then u,, has the form:

NW
u,(t) =Y g;(t)w;, (2.11)
j=1
and the initial condition (0.14) reads
G(0)=0, 1<j<N,. 212)

Thus choosing the test functions v, in V,), the equations of Step One become: Find u, of the form (2.11) with
the unknown coefficients g; € C°([0, T) satisfying (2.12) and

Vv, € Vi, (wy (), vy) + v(Vuy(t), Vvy) + (uy(t) - Vuy,(t),v,) = (f(t),v,) in]0,T]. (2.13)

The inf-sup condition (2.6) implies that (2.11-2.13) is equivalent to (0.12-0.14) (¢f. Babuska [4], Brezzi [6], [18]
or Brenner and Scott [5]). Now, (2.11-2.13) is a square system of N, ordinary non-linear differential equations
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of order one, with a constant non-singular matrix multiplying the derivative and the remaining coefficients at
least in L2(0,T). Therefore, Carathéodory’s Theorem (cf. Coddington and Levinson [10]) implies that it has a
local maximal solution u,(t) in an interval [0, T;[, where 0 < T, < T'. It remains to prove that, at best T, = T,
or at least T}, can be bounded below by a constant 7™ > 0, independent of . This is achieved by means of
a priort estimates.

But the trouble is that V;, is not a subspace of V, and the choice v,, = u, in (2.13) does not eliminate the
non-linear term as in (1.4). More precisely, for u, € V;,,

1
Yw, € Xy, u,,~Vw,,~w,,dx:f—/ div u, ||w,||?dx,
Q 2 Ja
and it is shown in [16] that there exists a constant C', independent of 7 such that, for all u, € V,,
14 .
Vw, € X, |/ u, - Vw, w,dx| < ECnl/QHdwunHLz(Q)|wn|%{1(9) . (2.14)
Q

(We also refer to Crouzeix [11], Lemme 5.1, p. 214, for a related inequality). Thus for deriving an a priori
estimate from (2.13), we must establish the uniform bound

n'/? | div u, || L (0,1,:2(0)) < C. (2.15)
Actually, we are going to prove that
lwyll Lo (0,1, ;51 (2)3) < C' 5 C independent of 1, (2.16)

which is stronger than (2.15). It is likely that (2.15) is true under weaker hypotheses than those used in proving
(2.16), but this is an open problem. Here we propose two proofs of (2.16), each one with a different set of
assumptions.

Theorem 2.3. Let f belong to H*(0,T; H=1()3) and assume that £(0) belongs to L*(Q)3. If n < no, where

1
3

5356 2
&) (2.17)

Mo

C' is the constant of (2.14) and if

/2 2 12 1 V.- 1
5||f||L2(0,T;H*1(Q)3)(Hf(O)H%%Q) + ;Hf/H%‘Z(O,T;H—l(Q)f‘)) + ;HfH%oo(o,T;H—l(Q)S) < (5)3(5336 )2 ’ (2'18)

then T, =T, the discrete solution u,, is unique and is bounded uniformly with respect to n in L>(0,T; H'(Q2)3).

In addition, W), is bounded uniformly with respect to n in L>(0,T; L*(2)*) N L*(0,T; H'(Q)?).

Proof. The proof is based on differentiating (2.13) with respect to t. Taking the t-derivative of the variational
approximation is a standard procedure, cf. for instance [30], Chapter 10, Theorem 6.2, and the bibliography
therein. A slightly different approach to ¢-differentiation can be found in [23], Chapter 6, Section 4, pp.162,163,
and in its references. We give here a detailed proof in order to arrive at the precise estimate (2.18).

Note that f belongs to C°([0,T]; H'(2)?). Therefore uj is in C°([0,T[; V;); hence we can differentiate
(2.13) with respect to ¢ and choose v, = u; (t). Applying (2.14) and Hoélder’s inequality, we obtain at any time

te [0, T,

d
1 Ol Z2() + 20 10 (1)1 ) = 2wy ()] 12 (0 10 ()| oy 15, () 3o

= O ldiv uy ()] 20 1w (8) 77 ) < 2018 (@)1 -1 (0 [0, (8) 1. -

(2.19)
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But
[, ()] ooy 1, (D) ey < S5/, (8)]F @) »
and since u,(0) = 0, by continuity there exists a time T3, 0 < T;, < Ty, such that

- v
vt € [0,T, t —. 2.20
6[ ’ T]]a |u77( )|H1(9)< 2S3S6 ( )
Moreover, we derive from (2.20) and (2.14) that, if n < g, with ny defined by (2.17), then
v
Yw, € X, |/Qun(t) -V w, - wydx| < Z'W"ﬁfl(m' (2.21)

Let us prove that, if n < 7o and the data satisfies (2.18), then (2.20) holds on [0, 7}, which in turn implies
that T;, = T. The proof proceeds by contradiction. Suppose there exists 7, 0 < T* < T, such that

14

v
vt e [0, T t)|m — d T i = —. 2.22
€ [0, 7], Juy(t)| (o) < 955 " [un (T%) 11 () 5525 (2.22)
Then, (2.19) and (2.22) imply for all ¢ € [0, T*]:
d / 2 Vi 2 / 2 1 / 2
E”un(t)HLz(Q) + §|un(t)|H1(Q) < efuy(®)|5 o + g”f OlE-1(0) - (2.23)
In addition, substituting v, = u;,(0) into (2.13) at time ¢ = 0, we obtain
[y, (0)] 222y < I£(0)]| 22y -
Then the choice € = v/2 in (2.23) yields
2
vt € [0, T, [u),(D)lZ20) < I£(0))|72¢0) + ;”fl”QL?(O,T;H*l(Q)?')' (2.24)
Similarly, the choice € = v/4 in (2.23) yields:
" L 4 2 4 enie
vt e [0,17], ; [u;, (8)[ 71 () ds < ;(Hf(O)HLQ(Q) + ;”f HL2(0,T;H*1(Q)3)) . (2.25)
Next, let us choose v,, = u,(t) in (2.13); in view of (2.21), we obtain for n < ng:
d 2 3 2 2 L 2
E”un(t)HIﬁ(Q) T3V [y (D)5 () < € [y ()] ) + EHf(t)HH—l(Q) :
Therefore
N 2
vt € (0,77, [luy(t)]|72() < £||f||2L2(O,T;H*1(Q)3)' (2.26)

Finally, the same choice in (2.13) also gives

3 1 1
(w0, (6), wy (1)) + v [ (D7 ) < 5 [un () @) + ZIEO T2 () -

Thus the choice € = v/2 implies

v 1
§|un(t)|§11(n) < ;||f(t)||§1—1(9) + [luy, () |2 ) Iy () [ 20 -
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This inequality together with (2.26) and (2.24) give for all ¢ € [0, T™]

2.1 2 2 1/241/2
[, ()] (0) < ;(;”fHQLO‘J(O,T;H*l(Q)i") + \/ EHfHH(O,T;H*l(Q)B)(||f(0)||%‘2(52) + ;HfI”QL?(O,T;H*l(Q)?')) )

Since this inequality is valid at t = T™*, (2.18) contradicts the equality in (2.22).
This establishes global existence of a discrete solution. Uniqueness follows easily from the above estimates
and Gronwall’s Lemma. O

Remark 2.4. The solution (u, p) of (0.1-0.4) is unique if the data f and v satisfy the conditions of Theorem 2.3;
in fact, the smallness condition on the data is a little less restrictive than (2.18) because the non-linear term
is exactly antisymmetric. Furthermore u € L>(0,7; H'(Q)3) and u’ € L*(0,T; L*(Q)®) N L2(0,T; H(Q2)?)
(cf. [43]). Therefore, it follows from Corollary 0.9 that if in addition f € L"(0,T; L%/?(Q)?) for any number
r > 2, then (u,p) € L7(0,T; H¥?(Q)%) x L"(0,T; H'/?(Q)), without restrictions on the angles of Q. Indeed,
passing u'(t) to the right-hand side, we can write for almost every ¢ €]0,T':

—vAu(t) +u(t) - Vu(t) + Vp(t) =£(t) —u'(t) in Q,

divu(t) =01in Q,

u(t) =0 on 092,
i.e. the pair (u(t),p(t)) is the solution of a Navier-Stokes equation parametrized by ¢. Similarly, if in addition,
fe L7(0,T; L?(Q)3) and Q is convex then (u,p) € L™(0,T; H2(Q)3) x L"(0,T; H(Q)). O

The second proof of (2.16) follows an idea introduced by Heywood in [21] for the continuous Navier-Stokes
problem, and used by [22] for a discrete Navier-Stokes problem on a single grid. Beforehand, recall the definition
of a uniformly regular triangulation: in addition to (2.1), there exists a constant 7 > 0, independent of 7, such
that

VeeTy, 7n <N < 0xPr - (2.27)

Theorem 2.5. Let f belong to L*(2x]0,T[)® and assume that Q0 is convex and the triangulation T, satisfies
(2.27). Then there exists a time T* > 0, depending on the data, but independent of n, such that u, is unique
and is bounded uniformly with respect to n in L°°(0,T*; H(Q)?). In addition, u,, and u;, are bounded uniformly
with respect to n in L?(0, 7% W6(Q)?) and L*(Qx]0,T*[)? respectively.

Proof. The idea of the proof in [21] consists in taking the scalar product of (0.1) by the Helmholtz decomposition
of vAu(t). In the discrete case, this is not possible because A u,(t) does not belong to L?*(2)3. We replace it
by the unique solution w,(t) € V;, of

Vvy, € Vy, (wy(t),vy) = v (Vuy(t),Vvy). (2.28)
As V,, is a finite-dimensional space, w,(t) is uniquely defined by (2.28). Note that w; depends on ¢ because u,

depends on ¢ and thus w,, € C°([0,T[; V). For establishing the theorem, we need to extend to ||V u, || £3(q) the
well-known consequence of Sobolev’s inequality:

1/2 1/2
Vg € H'(Q), llgllza@) < Clgllsa) ol (2.29)
Specifically, let us prove that there exists a constant K, independent of 1 and ¢, such that

2 2
1V, (8)]| o) < KV wy() oty [Wa (DIl 550, - (2.30)
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Since
1/2 1/2
IV 1wy ()30 < IV 1y (8)]| oty 1V 0 (D] 67y - (2.31)

we must find a suitable estimate for ||V w,(t)||zs(q)-
To simplify the notation, we drop t for the time being. We associate with w, the solution (u(n),p(n)) €
H(Q)% x L3(9) of the Stokes problem:

—vAu(n)+Vpn) =w,, diva(n) =0 in Q.
Then u(n) and u,, are related by:
Vv, € V,Vg, € M, , v(V(u, —u(n)),Vvy) + (p(n) — gy, divvy) =0.

Hence,

73

[ay = By(u(m)|a o) < luln) = Py(an))m @) + 73 lp(n) = rn(p(M)ll2(@) - (2.32)

Now the convexity assumption on Q implies that (u(n),p(n)) € H2(2)? x HY(Q) (cf. [12]) and there exists a
constant ¢; that depends only on ) such that

u(m)| a2 + e a1 (@) < cillwallz2@) - (2.33)

Therefore, applying (2.5) with s = 1, (2.9) with » = 2 and k = 1, and (2.33) and substituting into (2.32), we
obtain, with a constant ¢, independent of #:

|u77 - Pn(u(n)”Hl(Q) < 0277||W77HL2(Q) . (2.34)

Let us write

IV upllLeo) < [V (uy = Py(um))l sy + IV By(um)ll Lo -
The uniform regularity (2.27) of the triangulation implies the inverse inequality: there exists a constant cs,
independent of 7, such that

IV (uy = By(u(m))llze @) < %%I\V(un = By(a(m))llL2 ) - (2.35)

Together with (2.34) and (2.9) with » = 6 and k = 0, this inequality implies
IV uyllzs(e) < callwyllz20) (2.36)

with a constant c4, independent of n and ¢. Then (2.30) with K = ,/c4 follows by substituting (2.36) into (2.31).
Now, we choose v,, = w,(t) in (2.13). On one hand, (2.28) yields

(Wl (1) W, (1)) = V(9 Wy (0), Vg (1)) = 2 < oty 1) s

v(Vuy(t), Vwy(t) = [wy (1)1 720 ,
and on the other hand, (2.30) implies

] w6 Dy 6w 0] < Jliw )y + 300 Ol (237)
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Hence

3
2

1

d 1
v |un(t>|2H1(Q 2Hwn(t)||2L2(Q) < Hwn(t)”QL?(Q) _(KSG)4|un(t)|6H1(Q) 5”“?}@)”%@(9) Hf(t)HZN(Q) )
)
dt 2 €

and the choice € = 1/2 gives
[y ()| ) < (1),

where v is the solution of the differential equation

2 1
U0 = ZIE O + 5 (K56 w(0)° fort >0,

$(0) = 0.

Then, if f € L?(Q2x]0,T[)3, for any constant C' > 0, there exists a time T* depending only on C and the
constant coefficients of this equation (and hence independent of 7) such that

vt € [0, 7%, |uy ()30 < C. (2.38)
In turn, the choice ¢ = 1/4 and (2.38) give
lWallL2@xjo. ) < €55 (2.39)
and then (2.36) implies that
gl 20,7+ wis(0)3) < cacs. (2.40)

As far as uj, is concerned, the choice v, = uj(¢) in (2.13) yields

vd
[, ()17 20 + §&|un(t)|%p(9) < ), ()| 22 ) (@) 22y + g (8] Lo (@) [y ()l wrs @)
and (2.40) and (2.38) readily imply that

”u:;HLz(Qx]O,T*[) <cg. (2.41)

Remark 2.6. To avoid a multiplicity of notation, we choose for constant in (2.38):

= (355

283867
Then (2.21) holds for n < 19, 1o defined by (2.17). O
Remark 2.7. The assumptions of Theorem 2.5, namely €2 convex and f in L?(£2x]0,7)3, also imply that

the solution (u,p) of (0.1-0.4) satisfies u in L>°(0,T*; H*(Q)3) N L2(0,T*; H2()3), v’ in L?(2x]0,T*)3, p in
L2(0,T*; H'(Q2)) and of course the solution is unique. O
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3. ERROR ESTIMATES FOR THE SOLUTION OF STEP ONE

In this section, we suppose that the assumptions of either Theorem 2.3 or Theorem 2.5 are valid. To unify
the notation, in the case of Theorem 2.5, we denote T* by T. Under both sets of assumptions, we have
u’ € L?(Q2x]0,T[)? at least.

Let P, be an approximation operator satisfying (2.7-2.9). As mentioned in Remark 2.2, this operator is
not unique, because it is constructed by correcting a regularization operator that can be chosen according to
convenience. In the theorem below, we need to apply P, to u’ that belongs only to L?(2)3; thus we must define
a regularization operator on L?(Q2). The reader will find in the Appendix a brief derivation of an extension of
the Scott and Zhang operator [42], that we denote by R,. It is defined for v € L'(2) and we can force the
boundary value of R, (v) to vanish, so that R, € L(L*(Q)?; X,)). Now we define:

Py(v) = Ry(v) + Z Crby (3.1)
KET,
where
1
Vk € 7;,, Cx = m /(V — Rn(V))dX (32)

Then P, € L(L'(Q2)%; X,); it satisfies (2.7-2.9) and in addition, for each number r > 1, there exists a constant ¢,
independent of  and &, such that for all v € L"(Q2)3,

Vi € Ty, [ Py(v) = Vil < EllRy(¥) = V] i) - (3.3)

Moreover, it follows from (3.2) that
kT, /(Pn(v) —v)dx = 0. (3.4)

This readily implies that, for a constant C' independent of 7
v € L), [1Py(v) = V- g0y < CnllPy(v) = vl - (3.5)

Theorem 3.1. Suppose that the assumptions of Theorems 2.3 or 2.5 are valid and let P, be defined by (3.1)
and (8.2). Then if n < ng, there exist three constants Cy, C2 and Cs, independent of n, such that

1%
[u, — Pn(“)”%oo(o,T;L?(Q)S) + 5”“»7 - Pn(u)||2L2(o,T;H1(Q)3)
2 O T o2
< eXp((7—V + ﬁ)T) (;Czﬂ (22 xj0,7p) (3.6)
v 21
+ (7 + Cs)|u— Pn(u)H%2(O,T;H1(Q)3) + 7||P - Tn(p)Hiz(Qx]o,T[)) .

Proof. First note that
(Pn(u))/ = Pn(u/) )

because the same property is true for R, owing to (A.2). Then we take the scalar product of (0.1) with a test
function v, € V;, and we take the difference between the resulting equation and (2.13). By inserting (P,(u))’
in the first term and P,(u) in the other terms, choosing v,, = u,) — P,(u), applying (2.21) and using (2.10), we
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obtain:

3
— luy — Pn(u)||2L2(Q) + ZV|un - Pn(“)ﬁ-ll(ﬂ)
< (' = Py (@) || gr-1(0) + vIa — Py(u) |10y + V3|p — 7 (D) 2(02) ) [ty — Py (W) 111 (02
+ ((u=Fy(u)) - Vu,u, = Fy(u)) = ((u; = Py(a)) - V Fy(u),u,; — Py(u))
+ (By(w) - V(u = Py()), uy — Py (). (3.7)
Let us bound the non-linear terms in (3.7). Since u € L>(0,T; H'(2)3) in view of Remarks 2.4 and 2.7, we set

1 = [[ullpeqo,rim (@)9) -

Therefore, for any €; > 0 and d; > 0, we have

K(u—ff%(UJ)~V7u ;= Py ()] < 1S5 fu = Py (W) ans ey [wy = Py (@) 1570 [y = Py

3/2
< (- u = Pyl + G @l — Pyl + 3l = Pa(w)l )

Similarly, set
c2 = |y ()| Lo (0,311 (92)3) 5
which is also bounded in view of (2.9) with £ = 0 and r = 2. Then
|((u — Py(u ))'VP( ), un*Pn(u))|
1
3/2
S B S / ( |un = Py(u )|H1(Q) "‘ (52|u77 n(u)ﬁ-ﬂ(ﬂ) + 5_2”“71 - Pn(u)||2L‘2(Q))) )

(P (u) - V(u = By(u),u,; — P, (u))l

€2 o3/2, 1 1
< 5 (S e Pyl ) + 5 (Gshay — Py ey + -l — Pofw)lFae))) -

The linear terms are easily bounded; in particular, the fact that u’ is in L2(2x]0,7T)3, (3.3), (3.5) and (A.5)
with p = 2 yield

[u’ — Py ()| 20,151 (02)3) < esnllu’||2ax)o,1) -
Then (3.6) follows readily by substituting these inequalities with a suitable choice of parameters &; and d; into
(3.7) and applying Gronwall’s Lemma. O

Corollary 3.2. In addition to the assumptions of Theorem 3.1, suppose that (u,p) € L2(0,T;H*(Q)3) x
L2(0,T; HYX(Q)). Then, if n < no, there exists a constant C(u,p,v) independent of n, such that

14
[[ay — uH%OO(O,T;L2(Q)3) + §||u,, - u”%%o,T;Hl(Q)S) < Clu,p,v)n*. (3.8)

Remark 3.3. If the assumptions of Theorem 2.5 hold then (u,p) has the above regularity provided f €
L2(2x]0,T[)3. If the assumptions of Theorem 2.3 hold, the same conclusion is valid if in addition € is
convex. O

Remark 3.4. The advantage of Theorem 2.3 versus Theorem 2.5 is that it does not require the uniformity
assumption (2.27) on the triangulation. For this reason, we shall not use Theorem 2.5 in the sequel. (|
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4. SOME ERROR ESTIMATES FOR THE STOKES PROBLEM

The error estimate of order two in L?(2x]0,T[)?), that we shall derive in the next section, is based on a
duality argument for the transient Stokes problem:

V0 ) — v AV(x 1) + Va(x 1) = g(x,1) in Qx]0, ], (4.1)
divv(x,t) =0 in Qx]0,77, (4.2)

v(x,t) =0 on 902x]0,T], (4.3)

v(x,0) =0 inQ. (4.4)

The first lemma recalls the regularity of its solution.

Lemma 4.1. If g € L?(2x]0,T)3, then the solution (v,q) of the Stokes problem (4.1-4.4) belongs to L*(0, T}
H3/2(Q)%) x L2(0,T; HY/*(Q)), v belongs to L=(0,T; H(Q)) and v’ to L*(2x]0,T[)3, with continuous de-
pendence on g. If Q is convex, then (v,q) € L?(0,T;H?*(Q)3) x L?(0,T; HX(Q)). If in addition, g €
L2(0,T; H-Y(Q)?), g € L"(0,T; L*(Q)?) for some number v > 2 and g(0) € L?(Q)3, then (v,q) € L"(0,T;
H2(Q)3) x L"(0,T; HY(2)) and v/ € L"(0,T; L*(Q)3) with continuous dependence on g. Finally, without con-
vezity assumption, if g € H'(0,T; H™1(Q)?) and g(0) € L*(Q)3, then v’ € L>(0,T; L*(Q)3)NL*(0,T; H'(2)3).
Proof. Assume that g € L*(Qx]0,7])® and consider a Galerkin discretization of (4.1) in a suitable finite-
dimensional subspace of V', say V,,,. Let v,, be the Galerkin solution and multiply the discrete equation by v/,.
We obtain
Vi llZ2@xqo,rp + VIVmllT oo 0,701 )9y < N8l E200x70,77) -
This uniform estimate shows that in the limit, v/ belongs to L?(£2x]0,7T[)? and

HV/”QL?(QX]O,T[) + VHV”QLOO(O,T;Hl(Q)?') < Hg||2L2(Q><]O,T[) : (4.5)
Therefore, almost everywhere in ]0, T, the pair (v(t), ¢(t)) is the solution of the Stokes problem
—vAv(t) +Vq(t) =g(t) — v'(t) in Q,

divv(t) =0in Q,
v(t) =0 on 092,
where ¢ is a parameter as in Remark 2.4. Depending on the hypotheses made on © (Lipschitz or convex),
Theorem 0.8 implies that /vv is bounded in L%(0,T; H3/?(Q)%) or L?(0,T; H*(Q)?) and ¢ is bounded in
L2(0,T; HY2(Q)) or L*(0,T; H'(Q)).
Finally, if in addition g’ € L?(0,T; H~1(Q2)3) and g(0) € L?(2)3, then g satisfies in particular the regularity
assumptions of the data of Theorem 2.3. Since the problem is linear, the analogue of (2.24) holds in [0, T]:

1
|\V;@||2Loo(o,T;L2(Q)3) < ||g(0)|\%2(9) + 5”3’”%2(0,T;H—1(Q)3) . (4.6)

Thus, in the limit v/ belongs to L>(0,T;L?(2)3) and when g belongs to L"(0,T; L?(2)3) for some number
r > 2, the above interpretation of (v(t), ¢(t)) gives the desired regularity.
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Similarly, if g € H*(0,7; H~1(2)3) and g(0) € L?(£2)3, the last conclusion holds owing to:

1
V||V;1H%2(O,T;H1(Q)3) < ||g(0)|\%2(9) + ;HEIH%?(O,T;H—l(Q)S)'

O

We discretize (4.1-4.4) by the scheme of Step One without the non-linear term: Find (v, g,) with values in
X, x M, for each t € [0,T7], solution of

Vw, € Xy, (v, (1), wy) + v(V vy (t), Vwy,) — (g,(t), divwy) = (g(t),w,) in]0,T], (4.7)
VA, € M, , (Ay,divvy,(t)) =0 in]0,T7, (4.8)
vy(x,0) =0 in Q. (4.9)

As this is a linear problem, it has a unique solution over the interval [0, T], and it satisfies the following error
estimate (¢f. for instance [43]):

Lemma 4.2. Let g € L?(2x]0,T)® and suppose Q2 is convez. Let (v,q) and (vy,q,) be the respective solutions
of (4.1-4.4) and (4.7-4.9). There exists a constant C, independent of n such that
vy = VIl 0.1:22(0)3) + VPIIVy = VL2005 9)3) < Onllgllzz@xjo,7p - (4.10)

The next theorem establishes that the error satisfies an estimate of order two in L?(Q2x]0, T[)3.
Theorem 4.3. We retain the assumptions and notation of Lemma 4.2. There exists a constant C, independent
of m such that

v = Vilz2@xjo,rp < C2lIgll L2 x)o,7)) - (4.11)

Proof. Following [22], we use the following parabolic duality argument: for any ¢ €]0,T], let (w,\) be the
solution of the backward Stokes system:

%W—FVAW—V/\:VT,—V in x]0,1], (4.12)

divw =0 in Qx]0,],
w=0 ondNx]0,t],
w(x,t) =0 in .

As v, — v belongs to L?(2x]0,7[)® and Q is convex, Lemma 4.1 implies that (w,\) € L2(0,t; H*(Q)3) x
L2(0,t; HY(2)), w' € L?(Q2x]0,t[)® and

W'l L2ax0,e0) + Wl £2(0,6: 2 2)3) + Al 220,601 () < €1llvy — VIL2(@x)o,e) - (4.13)

Now, on one hand, we take the scalar product of (4.1) with a test function z, € V;, and we take the difference
between the resulting equation and (4.7). This gives

Yz, € Vy, (v, =V 2y) + v(V(vy = V), Vz,) = —(q—1(q), divz,). (4.14)
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On the other hand, we multiply (4.12) by v, — v and we obtain for any z, € V;:

= (W vy = ) = AT W, V(v =) + O div(vy = ¥))
= (W =z, v, —v) = v(V(W —2,),V(v, = V)) (4.15)
+ (A =7ry(N), div(v,, —v)) + (z%,vn —v) = v(Vz,,V(v, —V)).

vy *V||2L2(Q)

Using (4.14), we have the identity

(2, Vi — V) = E(vaﬁ —v) = (zy, v, = V')

= %(van —v)+v(Vz,, Vv, —V))+ (¢ —1y(q),div(z, — W)).

Therefore, for all z,, € V),
vy — V||2L2(Q) = (W =z, vy = V) = v(V(W = 2,), V(v = v)) + (A = 7y (N), div(v;; — v))
d

+ E(Znavn = V) + (¢ —ry(q), div(zy — w)).

By choosing z,, = P,(w), integrating both sides of this equation from 0 to ¢ and applying (3.5), (2.5) and (2.9),
the initial condition for v, v, and the final condition for w, we find

t
an — V||2L2(Q><]O,t[) < A |V7I — V|H1(Q) (HW/ — P"?(W/)HH71(9) + V|W — P’q(w)|H1(Q) + \/§H)\ — Tn()‘)|‘L2(Q))dT
t
V5 [ g = ra(@laeelw = Pow)lin ydr
0
t
< 0277/0 vy = Vi@ (W' L2 + Wl @) + Aa @) + g = (@)l L2 Wl @] dr -

Then (4.11) follows from (4.13), (4.10) and (2.5). O

Finally, the error also satisfies an estimate in L>°(0,T; H*(Q2)?). The proof uses the following variant of the
Stokes projection (cf. [22]): for any pair (u,p) € V x L3(Q), S,(u) € V,, is defined by

Vv, €V, v(V(Sy(u) —u),Vv,) = —(p,divvy,). (4.16)
Clearly S;(u) is uniquely defined by (u,p) (to simplify the notation, we do not indicate the dependence on p).

In addition, it satisfies the following error bounds. We skip the proof, because it is the same as for the standard
Stokes projection.

Lemma 4.4. Let the pair (u,p) be given in V x L3(Q). Then S,(u) defined by (4.16) satisfies:

V3
1Sy (0) —u|gr (o) < 2|P(u) —ulg o) + 7”7"77(17) —pllz2@) - (4.17)
If in addition, § is convex, there exists a constant C, independent of n, such that

||S,,(u) - UHL2(Q) < Cn(ISn(u) - u|H1(Q) =+ ||7"n(P) *P||L2(Q)) . (4.18)
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Lemma 4.5. In addition to the hypotheses of Lemma 4.2, suppose that g is in L°°(0,T; L?(Q)3), g’ € L?(0, T}
H=1(Q)3) and ¢’ in L*(2x])0,T[). Then there exists a constant C, independent of 0, such that

! !
vy = V'l 2@xjo, ) + VVIIVE = VL 0,781 (9)%) (4.19)

< Cn(llgllpoeo,r2)®) + 118 20,7501 )2 + 14| L2@x10,7]) -

Proof. First note that, in view of Lemma 4.1 and the above assumptions, ¢ € C°([0, T]; L?(£2)). Hence ¢(0) is
well-defined, and since, again by Lemma 4.1, ¢ € L>(0,T; H'(£2)), then ¢(0) belongs to H*(2).
Now, taking the difference between (4.1) and (4.7) multiplied by a test function w, € V;,, inserting S, (v)

defined by (v, q), choosing w, = v; — Sy (v)’, and observing that here again S,(v)" = 5, (v'), we obtain:

vd
2 dt

/

||V»7 - 571("’)”%?(9) + vy — Sﬁ(v)ﬁ-ﬂ(ﬂ) <|v' - Sn(V/)HL?(Q)HV% - Sﬁ(V/)HLQ(Q) .

Therefore

/

19 = Sy o ey + 7109 = S5 @) o
< V' = Sy (V)Z 20,0202y + VIVi(0) = Sy(v)(0)[F: o -

But (4.18) applied to v’ gives a.e. in |0, T'[:

v = Sy (v)llz2) < Cn(IV' @) + 14l 22()) »

and (4.16) gives immediately

1V (0) = Sy (V)(0)| 1 () < ?HW(Q(O)) = a(0)llz2() < Cnla(0)]m1 (o) »

with another constant C' independent of 7. Then (4.19) follows by substituting these bounds into (4.20). O

The following lemma gives a sufficient condition for ¢’ in L?(2x]0, T[).

Lemma 4.6. Ifg € H'(0,T;L*()%) and g(0) € V, then ¢’ € L?(0,T; H/2(Q)/R). If in addition, Q2 is convex,
then ¢’ € L*(0,T; HY(Q2)/R).

Proof. As in Lemma 4.1, we consider the Galerkin discretization of (4.1-4.4), but here we define it in the basis
of the eigenfunctions of the Stokes operator: w; € V,

—Aw; +Vm =X \w,;.
This basis is orthonormal in L?(2)? and orthogonal in H'(Q)3. Then for any t € [0, T], we have:
(v, (@),wi) + (Vv (t), Vw;) = (g(t),w;), 1 <i<m. (4.21)

In particular, at time ¢ = 0, since v,,(0) = 0, we see that v, (0) = P,,,g(0), the orthogonal projection of g(0)
onto V;, for the L? norm. Then on one hand,
[Vin (0)l 2(0) < l8(0) [l z2(0) -

and on the other hand,

m m

IV Vi (0)1Z20) = > (vi(0), wi) IV will 220y = D (8(0), wi)*Ai < |V g(0) |22y -

i=1 i=1
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since g(0) € V. Therefore,
V3 (0) 171 (2) < 1880) 1) - (4.22)

Hence differentiating (4.21) with respect to t, we obtain

d
IV 2y + 15 Vi (O ) < 180220y

and next integrating this last equation with respect to ¢ and using (4.22):

t t
/0 IV () 20y dls + 1 (D20 @y < VO 0y + / 1&'(5) |2y dls. (4.23)

Passing to the limit with respect to m, (4.23) implies that v/ € L?(Qx]0,T[)3, v/ € L®(0,T; H}(Q)?) and
v/(0) = g(0). Thus, for almost every ¢, v/(t) is the solution of the Stokes problem (0.34), (0.35) with data
g’ — v” instead of g. Since g’ — v € L?(2x]0,T[)3, the lemma follows from Theorem 0.8. O

Remark 4.7. The result of Lemma 4.6 is stronger than what is really needed, namely ¢’ € L?(2x]0,T), but

so far we do not know what minimal conditions guarantee exactly this regularity. (]

5. AN ERROR ESTIMATE OF ORDER TWO IN L?(Q2x]0,T[)?

We are going to derive an estimate of order two for the L? norm of u,, —u with u,, introduced in Section 2. As
in [22], we split the error into a linear contribution and a non-linear one. The linear contribution, which is the
discrete solution of the Stokes part of (0.1), is estimated by Theorem 4.3. Then we prove a “superconvergence”
result for the error of the non-linear part. More precisely, let v, € V;, be defined by

Yw, € Vi, (v, (1), wy) + (Vv (1), Vw,) = (£(t),w,) — (u(t) - Vu(t),w,) in]0,T], (5.1)

vy(x,0) =0 in Q. (5.2)

Then v, satisfies (4.7) with data g = f — u- Vu and Theorem 4.3 has the following corollary.
Corollary 5.1. In addition to the assumptions of Theorem 2.3, suppose that Q is convex and f € L?(2x]0,T[)3.
Then

vy — ullz@xjo,rp < C? (Il 20xj0,7) + Sellall e o.1:m1 () [l 20,7 w1305 ) 5 (5.3)

where C' is the constant of Theorem 4.3.

Similarly, Lemma 4.5 has the following consequence.
Corollary 5.2. In addition to the assumptions of Theorem 2.3, suppose that Q is conver, £ € L°°(0,T; L?(Q)?)
and p' € L*(Qx]0,T[). Then, there exists a constant C, independent of n, such that

vy =l oo 0, m ()3) < (Il e 0, L2()3) + I1E | 20,081 )2y + 1P| L22xo,1) - (5.4)

Remark 5.3. Lemma 4.6 implies that if £ € H'(0,T; L*(Q)%) and £(0) € V, then p’ € L?(0,T; H/?(Q)/R).
Indeed, under these assumptions, we easily prove that u-Vu € H(0,7; L?(2)3). Since u- Vu(0) = 0, the
assumptions of Lemma 4.6 are satisfied. Similarly, if in addition,  is convex, then p’ € L2(0,T; H*(Q)/R). O



TWO-GRID FINITE-ELEMENT SCHEMES FOR THE TRANSIENT NAVIER-STOKES PROBLEM 971

In view of (5.3), it remains to derive a sharp bound for u, — v, in L?(2x]0,7[)3. First, we observe that,
owing to Remark 2.4, the assumptions of Corollary 5.2 imply that:

uc L>0,T; H*(Q)?). (5.5)
Theorem 5.4. Under the assumptions of Corollary 5.2, and if n < n1, where

. 1 2
m = mln(no, -

C' is the constant of (2.14), no the constant of (2.17) and

C = ||Vn||Loo(o,T;H1(Q)3) )

there exists a constant C, that depends on ||f||e(0,7;r2(2)3), If'llz2(0,758-1()3) and ||p'||2x)0,7p), but not on
n, such that

vy =yl Loeqo,miL2()3) + VPIIVe — Wyl L20,mm1 (@)3) < Cn? (5.7)
Proof. Subtracting (2.13) from (5.1), we have for all w, € V;:

(Vi) = ug, wy) + v(V(vy —uy), Vwy) = ((uy; = vy) - Vg, wy) + (v - V(u, = vy), wy)

n U
+ ((vp —u) - V(vy —u),wy) + ((vy, —u) - Vu,wy) + (u-V(v, —u),wy). (58)

Let us bound the right-hand side of (5.8) taking w, = v, — u,. The first term is absorbed by the left-hand
side; indeed, set

a1 = |luyll 20,111 (92)2) 5
then as in the proof of Theorem 3.1, we have

€1 q3/2,1 € 1
[((ay = vy) - Vg, vy —uy)| < 356/ (E|V77 - unﬁ{l(ﬂ) + 5(5|V77 - unﬁ{l(ﬂ) + g”vn - un||2L2(Q))) :

The second term is also absorbed by the left-hand side, in view of (2.14) and the fact that v, is bounded in
L*(0,T; HY(Q)?); indeed

V3

A v
(v - V(uy — vy), vy —uy)| < TUI/ZCCWU - unﬁ{l(ﬂ) < §|Vn - unﬁ{l(ﬂ) ’
owing to (5.6). The third term is bounded by virtue of Lemma 4.2 and Corollary 5.2:

[((vy =) - V(v =), vy =) < S356([vyy — ul| oo 0,130 (%) [V = 0l (@) [V — Wy o
< UQC(f, f',p')SgSG|vn — un|Hl(Q) .

The fourth term is bounded by virtue of Corollary 5.1 and (5.5); set

c2 = [lull L0, m,wr3(0)3) - (5.9)

then

(v = 1) - Vu, vy —uy,)| < 286V — ull 2 xjo,rp [V — Wl @) < n*C(E ) eaSel vy — wyl g (o -
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Finally, the last term is bounded by Green’s formula, Corollary 5.1 and (5.5); set:

c3 = ||uHL°°(Q><]O,T[)3) ,
then
(- V(v —u), vy — )| = (- V(vy —uy), vy — )] < PesC(E ) vy — uyl o) -
Then (5.7) follows from these bounds with a suitable choice of parameters ¢ and 4. O

Corollary 5.1 and Theorem 5.4 imply:

Corollary 5.5. Under the assumptions of Theorem 5.4, there exists a constant C that depends on
||f||Loo(O,T;L2(Q)3), ||f/HL2(07T;H—1(Q)3) and Hp/”L‘Z(QX]O,T[), but not on n, such that

lu =yl 20,7 < Cn*. (5.10)
6. AN ESTIMATE FOR THE PRESSURE

The results of the preceding section allow one to establish an error estimate for the pressure. We start with
a general bound.

Lemma 6.1. Let (u,p) and (uy,p,) be the respective solutions of (0.1-0.4) and (0.12-0.14). Under the as-
sumptions of Theorem 2.3, we have

1
Py = ()| L2 (%70, < 5 (VBllp = ()|l L2xjorp + 10" = Wl p20, 75010 + vilu— Py(u)|| 20,700 02

+ Se(|[all oo (0,711 (2)3) [0 — Wyl L2 0,753 (02)3) + 10yl Lo 0,7525 ()2 [0 = Wyl 220,011 ()9)))
(6.1)

where * is the constant of the inf-sup condition (2.6).

Proof. Taking the difference between (0.1) and (0.12) multiplied by a test function w,, € X, and inserting
rn(p), we obtain

(ro(p) — Py, divwy) = (0’ —u;, wy) + v(V(u—uy,), Vw,) + (u-Vu—u, - Vu,w,)+ (r,(p) — p,divw,).
(6.2)

Owing to the inf-sup condition (2.6), there exists a function w,, € VnL, the discrete analogue of V*, such that

. 1
(ro(p) = Py, divwy) = [l (p) = Pyl 20y + [Wala (o) < G (@) = Prllz@ -

Then (6.1) readily follows by substituting this function into (6.2) and bounding the non-linear term in the
right-hand side by

[(u-Vu—u, Vuy,w,)| < ([lu—uyllps@lulm o + ulls @ —ay|mg) [wyll s @) -
O

Clearly, the difficulty lies in estimating u’ —uj, in L2(0,T; H-*(Q)?). Unfortunately, exploiting the weaker
norm H ~1() is not easy and we shall evaluate this quantity in L?(£2x]0,7'[)3. This estimate is proven assuming
the triangulation satisfies a milder regularity property than uniform regularity (2.27): in addition to (2.1), there
exists a constant 7 independent of 7 such that

Ppmin > 71 T3, where pmin = inf py . (6.3)
KET,
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More precisely, this assumption is used in proving that u,, is bounded in L*(0, T; W3(£2)3).

Lemma 6.2. Under the assumptions of Theorem 5.4 and if T, satisfies (6.3), there exists a constant C' that
depends on ||f|| o0, 17;22(0)%), If' 220,751 (0)%) and ||p'||L2x)0,7p), but not on n, such that

[yl o0, m;w13(0)3) < C- (6.4)

Proof. We write

|un|W1,3(Q) < |u77 — V77|W1,3(Q) + |V7I — Pn(u)|W1,3(Q) + |Pn(u) — u|W1,3(Q) + |u|W1,3(Q) .

Consider a tetrahedron «. Since u, — v, belongs to a finite-dimensional space on the reference tetrahedron &
where all norms are equivalent, we can write:

1. N
[uy = vylwrag < C|;<|1/3p—||u,, —Vnllz2ay »
K
where C' denotes various constants independent of 7; reverting to x, this becomes
—1/6 1
[y — vylwis(e) < Clkl p_Hun —Vyllz2es) -
K
Summing over all k € 7,, applying Jensen’s inequality and the regularity of 7,,, we obtain the inverse inequality:

1
|u,, — Vn|Wl,3(Q) § 03—/2”11" — VnHL2(Q) .

Similarly,
1
|V»,7 — Pn(u)|W1,3(Q) S C’WW” — P»,?(u)|H1(Q) .
Hence

—3/2 —1/2 —-1/2
sy < Comal Ity = VollLz) + s IV — 0l @) + e 1Py (0) = 10

(6.5)
+[Py(u) —ulwrs) + [ulwisq) -
Then (6.3), (5.7), (5.4) and (2.9) imply
[, lwis) < Ci(f, £,p",7) + Colulwis) -
([l

Remark 6.3. Observe that (6.3) is less restrictive than (2.27). Its use is made possible here because the
negative exponents of pyiy in (6.5) are balanced by error terms of higher order. This is not the case in the proof
of Theorem 2.5 where the denominator and numerator in (2.35) are of the same order. (|

Lemma 6.4. Under the assumptions of Theorem 5.4 and if T, satisfies (6.3), there exists a constant C' that
depends on ||f|| Lo (0, 1;22(2)%), If' 220,751 (0)3) and ||p’||L2x)o,7p), but not on n, such that

0’ —wy [l 22 axjo,rp + VY —uy|l Lo 0,711 (0)3) < O (6.6)
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Proof. The proof is similar to that of Lemma 4.5, except that here we have to find a bound in L?(Q2x]0,T)
for the difference of the non-linear terms. Indeed, we have

1 vd
5”“1, - Sn(ul)H%?(Q) + §a|un - Sn(u)ﬁ{l(n) <’ — Sn(ul)”%‘Z(Q) +lu-Vu-—u,- VUUH%Q(Q) .
Now,
u-Vu—u,-Vuy,=u-Vu—-u,)+ (u—u,)Vu,.
First

Hu . V(u — un)HLQ(Q) < Hu||Loo(Q)|u — uanl(Q) < cl|u — un|Hl(Q) .
Next, we write
[(w—uy)Vuyl[r20) < lu—uyllLeo) [uylwise) < SeClu—uy|pi)
where C' is the constant of Lemma 6.2. Therefore

d
[, = Sy (0|72 + Vahln — Sy(W)[Fn ) < 2[0" = S, (W)[[72) + colu = uyl3n (g -

Then the proof finishes as in Lemma, 4.5. ([l
From these three lemmas, we easily derive an estimate of order one for the pressure.
Theorem 6.5. Under the assumptions of Theorem 5.4 and if T, satisfies (6.3), there exists a constant C,
independent of n such that
lp — pyllL2@x10,7p) < Cn- (6.7)

7. TWO-GRID ALGORITHM

Let us recall the two-grid algorithm described in the Introduction.
e Find (ug,pm) € Xg x My for each ¢ € [0,T], solution of (0.12-0.14):

Vg € Xg, (Wy,ve)+v(Vuy,Vvy)+ (ug - Vuy,vy) — (pa,divvy) = £,vy),

Ygu € My , (qu,divay) =0,
ug(x,0)=0 in .
e Find (up,ppn) € Xn X My, for each t € [0,T], solution of (0.15-0.17):

Vv € X, (W), vi) +v(Vup, Vi) + (ug - Vug, vi) — (pr, divvy) = (£, vp),

Yagn € My, , (gn,divug) =0,
up(x,0) =0 in Q.

We retain the assumptions of Theorem 2.3. Then the function uy exists on the interval [0, 7], and since
(0.15) is a system of linear differential equations with smooth enough coefficients, it has a unique solution over
the whole interval [0,T]. Therefore we can estimate directly the error of Step Two, but as we wish to use the
bound (5.10) for u — u,,,—#, we shall need the hypotheses of Theorem 5.4.

Theorem 7.1. Under the assumptions of Theorem 5.4, the solution (un,pr) of (0.15-0.17) satisfies the error
bound:

Huh — uHLoo(O,T;LQ(Q)ES) + \/;Huh — uHLQ(O,T;Hl(Q)S) < C(H2 + h) R (7.1)

with a constant C independent of h and H .
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Proof. Taking the difference between (0.1) multiplied by a test function v, € V}, and (0.15), inserting Py, (u) € Vj,
and 7, (p), and choosing v, = uj, — P, (u), we obtain

1d
s llun — Ph(“)”%?(ﬂ) + vlup — Ph(u)ﬁ{l(g)

2dt
=v(V(u— Py(u)), V(up — Pr(0))) + (ra(p) — p,div(un — Pr(u))) (7.2)
+ (u' = Py(u'),up — Pa(w)) + ((ug — ) - V(u, — Pu(u)), up — Pr(u))
+ (up - V(Pp(u) —u),up — Py(u)) + ((ug —u) - Vu,up — By(u)).

Let us estimate the non-linear terms in the right-hand side. Comparing with (1.7), we see that the first term
appears here because divugy # 0. But it can be absorbed by the left-hand side:

(=) - V(wy = Pa(w), wn = P()] < S5 [un — ulms o Jun = Pu()[37 o) lun = Pa(w)]| 5, :

and according to Theorem 2.3,
lugr — e 0,701 ()3) < e1- (7.3)
Therefore
2/((uss — ) Vi, = Ph(u)),wn — Pu ()] < 189 (= fan = Paw)ey
+ 20— Pu@)f oy + 3 lhan — Puw)lFa(0)) -
Next, the analogue of (1.8) holds; thus setting
c2 = lug L (o,m20)%) 5

we obtain the analogue of (1.9)
1
2|(upr - V(Pa() — u),up, — Py(w))| < c2S6(e2un — Pu(u)|F () + o, [Pn(w) = ulZ (o)) -
Finally, since the assumptions of Theorem 5.4 are strong enough, we have the analogue of (1.14) and we set

3 = [[ullpe(o,rwra(0)2) ;
then )
2|((ugr — ) - Vu,uy, — Py(w))] < e356(eslun — Pu(w) |7 o) + €—3||UH —ul|72q)-

The linear terms are bounded as in Theorem 3.1. Then collecting these inequalities, substituting into (7.2),
applying Corollary 5.5 with n = H, choosing suitably the parameters ¢; and J, and integrating over [0, 7], we
readily derive (7.1). O

Thus, if h = H?, then
Huh — uHLoo((LT;Lz(Q)B) + \/;Huh — u|‘L2(07T;H1(Q)3) = O(h) .

Remark 7.2. We could have improved (7.3) by applying (6.6), and it would have led to smaller constants. But
(6.6) is proven under the assumption that 7, satisfies (6.3) and we wish to avoid this restriction. O



976 V. GIRAULT AND J.-L. LIONS

Finally, we consider the error of the pressure. As in Section 6, the pressure satisfies the following bound.

Lemma 7.3. Let (u,p) and (up,pn) be the respective solutions of (0.1-0.4) and (0.15-0.17). Under the as-
sumptions of Theorem 2.3, and if in addition f € L>°(0,T; L3/?(Q)?), we have
< 1 \/g / /
lon — 0P|l L2(@x10,7) < E( lp —ra(®)ll2@xjo,rp + 0" —ap [l 220,751 (0)3)

+vllu— Pl 20,1181 (2)2) + Sellull Lo o,mwrs )9 lu — wn ll L2(@xj0,7))

+ Sollu = wnll 20, (o) (10 = gl e 0,523()%) + 0l 0,323 (2)))) -
Proof. The only difference with the proof of Lemma 6.1 concerns the non-linear term. Here we write
l(w-Vu—ug - Vu,,wy)| < ([[u—ugllr2)ulwiso) + a—unl g o) la—uglLs@ + [allLs@)) 1whll Lo @),

whence (7.4) O

Therefore, here again, we must derive an estimate for |0’ —uj, || 20, 7;1-1(0)2), and we derive it in L*(Q2x]0, T'[)?
because the norm of H~1(£2) does not appear to bring any improvement. We write the proof for a uniformly
regular triangulation, i.e. satisfying (2.27).

Lemma 7.4. Under the assumptions of Theorem 5.4 and if Ty, satisfies (2.27), we have
[’ = || 2gaxjo,rp + VP = sl Lo 0,151 (@)2) < C(h+ hY2H + HY? + H?), (7.5)

with a constant C independent of h and H.

Proof. The proof is similar to that of Lemma 6.4, except for the treatment of the non-linear term. We write:
ug-Vu,—u-Vu=(ug —u)-V(up—u)+ (ug —u)-Vu+u-V(u, —u).

The worst term is the second one and it accounts for the term H3/2 in (7.5). Setting

1= HUHLOO(O,T;WLG(QP) )
we have

[(ug —u) - Vulr20) < aif|ug —ul|Lsq) - (7.6)

As in Section 1, Corollaries 3.2 and 5.5 give

lug —ullzso) < ey H3/?.

Thus
[(ugr —u) - Vull 2oy < creaHY?.
Next, setting
cs = [[ull Lo (axjo,7) »
and applying (7.1), we find
||u . V(uh — u)||L2(Q) < 03|uh — u|H1(Q) < C4(H2 + h) .

Finally, applying Lemma 6.4, an inverse inequality and (7.1), we derive

[(ug —u) - V(up — )| r20) < llug — ullzs@lun — ulwis@) < csH(RWY2+ H).



TWO-GRID FINITE-ELEMENT SCHEMES FOR THE TRANSIENT NAVIER-STOKES PROBLEM
Hence
Vu,—u-V < ey H/? H?+h HMW'/?+H
lug - Vun —u-Vul g2 axjor < 2 +ey(H +h) +csH( +H).

Then (7.5) follows readily from (7.7) and the argument of Lemma 4.5.
These two lemmas yield immediately the following theorem.

Theorem 7.5. Under the assumptions of Lemma 7.4, we have
P — prllLz@xjo,rp < C(h+ h'2H + H?? + H?),

with a constant C independent of h and H.

Remark 7.6. As a consequence, if h = H?, then
Ip = prll L2axjorp = O(R¥4).
However, if u € L*°(0,T; W1°°(Q)3), then (7.6) is replaced by
[(ug =) - VullL2(9) < [lug — a2 ulwiec@) < CH?,

and (7.9) is replaced by:
1P = pallL2@xjo,rp = O(h) .

APPENDIX
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(7.9)

Let us describe briefly our extension of the Scott and Zhang operator to L' functions. The details of the
proofs can be found in [42]. Here we denote the mesh-size by h and we assume that the triangulation is regular,
i.e. it satisfies (2.1). Let v € L!(Q); since we can take for Rp,(v) a polynomial of degree one in each tetrahedron,
it suffices to regularize the “nodal values” of v on all the vertices of 7. Let a be any vertex of 7. If a € 99,
we set Rp(v)(a) = 0. If a is an interior vertex of 75, we choose freely a tetrahedron, say ka with vertex a. Let
1a be the dual basis function, piecewise Py, of the four Lagrange basis functions ¢p (also piecewise Py) that

take the value one at the vertex b and zero at all other vertices:

/ Pa(X) b (x)dx = bap.

We set
Ru(v)(a) = / o)t ()dx,

Ra

i.€.

R = 3 ( / o(y)a(¥)dy)ga(x)

int v Ra
acT;

where 7, denotes the set of interior vertices of 7j,.
First observe that, if v € LP(Q), for some p > 1, we have

|Bn(v)(@)] < Clkal = P[|ol| Loy »

(A1)

(A.3)
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where here and in the sequel, C' denotes various constants independent of h. Consequently, for any tetrahedron k,

for m = 0 or 1, for any number p > 1 and for any function v € W"™P(k), we have, using the regularity (2.1)
of Ty:

|RR(v)|lwmeey < Ch.™ [vl|Lop,.) » (A.4)

where D, denotes the union of all the tetrahedra of 7; that share a vertex, an edge or a face with k. Since 2 is
a Lipschitz continuous polyhedron, D is connected. As the triangulation is regular, the number of tetrahedra
in a given D, is bounded by a constant independent of D, and h, and the number of occurrences of a given
tetrahedron in all the D, is also bounded by a constant independent of x and h. Therefore, (A.4) implies that
Ry, is stable in LP(2) for any number p > 1:

Vo e L7(Q), [Bn(v) o) < Cllolioo (A5)
Next, observe that, in view of (A.1) and (A.2), Ry, is a projection on the space
0n ={vel’Q); Vs € Tn,v|. €P1, v]pn =0} :

Yo € Oy, Rp(v) =v.

Now, let v be function in W*+1:2(Q) "W, (Q), for k = 0 or 1 and a number p > 1, where the index zero means
that the function has a zero trace on the boundary 9. Note that the functions of W1(Q) have a trace. Let
k be a tetrahedron with no vertex on 9f2; then by construction

Vg e P, Rup(q)ls =q.
Therefore, for m = 0 or 1 and for all ¢ € Py, applying (A.4), we have
|Ra(v) = vlwms(s) = [Ba(v —q) = (0 = @)lwme ) < |0 = qlwmes) + Ch"[v—qllLep,) -
As Dy, is connected, we can apply the argument of Dupont and Scott [13] that gives:

qiggl(|v — glwmrey + b " v = dllLep,)) < CRET T vlwrsrin(p,) - (A.6)

Hence
|Rn(0) = vlwmao(ey < ChE™ 0lwrern(p, ) - (A.7)

If k has at least one vertex on 02, say ag, then D, contains at least one tetrahedron k,, with a face, say Fp,
containing ag and lying on 9. But the trace on dQ of v € W, ' () is well-defined and is zero, therefore Ry,(v)
satisfies trivially

0= Ru(v)(a0) = /F 0(0)ag (0)do (A8)

where 1,, denotes the dual Py basis function on Fy of the three P; Lagrange basis functions on Fy. Clearly,
this is valid if x has more than one vertex on €. In other words, for functions in W' (€2), Rx(v) has the same
degrees of freedom on 9 as the Scott and Zhang operator, defined in [42]. Thus we can apply to it the results
of this reference. On one hand, with the formulation (A.8),

Vge Py, Ru(q)ls =q-
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On the other hand, in view of (A.8), we have

(B (0)(20)] < Clicag ™ ([0l 005a) + Py ol 50 ) -

Therefore, combining this bound with (A.3), we obtain:

|Rn(0)lwrn ) < Chit ([vllLe(py + heclvlwrap,)) -

Collecting these results, we find

|Rp(v) = vlwie = [Ra(v —q) = (v = @)lwire) < [0 = dlwieey + Chy " ([[v = dllLo(p,) + helv — dlwie(p,)) -

Then (A.6) implies

|Rp(v) = vlwmoe) < CRET " olwrrin(p,) (A.9)

which together with (A.7) yields for m =0 or 1, K =0 or 1 and any number p > 1:

(1]
2]

Yu € WkJrl’p(Q) N WOLP(Q) , |Rh(v) - U|Wm,p(Q) < Chk+lim|v|wk+l,p(ﬂ) . (A].O)
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