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Abstract Assistance is currently a pivotal research area in

robotics, with huge societal potential. Since assistant robots

directly interact with people, finding natural and easy-to-

use user interfaces is of fundamental importance. This paper

describes a flexible multimodal interface based on speech

and gesture modalities in order to control our mobile robot

named Jido. The vision system uses a stereo head mounted

on a pan-tilt unit and a bank of collaborative particle filters

devoted to the upper human body extremities to track and

recognize pointing/symbolic mono but also bi-manual ges-

tures. Such framework constitutes our first contribution, as

it is shown, to give proper handling of natural artifacts (self-

occlusion, camera out of view field, hand deformation) when
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performing 3D gestures using one or the other hand even

both. A speech recognition and understanding system based

on the Julius engine is also developed and embedded in or-

der to process deictic and anaphoric utterances. The second

contribution deals with a probabilistic and multi-hypothesis

interpreter framework to fuse results from speech and ges-

ture components. Such interpreter is shown to improve the

classification rates of multimodal commands compared to

using either modality alone. Finally, we report on success-

ful live experiments in human-centered settings. Results are

reported in the context of an interactive manipulation task,

where users specify local motion commands to Jido and per-

form safe object exchanges.

Keywords Human-robot interaction · Multiple object

tracking · Two-handed gesture recognition · Vision and

speech probabilistic fusion

1 Introduction

Having robots to assist people in human-centered environ-

ments is a goal that the robotics community has aspired

to for many years (Fong et al. 2003). Such an assistant

robot needs both spatial and transactional intelligence. Spa-

tial intelligence, based on environment perception capabili-

ties, means being able to understand and navigate in human-

centered environment. Transactional intelligence, based on

human perception capabilities, means being able to commu-

nicate meaningfully with a human user. In this paper, we

will focus on this second kind of abilities and especially on

peer to peer proximal interaction. In order to perform such

an interaction, a robot has to be equipped with a multimodal

user interface enabling to control the robot using several nat-
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Fig. 1 Various H/R situations including multimodal commands

ural means like tactile senses,1 speech and human body mo-

tion (e.g. handed gestures) senses which are here considered.

Figure 1 illustrates some various human-robot situations in-

cluding natural/multimodal commands the robot has to un-

derstand when using such interface.

The paper is organized as follows. Section 2 depicts an

overview of related work and introduces our contributions.

Section 3 describes the Jido platform and the multimodal

interface in its software architecture. Section 4 presents the

binocular tracking of the user’s head and hands in order to

interpret two-handed gestures, mainly symbolic or deictic,

using Hidden Markov Models (HMMs). Section 5 includes

a presentation of our system dedicated to verbal communi-

cation between our robot assistant and human users. Then,

it depicts the multimodal interface based on the probabilis-

tic fusion of speech and gesture interpretation results. Sec-

tion 6 details live experiments. The aim is to characterize the

whole interface during several trials of a human-robot inter-

action scenario. Lastly, Sect. 7 summarizes our contributions

and discusses future extensions.

2 Overview and contributions

2.1 Related work

An increasing number of robotic systems are equipped for

interaction with human users, each robot being designed for

a specific objective. This specific design often limits their

ability to perform complex Human-Robot Interaction (HRI).

For example, guide robots in public places (see an overview

in Arras and Burgard 2002) are intended to interact with sev-

eral users, so they do not perform peer to peer HRI and usu-

ally do not need to recognize gestures. Other robotic plat-

forms achieve more peer to peer interaction using a variety

of sensory systems. Godot (Theobalt et al. 2002), Coyote

(Skubic et al. 2004), Maggie (Gorostiza et al. 2006) and Dy-

namaid (Stückler et al. 2009), use speech recognition. Com-

panionAble (Badii and Thiemert 2009) also includes simple

1Tactile sense is out of the paper scope.

vision functions. Wakamaru (Harte and Jarvis 2007) uses a

panoramic camera, Papero2 and ALPHA (Bennewitz et al.

2005) detect faces, and Pearl (Pineau et al. 2003) performs

face tracking. For these robots, focus has been on their ap-

pearance and their ability to communicate verbally in a nat-

ural way. Considering that 65% of the information in com-

munication acts is nonverbal (Davis 1971) (namely motion),

the ability for these robots to be understood and accepted by

human users is limited.

Only few robots are able to perform more advanced in-

teraction due to multimodal perception, combining speech

recognition with gesture recognition. Gesture recognition is

facilitated by the tracking of human limbs (usually hands

or/and head). The robots named Biron (Maas et al. 2006)

and ALBERT (Rogalla et al. 2004) benefit from such a mul-

timodal user interface through 2D tracking and recognition

of mono-manual pointing gestures. Pioneer (Yoshizaki et al.

2002) has similar skills but aims at recognizing more sym-

bolic gestures; it tracks one human’s hand in order to recog-

nize the pattern currently painted. Cosero (Axenbeck et al.

2008) exhibits capabilities of two-handed gesture recogni-

tion but these are limited to the image plane. Even if these

robots are able to perform advanced interaction with a hu-

man, 3D approaches are more suited to estimate human mo-

tions in depth, which naturally occurs when interacting with

robots. The most advanced robotic systems (Hanafiah et al.

2004) and ARMAR (Stiefelhagen et al. 2004), are equipped

for 3D tracking of the head and the two hands of their human

user. The first one does not perform real gesture recognition,

but assumes that speech and gestures are perfectly correlated

e.g. if the user holds his hand some time in the same po-

sition while saying something, the robot considers that the

human was pointing to an object. The second one recog-

nizes mono-manual pointing gestures through HMMs, ap-

plying a relaxed strategy in terms of false positives (Nickel

and Stiefelhagen 2006). This recognition step is triggered by

speech. Both systems enable the user to communicate with

the robot using gestures to point some objects out. Symbolic

2See the http://fr.wikipedia.org/wiki/PaPeRo.

http://fr.wikipedia.org/wiki/PaPeRo.
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gestures are surprisingly not used: if these are less central

than deictic ones, they are naturally used by humans in ad-

dition to speech (e.g. clapping hands while saying “Bravo”,

waving hands while saying “stop”). Recognizing such ges-

tures means being potentially able to recognize two handed

gestures. This requires to differentiate strongly the left hand

from the right one during tracking.

A last observation concerns common underlying assump-

tions. Mono-manual hand gestures are usually presupposed

e.g. Coyote (Skubic et al. 2004), ARMAR (Stiefelhagen

et al. 2004), Pioneer (Yoshizaki et al. 2002), Robox (Sieg-

wart 2003; Corradini and Gross 2000), and/or upper human

body extremities are usually tracked separately e.g. RCB-1

(Park et al. 2005), Robovie (Hasanuzzaman et al. 2007), AR-

MAR (Nickel and Stiefelhagen 2006), inevitably inducing

tracking failures when they overlap. To our best knowledge,

the proper and simultaneous motion analysis of all the up-

per human body extremities has not yet been integrated on a

mobile robot although a good gesture tracker is essential for

any further gesture recognition process. This might open an

increasing number of interaction possibilities, in particular

through the use of the non-dominant hand in gesture recog-

nition and/or two-handed gesture recognition.

Gesture recognition, possibly combined with speech for

multimodal communication, has recently received atten-

tion in the HRI community. Visual gestures show human

thoughts, replays, complements, accents, and adjust verbal

information. Therefore, vision-based gesture interpretation

is valuable in environments where speech-based communi-

cation may be garbled or drowned out. Moreover, the mu-

tual assistance between the robot’s speech and vision ca-

pabilities enables a user to robustly specify location refer-

ences in verbal statements. Combined with pointing ges-

tures, such prominent commands open up the possibility

of intuitively indicating objects and locations e.g. to make

the robot change its direction/position or to mark objects.

Nevertheless, it can be argued that, in these cases, vision

techniques for human perception and natural language pro-

cessing have mostly been studied as two separate research

topics (Prodanov and Drygajlo 2003a; Skubic et al. 2004;

Triesch and Von der Malsburg 2001; Waldherr et al. 2000),

rather than been combined.

A lot of studies aim to couple these two communica-

tion channels (audio and video) and several robots are now

equipped with such a multimodal interface, but in all of

them speech remains the main channel. The easiest strat-

egy was developed by Hanafiah et al. (2004) which con-

siders that speech and gestures are perfectly correlated, but

does not perform real gesture recognition. Conversely, in

Yoshizaki et al. (2002), vision is only used if a need is de-

tected by speech, leading to unnatural interaction. Rogalla

et al. (2004) fuses events from these channels to define the

action to be performed by the robot, but the system is hand-

icapped by limited visual capabilities (simplistic tracking,

only 2D gestures). Finally, the most advanced multimodal

interface is probably (Stiefelhagen et al. 2004) which fuses

speech and mono-manual 3D gestures in a probabilistic way,

but evaluations of the whole robotic system are not men-

tioned.

2.2 Contributions

The first contribution in this paper concerns the design of

a real-time and robust tracking framework based on multi-

ple and interactive particle filters in order to analyze the 3D

motions of all the upper human body extremities from the

onboard stereo head of a mobile robot. Using this multiple

object tracker (MOT), enhanced recognition performances

for mono and bi-manual hand 3D gestures are achievable.

To our best knowledge, no system based on two-handed

gesture recognition has been developed and integrated for

interactive robots. The second contribution deals with a

probabilistic and multi-hypothesis interpreter framework to

fuse results from speech and gesture components. Guided

by this multimodal fusion, the interpretation of deictic and

symbolic actions can be improved compared to the results

using solely speech or gesture. A last contribution con-

cerns the integration of this interface into our mobile robot

Jido as few existing studies have addressed onboard multi-

modal interfaces that can cope with both robotic and nat-

ural settings (Hanafiah et al. 2004; Gorostiza et al. 2006;

Maas et al. 2006; Rogalla et al. 2004). The target scenario

we address is a peer to peer HRI in which a human can ask

the robot to move according to his/her command to mark or

bring certain objects, etc. This application serves as a moti-

vation for the general multimodal communication required

for any mobile robot acting as an assistant.

3 The Jido platform and its software architecture

Our multimodal interface is embedded on a robot compan-

ion named Jido (Fig. 2) which consists of: a 6-DOF arm

equipped with a videre stereo bank, a pan-tilt stereo sys-

tem at the top of a mast and a laser range finder (LRF)

in front. The embedded functionalities are managed by the

LAAS layered software architecture (Fig. 3) and detailed in

Alami et al. (1998).

Such functionalities enable Jido to:

1. Build maps and navigate in indoor environments thanks

to the LRF sensor. The embedded functionalities are un-

der the Base motion box (Fig. 3).

2. Recognize and manipulate objects thanks to the videre

stereo system. A standard procedure consists in extract-

ing the 3D position of the object using blob detection,

then computing an arm trajectory which is executed by

the dedicated module, all this is done within the Object

Recognition and Manipulation boxes.
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3. Perceive humans (detailed module) using the pan-tilt

stereo system on the mast, namely (i) detection/recogni-

tion and view-based tracking from the Face recog-

nition modules, (ii) control the pan-tilt unit mounted

stereo head from the Human Position module,

(iii) 3D gestures tracking and recognition from the GEST

modules, (iv) speech utterance recognition and interpre-

tation from the RECO module, (v) fusion of speech and

gesture modalities in the FUSION module.

4. Talk to the human user using the Speech synthesis mod-

ule.

Fig. 2 The robot Jido

The following sections detail the modules dedicated

to human perception with a special emphasis on GEST

(Sect. 4) and FUSION (Sect. 5) which requires RECO

(Sect. 5.1). These modules constitute our main contribu-

tions.

4 Visual perception of the robot user

In this section, we describe the setup and approach for track-

ing and recognizing dynamic gestures in the video stream.

We propose a new framework based on multiple interactive

particle filters dedicated to the upper human body extrem-

ities (head and both hands). Then, we use Hidden Markov

Models (HMM) applied to temporal sequences of hand

poses for the occurrence of a mono or bi-manual hand ges-

ture. We present here below a brief survey of the literature in

the area of gesture tracking and put our tracker in perspec-

tive.

4.1 Overview and related work

Visual tracking of human body parts has been studied ex-

tensively over the past few years. The reader can refer to

two recent and comprehensive surveys (Erol et al. 2007;

Murphy-Chutorian and Trivedi 2008) related to head and

hand tracking in the Human-Computer Interaction (HCI) lit-

erature. A main problem hampering most of the approaches

surveyed is that they rely on underlying assumptions that

may be suitable for HCI applications but not in HRI ones:

obtrusive sensors (Fels and Hinton 1997), static and high

contrast background (Huang et al. 2002; Isard and Blake

Fig. 3 Jido’s software

architecture
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1998a; Just et al. 2004), specific clothing appearance (Azad

et al. 2007; Waldherr et al. 2000), etc. The aforementioned

surveys highlight that particle filters have become increas-

ingly popular, especially for HRI applications. Their popu-

larity stems from their ability to: (i) deal with multimodal

probability distributions, (ii) fuse diverse kinds of measure-

ments easily in a probabilistically principled way, allowing

them to handle clutter (Pérez et al. 2004).

The approaches surveyed can be split in two broad cat-

egories. The former relies on view-based models i.e. mono

(Chen et al. 2003; Rogalla et al. 2004; Thayananthan et al.

2003), or bi-manual (Hasanuzzaman et al. 2004; Park et al.

2005) gestures analyzed in the image space. These 2D ap-

proaches are inappropriate for estimating motion in depth,

and so have difficulty interpreting natural gestures, espe-

cially deictic ones, which occur in a 3D space.

The second category, based on 3D generative models, in-

volves the best match between model projections and image,

and recovering the associated 3D human posture. The con-

ventional approach attempts to infer the 3D global pose and

all the upper human body joint angles in the video stream

(see a survey in Moeslund et al. 2006). These approaches re-

quire modeling detailed human geometry and so are not gen-

erally person independent. Moreover, particle filters (PF) for

full DOF tracking have proven to be computationally expen-

sive precluding real-time implementation and keeping such

an approach from integration on mobile autonomous robots.

Finally, it can be argued that the full reconstruction of the

entire kinematic chain is not essential for gesture recogni-

tion. In the vein of Bernier and Collobert (2001), Nickel and

Stiefelhagen (2006), we have sought an alternative 3D repre-

sentation of the human body. We model solely the upper hu-

man body extremities with deformable and coarse ellipsoids

for computational tractability reasons. Compared to conven-

tional particle filters for full DOF tracking of the upper hu-

man body parts (Fontmarty et al. 2007), our sparse tracker

is shown to limit the computational complexity. Moreover,

our deformable models allow us to deal with the 3D ori-

entation of the hands and their heavy deformations like the

opening/closing actions of the palm.3 Finally, through the

addition of flexible geometric constraints between these el-

lipsoids, this representation is person independent.

Given this sparse 3D model of the upper human body

extremities, our multiple object tracker (MOT) framework

stands out from the literature due to the following two en-

hancements.

The first improvement concerns interactive mechanisms

to ensure the consistency both in 2D and 3D spaces. To date,

MOTs have been devoted to the tracking of multiple persons

e.g. Qu et al. (2007), Zhao and Nevatia (2004) but rarely

3Free-form hand gestures are clearly the most natural nonverbal means

of communication.

to multiple parts of a single person (Bernier and Collobert

2001; Nickel and Stiefelhagen 2006).

A key problem remains the well-known “coalescence”

phenomenon when targets undergo partial or complete self-

occlusion. In other words, MOT often associates more than

one human body part trajectories to some targets while loses

track for others. Two main classes of MOT, with their re-

spective advantages and drawbacks, can be considered. The

former, widely accepted in the computer vision community,

exploits a single joint state representation which concate-

nates all of the targets’ states together, and the latter uses

distributed filters, namely one filter per target. The “coa-

lescence” problem might be more correctly handled during

the joint inference underlying centralized approaches. How-

ever, they are not scalable due to their nature of exponen-

tial complexity. For example, JPDAF4-based methods like

Bar-Shalom and Jaffer (1998), Rasmussen and Hager (2001)

suffer from the combinatorial complexity due to the exhaus-

tive enumeration for data association; and sampling-based

stochastic approaches like Isard and Blake (2001), Zhao and

Nevatia (2004) are confronted by the exponential demand of

the increase of particles with the state space dimensionality.

Besides, usual distributed/decentralized approach e.g. based

on multiple independent particle filters (MIPF), suffers from

this “coalescence” phenomenon. More recent investigations

(Qu et al. 2007; Yu and Wu 2004) have highlighted that in-

teractively distributed MOT (called IDMOT) limit such phe-

nomena as each tracker, devoted to a given target, relies on

the other neighboring targets’ status.

A last remark concerns 3D two-handed gestures which

have received for now little attention in the literature. The

few 3D gesture trackers both in HCI (Bernier and Collobert

2001) and HRI (Nickel and Stiefelhagen 2006) propose no

advanced mechanisms to properly handle self-occlusions

and hand-hand occlusion which usually appear when per-

forming two-handed gestures in 3D. Clearly, tracking two-

handed gestures is a requisite for HRI application as humans

should be able to operate the robot with either the domi-

nant or non-dominant hand, and some commanding gestures

might be naturally mono or bi-manual e.g. “hello”, “go for-

ward”, etc.

The second improvement concerns the automatic (re)-

initialization. The CONDENSATION—for “Conditional

Density Propagation” (Isard and Blake 1998b)—is the most

popular PF strategy such that the particles are drawn accord-

ing to a proposal distribution based solely on the system

dynamics and so ‘blindly” w.r.t. the measurement. In prac-

tice, tracking soon goes astray if no recovery/initialization

process is added. We propose an extension of the IDMOT

framework (called IIDMOT), in the vein of the ICONDEN-

SATION strategy (Isard and Blake 1998a), which provides

4For Joint Probabilistic Data Association Filter.
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the capability to recover the targeted limbs after temporary

target loss, camera out of sight, etc. Our principle consists in

also sampling some particles from the dynamics and some

w.r.t. visual detectors for online re-initialization. As pointed

out by Pérez et al. (2004), we are convinced that a crucial

design issue in PF is the choice of the proposal distribution.

We propose comparative evaluations demonstrating that

our IIDMOT approach outperforms the conventional MIPF

i.e. independent filters, and IDMOT i.e. particle filters with

interaction mechanisms but without (re)-initialization capa-

bilities. Such tracking adaptations are expected to fulfill all

the robotic requirements stated above, and to have immedi-

ate impact on gesture recognition in a bottom-up strategy.

Regarding this gesture recognition stage, our approach

based on HMMs is more or less conventional even if the

existing systems embedded on mobile robots and with auto-

matic (re)-initialization capability are rather rare. The adap-

tations are twofold. First, our approach, by handling the time

series of the two hand positions, stands out from most of the

existing 3D approaches in the HRI literature (Corradini and

Gross 2000; Park et al. 2005; Shimizu et al. 2006; Stiefel-

hagen et al. 2004; Triesch and Von der Malsburg 2001;

Yoshizaki et al. 2002) which assume a dominant-handed

gesture i.e. the right one. We focus on 3D mono but also bi-

manual gestures as body motions occur in space while two-

handed gestures have strong expression capabilities. The

most similar approach to ours is that of Just et al. (2004)

who have shown that incorporating two-hand movement in-

formation helps to improve the recognition of 3D mono or

bi-manual gestures but only in the HCI context. Second, the

hand 3D coordinates are transformed into the head-centered

3D coordinate system in order to become invariant regard-

ing the location of the person, the pan-tilt unit and robot

motions.

4.2 3D tracking of head and hands

Our IIDMOT framework is depicted in Table 1. Recall

that particle filters aim to recursively approximate the poste-

rior probability density function (pdf) p(xi
t |z1:t ) of the state

vector xi
t for body part i at time t given the set of measure-

ments z1:t (given in (1)). A linear point mass combination

p(xi
t |z1:t ) ≃

N
∑

n=1

ω
i,n
t .δ(xi

t − x
i,n
t ),

N
∑

n=1

ω
i,n
t = 1, (1)

is determined which expresses the selection of a value—or

“particle”—x
i,n
t for target i at time t with probability—or

“weight”—ω
i,n
t . δ(.) is the Dirac delta distribution. An ap-

proximation of the conditional expectation of any function

of xi
t , such as the minimum mean square error (MMSE) es-

timate Ep(xi
t |z1:t )

[xi
t ], then follows (step 5, Table 1).

In our framework, when two particles x
i,n
t and x

j,n
t for

target i and j do not interact one with the other, i.e. their

relative Euclidean distance exceeds a predefined threshold

(noted dT H , step 7 in Table 1), the approach performs like

multiple independent trackers. When they are in close prox-

imity, magnetic repulsion and inertia likelihoods are added

in each filter to handle the aforementioned problems. Fol-

lowing (Qu et al. 2007), the repulsion “weight” ϕ1(.) follows

(in (2))

ϕ1(x
i,n
t (zi

t ),x
j,n
t (z

j
t )) ∝ 1 −

1

β1
exp

(

−
D2

i,n

σ 2
1

)

, (2)

with β1 and σ1 two normalization terms being determined

a priori. Di,n denotes the Euclidean distance between par-

ticle x
i,n
t and particle x

j
t,k at iteration k. Practically, if the

analyzed tracker i is isolated from target j , it will only im-

plement MIPF to reduce the computational costs. When it

becomes closer or interacts with tracker j (inducing oc-

clusions), it will activate the iterative IDMOT (steps 7–19,

Table 1) to handle the “coalescence” problem. The prin-

ciple can be extended to a 3-clique {zi}i=1,2,3. The iner-

tia “weight” ϕ2(.) considers the target’s motion vector −→v1

from the states in previous two frames in order to predict

its motion vector −→v2 for the current. The function then fol-

lows

ϕ2(x
i,n
t ,x

i,n
t−1,x

i,n
t−2)

∝ 1 +
1

β2
exp

[

−
(‖−→v1 ‖ − ‖−→v2 ‖)2

σ 2
22

]

× exp

(

−
θ2
i,n

σ 2
21

·
‖−→v1 ‖2

σ 2
22

)

, (3)

with β2 a normalization term. θi,n represents the angle be-

tween the above vectors while σ21 and σ22 characterize the

variance of motion vector direction and speed.

Our IDMOT particle filter, named IIDMOT, follows this

principle but is extended in three ways. First, the conven-

tional CONDENSATION (Isard and Blake 1998b) strat-

egy is replaced by the ICONDENSATION (Isard and Blake

1998a) one whose importance function q(.) in step 3 of Ta-

ble 1 permits automatic (re)-initialization when the targeted

human body parts appear or re-appear in the scene. Thus,

the classical importance function q(.) (in (4)) based on dy-

namics p(xt |xt−1) and the prior p0 can be extended to con-

sider measurements zt in the sub function π(.) so that, with

α ∈ [0;1],

q(x
i,n
t |x

i,n
t−1, z

i
t ) = απ(x

i,n
t |zi

t ) + (1 − α)p(x
i,n
t |x

i,n
t−1). (4)

The prominent new term π(.) aims to sample a particle

subset according to visual detectors i.e. skin colored blob
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Table 1 Our IIDMOT algorithm

1: IF t = 0, THEN Draw x
i,1
0

, . . . ,x
i,j
0

, . . . ,x
i,N
0

i.i.d. according to p(xi
0
), and set w

i,n
0

= 1
N

END IF

2: IF t ≥ 1 THEN {—[{x
i,n
t−1

,w
i,n
t−1

}]
N

n=1
being a particle description of p(xi

t−1
|zi

1:t−1
)—}

3: “Propagate” the particle {x
i,n
t−1

}N
n=1

by independently sampling x
i,n
t ∼ q(xi

t |x
i,n
t−1

, zi
t )

4: Update the weight {w
i,n
t }N

n=1
associated to {x

i,n
t }N

n=1
according to the formula w

i,n
t ∝ w

i,n
t−1

p(z
i,c,n
t , z

i,s,n
t |x

i,n
t ).p(x

i,n
t |x

i,n
t−1

)

q(x
i,n
t |x

i,n
t−1

, zi
t )

, prior to a normalization step so that

N
∑

n=1

w
i,n
t = 1

5: Compute the conditional mean of any function of x̂i
t , e.g. the MMSE estimate E

p(xi
t |z

i
1:t

)
[xi

t ], from the approximation

N
∑

n=1

w
i,n
t δ(xi

t − x
i,n
t ) of the posterior p(xi

t |z
i
1:t )

6: FOR j = 1 : i, DO

7: IF dij (x̂i
t,k

, x̂
j
t,k

) < dT H THEN

8: Save link(i,j)

9: FOR k = 1 : K iterations, DO

10: Compute ϕ1, ϕ2

11: Reweight w
i,n
t = w

i,n
t .ϕ1.ϕ2

12: Normalization step for {w
i,n
t }N

n=1

13: Compute the MMSE estimate x̂i
t

14: Compute ϕ1, ϕ2

15: Reweight w
j,n
t = w

j,n
t .ϕ1.ϕ2

16: Normalization step for {w
j,n
t }N

n=1

17: Compute the MMSE estimate x̂
j
t

18: END FOR

19: END IF

20: END FOR

21: At any time or depending on an “efficiency” criterion, resample the description [{x
i,n
t ,w

i,n
t }]

N

n=1 of p(xi
t |z

i
1:t ) into the equivalent evenly weighted particles set

[{x
(si,n)
t , 1

N
}]

N

n=1
, by sampling in {1, . . . ,N} the indexes si,1, . . . , si,N according to P(si,n = j) = w

i,j
t ; set x

i,n
t and w

i,n
t with x

(si,n)
t and 1

N

22: END IF

detection for hands/head (Just et al. 2004) and frontal face

detection (Viola and Jones 2001) which, despite their spo-

radicity, are very discriminant when present. Practically, α%

of the particles are drawn according to 3D ellipsoids af-

ter triangulation on image ROIs corresponding to detected

skin blobs or faces. Secondly, the IDMOT particle filter, pio-

neered in Qu et al. (2007) for image-based tracking of multi-

ple objects without (re)-initialization capabilities, is here ex-

tended to estimate the 3D pose of multiple deformable body

parts of a single person. The third line of investigation con-

cerns data fusion, as our observation model is based on a ro-

bust and probabilistically motivated integration of multiple

cues. Fusing 3D and 2D (image-based) information from the

video stream of a stereo head, with cameras mounted on a

mobile robot, allows us to benefit both from reconstruction-

based and appearance-based approaches.

Our novel IIDMOT strategy combines the advantages of

ICONDENSATION and IDMOT in order to jointly handle

the (re)-initialization and “coalescence” problems. It aims

to fit the projections of a sphere and two deformable ellip-

soids (respectively representing the head and the two hands)

throughout the video stream, using the estimation of the 3D

location X = (X,Y,Z)′, the orientation Θ = (θx, θy, θz)
′,

and the axis length5 Σ = (σx, σy, σz)
′ for ellipsoids. All

5To take into account the hand orientation in 3D.

these parameters are accounted for in the state vector xi
t

related to target i for the t-th frame. With regard to the

dynamics model p(xi
t |x

i
t−1), the 3D motions of observed

gestures are difficult to characterize over time. This weak

knowledge is formalized by defining the state vector as

xi
t = [Xt ,Θt ,Σt ]

′ for each hand and assuming that its en-

tries evolve according to mutually independent random walk

models, viz. p(xi
t |x

i
t−1) = N (xi

t |x
i
t−1,Λ), where N (.|µ,Λ)

is a Gaussian distribution in 3D with mean µ and covariance

Λ being determined a priori. Our importance function q(.)

followed by our multiple cues based measurement function

p(zi
t |x

i
t ) are depicted below. Recall that α percent of the par-

ticles are sampled from detector π(.) ((4)). These are also

drawn from Gaussian distribution for head or hand config-

uration but deduced from skin color blob segmentation in

the CIE-Lab color space. The centroid and associated co-

variances of the matched regions are finally triangulated us-

ing the parameters of the calibrated stereo setup. For the

weight updating step (step 4, Table 1), each ellipsoid de-

fined by its configuration xi
t is then projected in one of the

two image planes. Given Q =
[

A b
b′ c

]

the associated 4 × 4

symmetric matrix, the set of image points x that belongs

to the projection contours verify the following expression:

x′.(bb′ − cA).x = 0.

The measurement function fuses skin color information

but also motion and shape cues. Each ellipsoid for any pose

xi
t leads to an ellipse in the image plane after projection.
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The pixels are then partitioned into a set of target pixels O

belonging to this ellipse, and B a set of pixels which are

assumed not corresponding to both hands or head. Assuming

pixel-wise independence, the skin color-based likelihood is

factored as

p(z
i,c
t |xi

t ) =
∏

o∈O

ps(o|xi
t )

∏

b∈B

[1 − ps(b|xi
t )], (5)

where ps(j |xi
t ) is the skin color probability at pixel loca-

tion j given xi
t . Using only color cue for the model to image

fitting is not sufficiently discriminant in our robotics con-

text. We also consider a likelihood p(z
i,s
t |xi

t ) which com-

bines motion and shape cues. In some H/R situations, it is

highly possible that the targeted limbs are moving, at least

intermittently. We thus use the cost function (6) which is

based on two terms: the penalty term favours the moving

edges without removing the static ones (see the first term).

The result is that a tracker based on this will prefer to stick

with the moving edges, but in their absence its fallback is to

use the static ones.

p(z
i,s
t |xi

t ) ∝ exp
(

−D2/2σ 2
s

)

,

D =

Np
∑

j=1

|x(j) − z(j)| + ργ (z(j)). (6)

This equation depends on the sum of the squared distances

between Np points uniformly distributed along the ellipsoid

contours x and their nearest image edges z. σs is a stan-

dard deviation being determined a priori. Given
−→
f (zt (j))

the optical flow vector at pixel z(j), γ (z(j)) = 0 (resp. 1)

if
−→
f (z(j)) 
= 0 (resp. if

−→
f (z(j)) = 0) and ρ > 0 terms a

penalty.

Finally, assuming the cues to be mutually independent,

the unified measurement function in step 4 (Table 1) is for-

mulated as

p(z
i,c
t , z

i,s
t |xi

t ) = p(z
i,c
t |xi

t ).p(z
i,s
t |xi

t ). (7)

4.3 Gesture recognition

There are two problems to address when dealing with dy-

namic gesture recognition: spotting and classification. On

one hand, spotting aims at identifying the beginning and/or

the end of a gesture given a continuous stream of data which

is made up of random sequences of legitimate gestures and

non-gestures (moves in between meaningful gestures). All

the gestures are here assumed to start and end in the same

natural/rest position (the hands hanging along the body). On

the other hand, given an isolated gesture sequence, clas-

sification outputs the class the gesture belongs to, among

a vocabulary composed of 5 (resp. 7) deictic (resp. sym-

bolic) gestures (see Table 4) whose choices were motivated

by the particular HRI scenario described in Sect. 6. The 7

symbolic gestures, defined by their motion templates, are

namely: “greetings” (with one or two hands), “introducing

oneself”, “come to me” (with one or two hands), “stop”,

“go away”. Besides, the 5 deictic gestures depend on the

coarse pointed direction i.e. “ahead”, “bottom left”, “bot-

tom right”, “top left”, “top right”.

For deictic gestures, the pointing direction is calculated

by the connecting line between the center of the head and

the hand assuming this rough direction is enough to distin-

guish between sparse objects in the human vicinity. In order

to make our gesture recognition independent of the position

of the user in relation to the robot, we define our vector in

a coordinate system centered on the head whose y and z

axis constitute the ’human plane’ i.e. the plane formed by

the head and both hands of the human at his rest position.

Given the outputs of our IIDMOT multi tracker, all models

are trained by means of the EM-algorithm using the follow-

ing 9-dimensional feature vector derived from the tracked

positions of both head and hands

xk = (DH−Lh,Θ
L,DH−Rh,Θ

R,DLh−Rh)
′,

where DH−Lh is the distance between the head and the left

hand location in space, DH−Rh is the analogous term for

the right hand. Θ i = (θ i
x, θ

i
y, θ

i
z) is the orientation of hand i

with regard to the ’human plane’ and DLh−Rh is the distance

between the two hands.

Unlike Stiefelhagen et al. (2004), each complete gesture

is here straightforwardly modeled by a dedicated HMM.

The topology of the HMMs is determined empirically i.e.

five state models were found to be the best compromise be-

tween performance and computational cost. We use discrete

HMMs whose space size (number of clusters per variable)

and geometry (size of each of these clusters) are determined

through a self-organizing map, or Kohonen network. These

HMM models are trained using the Expectation-Maximiza-

tion algorithm. The reader can here refer to Fox et al. (2006)

for more details about our HMM tuning.

4.4 Off-line experiments

Prior to their integration on our mobile robot, experiments

on a data set of 10 sequences (1214 stereo images) acquired

from the robot are performed off-line in order to: (i) de-

termine the optimal parameter values of our strategy, and

(ii) characterize its performance. These gestures are per-

formed either using the left or the right hand or both. More-

over, this sequence set involves variable viewing conditions,

namely illumination changes, clutter, self-occlusions or out

of field of view. Figure 4 shows snapshots of two sequences

recorded while performing gestures involving self-occlusion

like “greetings” and “go to my left”. For each frame, the
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Fig. 4 Two sequences involving occlusion (for gestures “greetings” (with one hand) (a) and “go to my left” (b). Each is run with simple MOT

(top) and our IIDMOT (bottom). More gesture examples can be found at http://brice.burger.pagesperso-orange.fr/these/gestes/index.html

template depicts the projection of the MMSE estimate for

each ellipsoid. The IIDMOT strategy, by using magnetic re-

pulsion and inertia likelihoods enables to handle the “coa-

lescence” problem. Furthermore by drawing some particles

according to the detector output, this strategy permits auto-

matic re-initialization and aids recovery after loss of observ-

ability. Moreover, given the estimated state vector, both mo-

tion and shape parameters for dynamic gesture recognition

are obtained.

Quantitative performance evaluation has been carried out

on the sequence set. Since the main concern of tracking is

the correctness of the tracker results, location as well as

label, we compare the tracking performance quantitatively

by defining the false position rate (FRp) and the false la-

bel rate (FRl). As we have no ground truth, failure situ-

ations must be defined. Failing to associate a tracker with

one of the targets in (at least) one image plane will corre-

spond to a position failure, while a tracker associated with

the wrong target will correspond to a label failure. Table 2

presents the performances using multiple independent par-

ticle filters (MIPF) (Isard and Blake 1998b), conventional

IDMOT (Qu et al. 2007) strategy, and our IIDMOT strat-

egy with data fusion (see Sect. 4.2). Our IIDMOT strategy

is shown to outperform the conventional approaches with a

slight increase in computation time. The MIPF strategy suf-

fers especially from “coalescence” problems due to a lack

of interaction modeling between trackers while the IDMOT

strategy does not recover the target after transient loss. These

results have been obtained for the “optimal” tracker param-

eter values listed in Table 3.

Given the IIDMOT outputs, we evaluated (also off-line)

our gesture recognizer using a data set of 324 image se-

quences pre-acquired from the robot Jido. These sequences

only contain meaningful gestures. The data set is split into

two subsets: the training set T (2/3 of the data-base) and the

test set Te (1/3 of the data-base).

Table 4 reports on quantitative evaluations in terms of

recognition rate for the overall test sequences. Symbolic

Table 2 Quantitative performance and speed comparisons

Method MIPF IDMOT IIDMOT

FRp 29% 18% 4%

FRl 9% 1% 1%

Speed (fps) 15 12 10

gestures like “greetings” and “introducing oneself” (user

pointing himself when saying his name) are well recog-

nized. Nevertheless confusion rates are quite hight between

some gestures fairly close to each other. One time upon

three, “pointing top right” is recognized as “greetings” us-

ing one hand, which is not the case of “pointing top left”,

users mainly waving their right hand when greeting. There is

also confusion between “pointing bottom right” and “point-

ing ahead” and vice versa, which is understandable if the

right hand is used when pointing ahead. Some other con-

fusion cases seem more difficult to explain because they re-

sults from multiple converging facts. For example, “pointing

top-left” and “bottom-left” can be performed just above or

below the horizontal plane, which can be, with an estimation

error from the tracker, very close. In these experiments, 72%

of the gestures performed were correctly classified. This rate

is comparable to the 70% obtained in Just et al. (2004) for

mono or bi-manual 3D gesture recognition but in the HCI

context. Here, the most prominent error was a failure to rec-

ognize “come to me (one hand)”, which we attribute to a

poor set of motion templates for this gesture. We also ob-

serve that bi-manual gestures are very well classified com-

pared to their mono-manual counterparts (see “greetings”

and “come to me” gestures).

Speech being the other modality we consider in our mul-

timodal interaction scenario, the following section describes

how gesture and speech are combined through a fusion

step.

http://brice.burger.pagesperso-orange.fr/these/gestes/index.html
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Table 3 Parameter values used in our IIDMOT tracker

Symbol Meaning Value

N number of particles per filter 100

α coeff. in the importance function q(x
i,n
t |x

i,n
t−1, z

i
t ) 0.4

K number of iterations in PF algorithm 4

dT H Euclidean distance between particles in PF algorithm 0.5

– image resolution 256 × 192

– color-space for skin-color segmentation CIE Lab

Np number of points along the ellipsoid contours 20

σs standard in likelihood p(z
i,s
t |xi

t ) 36

ρ penalty in likelihood p(z
i,s
t |xi

t ) 0.12

(σ1, β1) coeff. in the repulsion “weight” ϕ1 (0.12, 1.33)

(σ21, σ22, β2) coeff. in the inertia “weight” ϕ2 (1.57, 0.2, 2.0)

Λ standard deviation in random walk models

⎛

⎜

⎝

0.07 0.07 0.07

0.03 0.03 0.03

0.17 0.17 0.17

⎞

⎟

⎠

Table 4 Recognition results for our gesture recognition system (in %)

Gestures given Sensibility Gestures recognized

1 2 3 4 5 6 7 8 9 10 11 12

selectivity 72 80 100 52 63 78 64 78 63 60 100 70 87

“come to me (one hand)” (1) 36 36 0 18 0 0 0 0 18 18 0 0 9

“come to me (two hands)” (2) 72 0 72 27 0 0 0 0 0 0 0 0 0

“pointing bottom left” (3) 81 0 0 81 18 0 0 0 0 0 0 0 0

“pointing top left “ (4) 63 0 0 9 63 27 0 0 0 0 0 0 0

“greetings (two hands)” (5) 100 0 0 0 0 100 0 0 0 0 0 0 0

“greetings (one hands)” (6) 100 0 0 0 0 0 100 0 0 0 0 0 0

“introducing oneself” (7) 100 0 0 0 0 0 0 100 0 0 0 0 0

“go away” (8) 63 0 0 0 0 0 9 27 63 0 0 0 0

“pointing bottom right” (9) 54 0 0 0 18 0 0 0 0 54 0 27 0

“pointing top right” (10) 63 0 0 0 0 0 36 0 0 0 63 0 0

“pointing ahead” (11) 63 0 0 18 0 0 0 0 0 18 0 63 0

“stop” (12) 63 9 0 0 0 0 9 0 18 0 0 0 63

5 Multimodal fusion

In a natural interaction situation, a human user will read-

ily use both channels, particularly in an object manipulation

task or to emphasize part of his message. In such cases, these

modalities are highly interconnected. Building a semantic

representation of the user’s message requires merging pieces

of information extracted from the audio and video streams.

In our framework, results from the audio components are

provided by a speech recognition and interpretation step.

5.1 Embedded speech recognition and interpretation

The first aim of our work is to make an autonomous robotic

platform able to process user utterances when performed in

a natural communication situation. The autonomy issue led

us to choose an embedded solution for speech recognition

and to make it light enough in terms of computational and

memory resources, since other processes are running on the

same platform at the same time. Speech recognition in the

HRI domain can go from recognizing a small set of key-

words like in Prodanov and Drygajlo (2003b) where the

robot takes initiative by asking the user only yes/no ques-

tions, to word sequence recognition in continuous speech.

Recognition is generally performed using either a commer-

cial speech recognition software (like Hermes in Bischoff

and Graefe 2004, Maggie Gorostiza et al. 2006) or an open

source speech recognition engine (like Stiefelhagen et al.

2004; Lee et al. 2001). In the former case, a server is gener-
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ally dedicated to speech processing which is not performed

by the robotic platform itself. In the latter case, as linguis-

tic resources have to be provided, they can be designed to

either reduce the computation cost or be adapted to the envi-

ronment, for example in new acoustic conditions and inter-

action contexts. The module called RECO, which performs

speech recognition and interpretation, is shortly described in

the two following subsections.

5.1.1 Recognizing speech with RECO

Based on the Julius open source speech recognition engine

(Lee et al. 2001) RECO uses a light version of acoustic

and phonetic models in order to limit the computation cost.

These 39 monophone models (37 for phonemes and 2 for

short and long pauses) are HMM-based (3-state models with

32 Gaussians per state) and trained on 31 hours of Broad-

cast News recorded on French radios for a completely dif-

ferent task, namely Rich Transcription of French Broadcast

News in the evaluation campaign ESTER (Galliano et al.

2005). Our application field being more task-oriented, the

lexicon and the language model were specifically designed

in order to take different types of user requests into account.

These requests are ranging from simple commands to more

complex queries, leading to spatial reference resolution (for

location and object) because of their deictic or anaphoric

aspect, as shown in Table 5. A medium size lexicon (246

words/428 pronunciations) was drawn up from the French

lexical database BDLEX (Pérennou and de Calmès 2000)

and context free grammars were designed to cover the dif-

ferent types of user requests, including some language flexi-

bility. Using statistical language models like N-grams would

have required a training step and a significant corpus of writ-

ten or transcribed sentences which was not available. So,

considering our task-oriented context, word sequences were

described by sets of rules from which a set of 2334 different

well-formed sentences can be derived. After phonetic and

lexical decoding, the word sequence matching the syntac-

tic rules given by the grammars with the best score (max-

imum likelihood) is proposed as the best speech recogni-

tion hypothesis. Hypotheses with lower scores generally dif-

fer from the best one, from a phonetic, lexical or syntactic

point of view. For example, speech recognition could pro-

pose “Hello, it is me Paul” and “Hello, it is Mickael” as

two different hypotheses of a same utterance.

To evaluate these results, and later those of speech in-

terpretation, a set of 2800 utterances was recorded on

the robotic platform covering each request type. Different

speakers, including non-native ones (7 non-native among

16 French speakers) were involved in this recording task.

In these rather difficult conditions, our speech recognition

system reaches an accuracy of 84.71% which is quite good

considering first that sentences were uttered in a different

Table 5 Different types of interaction requests

Greetings/Starting interaction with the Robot

“Bonjour Jido, c’est moi Paul” (“Hi Jido it’s me Paul”)

Basic or more advanced movement requests including deictic

“Tourne à gauche” (“Turn left”)/“Viens ici” (“Come here”)

Guidance request in the Human environment

“Emmène-moi à la salle robotique” (“Take me to the robotic room”)

Interaction for object exchange

“Donne-moi cette bouteille” (“Give me this bottle”)

Agreement/Disagreement/Thanks

“Oui” (“Yes”)/“Non” (“No”)/“Merci” (“Thank you”)

context than the audio data used for training acoustic and

phonetic models and secondly that among the speakers, near

half of them were non native. Around 5% of improvements

were reached after a re-estimation step using the Baum-

Welch algorithm applied to a subset of well recognized utter-

ances (1049 utterances correctly recognized during the first

evaluation): 89% of accuracy (at word level) was obtained

on the remaining 1751 utterances.

In Austermann et al. (2010), an HRI application aimed at

making a robot understand natural commands uttered by the

robot’s user, recognition is also based on the same speech

recognition engine. Even if the underlying goal is different,

mainly focusing on learning commands, the average recog-

nition accuracy reached is between 80 and 84.5%.

5.1.2 Interpreting speech with RECO

In our experimental context, we focus on features like ac-

tions, objects, object attributes, location or robot config-

uration parameters. Extracting relevant information from

each user utterances consists in interpreting the best speech

recognition hypothesis. This is classically done by consider-

ing the word interpretations given by the semantic lexicon,

which links words and their meaning in the scope of the ap-

plication. These interpretations are then combined according

to the syntactic word phrases described by the grammars,

which in turn are combined to build the full sentence in-

terpretation. For example, a sentence like “Pick up the red

bottle” will be interpreted by combining the interpretation

of the main two parts of such basic commands: the action

to be performed and the object on which the action has to

be performed. In our semantic lexicon “Pick up” will be

describe by [action = GET_OBJECT; object = unknown],

“red” by [color = RED], “bottle by [object = [name = BOT-

TLE]]. The interpretation of the phrase “the red bottle” will

combine the interpretation of “red” and “bottle” to give [ob-

ject = [name = BOTTLE; color = RED]] which in turn will

instantiate the unknown value. The interpretation of this sen-

tence will be [action = GET_OBJECT; object = [name =

BOTTLE; color = RED]].
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Then the result is compared with interpretation models.

If one of them matches and is fully instantiated (each fea-

ture being assigned with a value), a valid and understand-

able command is generated and sent to the robot supervi-

sor in order to be executed. Deictic and anaphoric words

are defined in our semantic lexicon as related to a location

which will be given by a gesture or the user position. This

is specified by a semantic feature like [location = FROM_

GEST()] or [ref_location = GET_USER_POSITION()]. So

when a spatial reference is missing, fusion with gesture

recognition results is required. Problems related to user in-

tentions, dialog management and dialog strategies are not

taken into account in this version. To evaluate this part of

the processing, we computed the Correct Interpretation Rate

(CIR) which reached 74.05 % of utterances correctly inter-

preted (resp. 81.8%) before (resp. after) acoustic model re-

estimation. Considering only the interpretation of the utter-

ances requiring a complementary gesture, the CIR reaches

89.7%.

Once speech is recognized and interpreted by our embed-

ded module, fusion can be performed with gesture recogni-

tion results.

5.2 Speech and gesture fusion

5.2.1 Related work

Natural communication performed by humans can be only

verbal, when speech is sufficient in itself to convey a specific

message like: “Pick up the red bottle”, or can also be accom-

panied by a complementary gesture when saying for exam-

ple: “Put this down here” associated with a pointing gesture.

Even if some gestures can be significant enough regarding

the context in which they are performed, sometimes utter-

ing something will help to strengthen the gesture interpre-

tation regarding the interaction context. For instance, when

we naturally wave one hand, this means either “hello” or

“goodbye” depending on the interaction situation. In these

cases, a late fusion is operated, at a semantic level, once

relevant pieces of information have been extracted by each

component. Such a semantic fusion can be carried out in

two steps as presented in Lopez-Cozar Delgado and Araki

(2005): once events from each modality have been sepa-

rately recognized and have been “literally” interpreted (in-

terpretation at a low-level), they can be combined to perform

a contextual interpretation (interpretation at a high-level) in

order to extract the global meaning of speech and/or gesture.

This semantic fusion process can also be applied to modal-

ities characterized by different time scales. In this case, in-

terpretation must be handled within a time window in which

the temporal relationship between both modalities is con-

sidered as significant. The most advanced audio-visual fu-

sion strategy in the HRI literature is described in Stiefelha-

gen et al. (2004): the two N-best recognition (speech and

deictic mono-manual gestures) lists are merged via a hier-

archical strategy. Our fusion process follows the same ap-

proach extended to symbolic gestures performed by moving

one or both hands. Gesture recognition has been described

in Sect. 4.3.

5.2.2 Merging semantic interpretation of speech and

gesture with FUSION

As previously explained, using a hierarchical approach

means that, if speech interpretation has detected the need

of a complementary gesture, we proceed to a late fusion op-

erated at the semantic level with the gesture interpretation

results obtained within the same time window. Consider-

ing the speech interpretation IRECO of the sentence uttered

(“Put the bottle down here” and the interpretation IGEST of

the pointing gesture performed in the same time window,

the fusion result will be obtained as follows

IRECO =

⎧

⎨

⎩

action = PUT

object = [name = BOTTLE]

location = FROM_GEST()

IGEST = {location = POS(X,Y,Z)

FUSION(IGEST , IRECO) =

⎧

⎨

⎩

action = PUT

object = [name = BOTTLE]

location = POS(X,Y,Z)

We first based the fusion step on the one-best hypoth-

esis of each interpretation process, speech and mono or bi-

manual 3D gesture. But according to the interaction context,

it often occurs that when the correct sentence or the cor-

rect gesture is not the best one, it can be found among the

N-best hypotheses. To improve fusion results we propose, as

in Stiefelhagen et al. (2004), to take N-best lists into account

and compute a confidence score using the recognition score

of each considered hypothesis.

5.2.3 Computing confidence scores for multimodal fusion

robustness

Confidence scores can give precision about the reliability

of information extracted from each modality. Lists of N-

Best hypotheses can be easily produced by each recognition

process. The number of hypotheses NS for speech and NG

for gesture were respectively set to 10 and 12. These values

were empirically chosen in order to take into account only

the most useful information and limit the computation time.

For speech for example, considering more than the ten first

hypotheses will introduce some “noise” in the process, the

words being lexically too far from the words uttered.

Considering hi and gj a speech and a gesture recogni-

tion hypothesis (i ∈ [1,NS] and j ∈ [1,NG]). Each hypoth-

esis comes along with its recognition score (log likelihood)
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Table 6 Confusion matrix on fusion results (in %)

Gesture + speech utterance type 1 2 3 4 5 6 7 Others

1: “introducing oneself” + presentation 91 0 0 0 0 0 0 9

2: “greetings” (one or two hands) + hello-like 0 82 0 0 0 0 0 18

3: “stop” + stop-like 0 0 64 0 0 0 18 18

4: pointing gesture + “take this object”-like 0 0 0 91 0 0 0 9

5: “come to me” (one or two hands) + “come to me”-like 0 0 0 0 100 0 0 0

6: pointing gesture + “goto there”-like 0 0 0 0 0 100 0 0

7: “go away” + “go away”-like 0 0 9 0 0 0 91 0

logL(hi) or logL(gj ). For each hypothesis, a confidence

score is obtained as follows. A score L(hi) is computed

from the normalized log likelihood of each speech hypothe-

sis hi

L(hi) = exp

{

−
(

logL(hi )

logL
)NS

σ1

}

, (8)

with logL =
∑ logL(hi )

NS
, the mean of all the initial speech

recognition scores, σ1 a predefined standard deviation (here

0.2). For each word w appearing in the N-best hypotheses,

a word confidence score CS(w) is computed in order to

strengthen the speech hypothesis. The more often the word

appears in speech hypotheses, higher the score is. This score

is given by

CS(w) =

∑

w∈hi
L(hi)

∑

w L(hi)
. (9)

The final confidence score associated with each speech hy-

pothesis hi and given by (10) becomes

S(hi) =
L(hi)

NWi

·

∑

w∈hi

CS(w)

∑

w

CS(w)
, (10)

with NWi , the number of words in the ith hypothesis.

Confidence scores on N-best gesture recognition results

are obtained as follows. A score L(gj ) is computed from the

normalized log likelihood of each gesture hypothesis gj :

L(gi) = exp

{

−
(

logL(gj )

logL
)NG

σ2

}

, (11)

with logL =
∑ logL(gj )

NG
, the mean of all gesture recognition

scores and σ2 a predefined standard deviation (here 0.5).

Finally a fusion score is computed for each speech recog-

nition hypothesis hi , to take into account a complementary

gesture: if there is a gesture gj in the same time window that

can complement hi , a new score Lf is associated to hi using

(12) else (13) is used.

Lf (hi) = L(gj )
α · S(hi)

(1−α), (12)

Lf (hi) = LM
α · S(hi)

(1−α) (13)

where α = 1
2

Tg

Ts
is used to take into account the difference

of recognition rate (Tg and Ts respectively for gesture and

speech, obtained in off-line experiments) between the two

modalities and LM = exp{− 1
σ2

}.

In (13), that is when no gesture is needed, we act as if

there were a gesture whose score is equal to logL.

To compare these new results with those coming from

each independent interpretation obtained before any fusion

process, we compute a confusion matrix presented in Ta-

ble 6. Each type of gesture among the seven categories

identified is played ten times along with the correspond-

ing speech request. Among theses 70 multimodal requests

performed, two are misinterpreted and mixed up with an-

other multimodal request category, while 5 of them are not

interpreted as multimodal but as monomodal (column “oth-

ers” stands for “only speech been detected”). Confusion is

also very important between types 3 and 7, which can eas-

ily be explained. On one hand, the two corresponding ges-

tures are very similar, and on the other hand, each “Stop”-

like request (“stop” and other corresponding formulations

in French) being quite short, speech recognition does not

perform very well when they are uttered alone. In other ex-

periments, not described here, specific acoustic and pho-

netic models have been built for each critical French short

words (like “stop”, “yes”, “no”, . . .) which has improved

their recognition, but this was not used in the experiments

described here. Nevertheless, the fusion performed as pre-

sented in this section clearly improves the interpretation of

multimodal requests as the associated rate of correct inter-

pretation reaches 92%. Recall that the correct speech inter-

pretation alone was about 88% and the correct gesture inter-

pretation about 71%. Other evaluations (not detailed here)

have been performed in order to prove the robustness of our

system with multiple users. The experiments involved four
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different users performing 8 × 6 commands among which

one was based on speech only. Every multimodal command

succeeded, the only case of failure happened twice on the

monomodal command, see Vallée et al. (2009) for more de-

tails. To validate our multimodal interface, live experiments

have been set up on the robotic platform called Jido, previ-

ously described.

6 Robotic scenarios and associated live experiments

6.1 Scenario description

Our “human perception” modules encapsulated in the mul-

timodal interface have been tested within multiple scenarios

on our robot Jido. The goal is to raise interest and prove the

efficiency of our modules for the interaction between a hu-

man user and a robot. These scenarios involve different kind

of commands (speech only, speech with spatial references,

speech + symbolic gesture, speech + deictic gesture). Also,

the robot operates in diverse H-R situations (standing or

seated human, human and robot moving in the room, etc.)

and environments (diverse tables of different heights).

It is important to note that, if all these scenarios deal with

taking/exchanging an object as well as more or less com-

plex movements of the robot, our contribution (and what is

of interest here) focuses on the ability of the robot to un-

derstand the user by means of our interface. Actually, the

robot could not know which object to take, where to put

it or where to go, if pointing gestures were not taken into

account and combined with speech. It is also by combin-

ing vision and speech that object exchange with the user

could be handled by the robot. Finally, it is through the use

of symbolic gestures, in addition to speech, that the interac-

tion can become both more natural (we often accompany our

words with gestures, even unintentionally) and safe (their

combination enables to correct errors/uncertainties of iso-

lated channels). Another important point is that these ex-

periments always stay in the framework of peer to peer in-

teraction: the robot is not meant to deal with multiple peo-

ple in our scenario. However, the system is quite capable

of managing any interruption provoked by another person,

the tracker being previously locked on the intended user, of

course if this person does not mask the robot’s sight of the

user’s hands.

For compactness reasons, the paper focuses on the sce-

nario which is perhaps the most challenging: interaction

tasks inducing large movements of both human and robot,

tracker re-initialization, mono and bi-manual symbolic and

deictic gestures, face identification (Table 7). The two

other scenarios illustrated in Fig. 1 were otherwise tested

and prove that our approach is robust and generic enough

to work in diverse conditions. The interested reader will

find videos of these scenarios/results at http://brice.burger.

pagesperso-orange.fr/these/index.html.

Since in our scenarios we have to deal with misunder-

standing on the robot side, we refer to the human-human

communication and the way to cope with understanding fail-

ure. Being faced with such situations, a person generally re-

sumes his/her latest request in order to be understood. In our

scenario, although no real dialog management was imple-

mented yet, we wanted to give the robot the possibility to

ask the user to repeat his/her request each time one of the

planed step fails without irreversible consequences. By say-

ing: “I did not understand, please try again.” (via the speech

synthesis module named Speak see Fig. 3), the robot re-

sumes the most recent step from the beginning. The multi-

modal interface runs completely onboard.

6.2 Experiments and results

From this key scenario, several experiments were conducted

in our institute environment. The user asked Jido to fol-

low his/her instructions given by means of multimodal re-

quests by first asking Jido to come close to a given table,

take over the pointed object and give it to him/her. Figure 5

illustrates the scenario execution. For each step, the main

picture depicts the current H/R situation, while the subfig-

ure shows the tracking results of the GEST module. In this

trial, the multimodal interface succeeds to interpret multi-

modal commands and to safely manage object exchanges

with the user. The entire video is joined with the paper, but

is also available in full quality and with more illustrations at

http://brice.burger.pagesperso-orange.fr/these/index.html.

Given this scenario, quantitative performance evaluations

were also conducted. They refer to both (i) robot capacity to

execute the scenario, (ii) potential user acceptance of the on-

going interaction scenario. The less failures occur, the more

comfortable the interaction will be for the user. The associ-

ated statistics are summarized in Table 8 which synthesizes

the data collected after 14 scenario executions.

Let us comment on these results. In 14 trials of the full

scenario execution, we observe only 1 fatal failure (noted

fatal) due to a motion planning error independently from

our multimodal interface. Besides, we consider that a sce-

nario run involving more than 3 failures is potentially unac-

ceptable by the user who can be easily bored by being con-

stantly asked to re-perform his/her request. These situations

were encountered when pushing the limits of our system, for

example when the precision of pointing gestures decreases

with the angle between the head-hand line and the table. In

the same manner, short utterances are still difficult to recog-

nize especially when the environment is polluted with short

sudden noises.

This system was designed in order to address untrained

people. Even if the system is currently not fast and open

http://brice.burger.pagesperso-orange.fr/these/penalty z@ index.html
http://brice.burger.pagesperso-orange.fr/these/penalty z@ index.html
http://brice.burger.pagesperso-orange.fr/these/index.html
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Fig. 5 Snapshots of a H/R scenario based on speech and gesture data

fusion. From top left to bottom right, the user is calling the robot,

then after introducing himself and being recognized by the robot (face

recognition) he is asking the robot to come to him and take the object

he is pointing at (object recognition). The robot is asked by the user

to come to this left side to give him the object. Each frame shows the

general view of the interaction situation as well as the GEST mod-

ule results (two small images on the right or left corner). When other

modules are used, their results are shown in a third image above the

GEST results (face recognition in the third and fourth images and ob-

ject recognition in the tenth image)
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Table 7 Excerpt of an interaction scenario between a human user and Jido

# Human user command Jido action Demonstrated

modules

Comments

1. “Hello, I am here” accom-

panied with a symbolic

gesture

local motion towards the

user

RECO, GEST,

FUSION,

Motion

planning

modules

Jido is disrupting its current task, moves

and stops in front of him/her

2. “Hi Jido it’s me Brice” face recognition RECO, Face

recognition

module

The user must be beforehand identified to

be allowed to interact with Jido

3. “Come to me” with a sym-

bolic gesture

local motion according

to the user location

GEST, RECO,

FUSION,

Motion

planning

modules

The command execution requires the 3D

location of the user

4. “Stop” with a symbolic

gesture

stop of the robot GEST, RECO,

FUSION

This command is performed while the

robot is moving

5. “Take this object” with a

pointing gesture

grasping of the pointed

object

GEST, RECO,

FUSION,

Motion

planning

and Object

recognition

modules

The robot searches for an object the user

points to, then picks it up if present

6. “Go to my left” local motion according

to the user location

GEST, RECO,

FUSION,

Motion

planning

modules

The command execution requires the 3D

location of the user

7. “Give the object to me” giving the object in the

user’s hand

GEST, RECO,

FUSION,

Motion

planning

modules

The command execution requires no ges-

ture recognition but “only” the hand track-

ing in order to put the object in the user’s

hand

8. “Go away” with a sym-

bolic gesture

local motion to go away

from the user

GEST, RECO,

FUSION,

Motion

planning

modules

Table 8 Modules failure rates during scenario trials

# “RECO” “GEST” “FUSION” Others Comments

1. 0 1 0 0

2. 0 0 0 1 Face recognition face recognition

3. 1 3 1 0 the distance to the robot makes this gesture hard to track

4. 3 2 2 0 computing time sometimes too long when the robot is moving

5. 0 0 0 2 Object detection the bottle is not always seen

6. 0 0 0 0 the left is not always really on the left. . .

7. 0 0 0 2 Motion planning (1 fatal) hand too far, localization failure

8. 2 4 1 0

enough for a use with real native users in its current state

(see the video), the remaining step is only a matter of opti-

mization. Actually, as described in Sect. 5.1, our pho-nemes

were not trained on data recorded in our experimental con-

text but just re-estimated using a small set of speech utter-

ances recorded through the robotic platform These speech
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sequences were uttered for half by non native French speak-

ers. Speakers were not aware of how the system works and

did not receive guidelines on what to say and how. We also

based our grammar on natural speech, as varied as possi-

ble, in order to enable a relatively large freedom in the com-

mands given to the robot.

On the other hand, as described in Sect. 4.3, our gestures

have also been learned without strong constraints on their

shape or speed, which allowed people to perform them in a

natural way. This diversity in the learning data set creates a

real freedom in how to make a gesture in front of the robot,

the downside being a greater similarity between gestures and

thus a lower recognition rate than with highly codified ges-

tures.

Apart from these limitations, the multimodal interface is

shown to be robust enough to allow continuous operations

for the long term experimentations that are intended to be

performed.

7 Conclusion

This article described a multimodal interface for natural in-

teraction between human users and a mobile robot. The first

contribution concerns a bank of distributed particle filters for

the simultaneous tracking of two-handed gestures and head

tracking in 3D. Our IIDMOT is claimed to solve data as-

sociation and “coalescence” problems, as well as automatic

filter (re)-initialization, when the targeted limbs are in close

proximity, become occluded or transiently exit the camera

field of view. These situations usually occur when perform-

ing natural gestures with or without the dominant hand (or

with both hands) in front of a mobile platform. Finally, the

strategy is shown to be person independent, less time con-

suming (compared to Human-Machine Communication sys-

tems) while our hybrid data fusion principle (based on both

appearance and 3D cues) is shown to improve the tracker

versatility and robustness to clutter.

The second contribution concerns gesture and speech

probabilistic fusion at the semantic level. We use an open

source speech recognition engine (Julius) for speaker inde-

pendent recognition of continuous speech. Speech interpre-

tation is done on the basis of the N-best speech recognition

results and a confidence score is associated with each hy-

pothesis. By this way, we strengthen the reliability of our

speech recognition and interpretation processes. Results on

pre-recorded data illustrated the high level of robustness and

usability of our interface. Clearly, it is worthwhile to aug-

ment the gesture recognizer with a speech-based interface as

the robustness reached by cue proper fusion is much higher

than for single cues.

Finally, the third contribution concerns robotic exper-

iments which illustrated a high level of robustness and

usability of our interface. While this is only a key sce-

nario designed to test our interface, we think that the lat-

ter opens an increasing number of interaction possibilities.

To our knowledge, few mature robotic systems benefit from

such advanced embedded multimodal interaction capabili-

ties.

Several directions are currently studied regarding this

multimodal interface. First, our tracking modality will be

made much more active. Zooming will be used to actively

adapt the focal length with respect to the H/R distance and

the current robot status. A second envisaged extension is, in

the vein of Richarz et al. (2006), Stiefelhagen et al. (2004),

to incorporate the head orientation as additional features in

the gesture characterization as it is a common fact that peo-

ple generally look at the target they are pointing to. The

gesture recognition performances and the precision of the

pointing direction should be increased significantly. Further

investigations will aim to augment the gesture vocabulary

and refine the fusion process, between speech and gesture.

The major computational bottleneck will become the gesture

recognition process.

Acknowledgements The work described in this paper was partially

conducted within the EU Project CommRob (“Advanced Robot behav-

ior and high-level multimodal communication”—www.commrob.eu)

under contract FP6-IST-045441 and the French ANR project

AMORCES.

References

Alami, R., Chatila, R., Fleury, S., & Ingrand, F. (1998). An architecture

for autonomy. The International Journal of Robotics Research,

17(4), 315–337.

Arras, K., & Burgard, W. (Eds.), Robots in exhibitions, Lausanne,

Switzerland, October 2002.

Austermann, A., Yamada, S., Funakoshi, K., & Nakano, M. (2010).

Learning naturally spoken commands for a robot. In Interspeech,

Makuhari, Japan, September 2010.

Axenbeck, T., Bennewitz, M., Behnke, S., & Burgard, W. (2008). Rec-

ognizing complex, parameterized gestures from monocular image

sequences. In IEEE-RAS international conference on humanoid

robots (Humanoids’08), Daejeon, South Korea, December 2008.

Azad, P., Ude, A., Asfour, T., & Dillman, R. (2007). Stereo-based

markerless human motion capture for humanoid robot systems.

In Int. conf. on robotics and automation (ICRA’07), Roma, Italy,

April 2007.

Badii, A., & Thiemert, D. (2009). The CompanionAble project. In

Workshop co-located with the Europ. conf. on ambient intelli-

gence, Salzburg, Austria, November 2009.

Bar-Shalom, Y., & Jaffer, A. G. (1998). Tracking and data association.

San Diego: Academic Press.

Bennewitz, M., Faber, F., Joho, D., Schreiber, M., & Behnke, S. (2005).

Towards a humanoid museum guide robot that interacts with mul-

tiple persons. In Int. conf. on humanoid robots (HUMANOID’05)

(pp. 418–423). Tsukuba, Japan.

Bernier, O., & Collobert, D. (2001). Head and hands 3D tracking in

real-time by the EM algorithm. In Workshop of int. conf. on com-

puter vision, Vancouver, Canada.

Bischoff, R., & Graefe, V. (2004). HERMES—a versatile personal

robotic assistant. Proceedings of the IEEE, 92, 1759–1779.

http://www.commrob.eu


Auton Robot

Chen, F. S., Fu, C. M., & Huang, C. L. (2003). Hand gesture recogni-

tion using a real-time tracking method and hidden Markov mod-

els. Image and Vision Computing, 21(8), 745–758.

Corradini, A., & Gross, H. M. (2000). Camera-based gesture recog-

nition for robot control. In Int. joint conf. on neural networks

(IJCNN’00), Roma, Italy, July 2000.

Davis, F. (1971). Inside intuition-what we know about non-verbal com-

munication. New York: McGraw-Hill.

Erol, A., Bebis, G., Nicolescu, M., Boyle, R., & Twombly, X. (2007).

Vision-based hand pose estimation: a review. Computer Vision

and Image Understanding, 108, 52–73.

Fels, S., & Hinton, G. (1997). Glove-talk II: A neural network inter-

face which maps gestures to parallel format speech synthesizer

controls. IEEE Transactions on Neural Networks, 9(1), 205–212.

Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of so-

cially interactive robots. Robotics and Autonomous Systems, 42,

143–166.

Fontmarty, M., Lerasle, F., & Danès, P. (2007). Data fusion within a

modified annealed particle filter dedicated to human motion cap-

ture. In Int. conf. on intelligent robots and systems (IROS’07) (pp.

3391–3396). San Diego, USA, November 2007.

Fox, M., Ghallab, M., Infantes, G., & Long, D. (2006). Robot intro-

spection through learned hidden Markov models. Artificial Intel-

ligence, 170(2), 59–113.

Galliano, S., Geoffrois, E., Mostefa, D., Choukri, K., Bonastre, J. F.,

& Gravier, G. (2005). The ESTER phase II evaluation campaign

for the rich transcription of French broadcast news. In Inter-

speech/Eurospeech, Lisbon, Portugal, September 2005.

Gorostiza, J., Barber, R., Khamis, A., & Malfaz, M. (2006). Multi-

modal human-robot interaction framework for a personal robot.

In Int. symp. on robot and human interactive communication (RO-

MAN’06) (pp. 39–44). Hatfield, UK, September 2006.

Hanafiah, Z. M., Yamazaki, C., Nakamura, A., & Kuno, Y. (2004).

Human-robot speech interface understanding inexplicit utterances

using vision. In CHI 2004 (pp. 1321–1324). Vienna, Austria,

April 2004.

Harte, E., & Jarvis, R. (2007). Multimodal human-robot interaction in

an assistive technology context. In Australian conf. on robotics

and automation, Brisbane, Australia, December 2007.

Hasanuzzaman, M., Ampornaramveth, V., Zhang, T., Bhuiyan, M.,

Shirai, Y., & Ueno, H. (2004). Real-time vision-based gesture

recognition for human robot interaction. In Int. conf. on robotics

and biomimetics, Shenyang, China, August 2004.

Hasanuzzaman, M., Zhang, T., Ampornaramveth, V., & Ueno, H.

(2007). Adaptive visual gesture recognition using a knowledge-

based software platform. Robotics and Autonomous Systems,

55(8), 643–657.

Huang, Y., Huang, T., & Niemann, H. (2002). Two-handed gesture

tracking incorporating template warping with static segmentation.

In Int. conf. on automatic face and gesture recognition (FGR’02),

Washington, USA, May 2002 (pp. 275–280).

Isard, M., & Blake, A. (1998a). I-CONDENSATION: Unifying low-

level and high-level tracking in a stochastic framework. In Euro-

pean conf. on computer vision (ECCV’98) (pp. 893–908). Frei-

bourg, Germany, June 1998.

Isard, M., & Blake, A. (1998b). CONDENSATION—conditional den-

sity propagation for visual tracking. International Journal of

Computer Vision, 29(1), 5–28.

Isard, M., & Blake, A. (2001). BraMBLe: a Bayesian multiple blob

tracker. In Int. conf. on computer vision (ICCV’01) (pp. 34–41).

Vancouver, Canada.

Just, A., Marcel, S., & Bernier, O. (2004). HMM and IOHMM for the

recognition of mono and bi-manual 3D hand gestures. In British

machine vision conference (BMVC’04), London, UK, September

2004.

Lee, A., Kawahara, T., & Shikano, K. (2001). Julius—an open

source real-time large vocabulary recognition engine. In Euro-

pean conference on speech communication and technology (EU-

ROSPEECH) (pp. 1691–1694). Aalborg, Denmark, September

2001.

Lopez-Cozar Delgado, R., & Araki, M. (2005). Spoken, multilingual

and multimodal dialogues systems—development ans assessment.

New York: Wiley.

Maas, J. F., Spexard, T., Fritsch, J., Wrede, B., & Sagerer, G. (2006).

BIRON, what’s the topic? a multi-modal topic tracker for im-

proved human-robot interaction. In Int. symp. on robot and human

interactive communication (RO-MAN’06), Hatfield, UK, Septem-

ber 2006.

Moeslund, T., Hilton, A., & Kruger, V. (2006). A survey of advanced

vision-based human motion capture and analysis. Computer Vi-

sion and Image Understanding, 104, 174–192.

Murphy-Chutorian, E., & Trivedi, M. (2008). Head pose estimation

in computer vision: a survey. Transactions on Pattern Analysis

Machine Intelligence (PAMI’08).

Nickel, K., & Stiefelhagen, R. (2006). Visual recognition of pointing

gestures for human-robot interaction. Image and Vision Comput-

ing, 3(12), 1875–1884.

Park, H. S., Kim, E. Y., Jang, S., & Park, S. H. (2005). HMM-based

gesture recognition for robot control. In Iberian conf. on pattern

recognition and image analysis (IbPRIA’05), Estoril, Portugal,

June 2005.

Pérennou, G., & de Calmès, M. (2000). MHATLex: Lexical resources

for modelling the French pronunciation. In Int. conf. on language

resources and evaluations (pp. 257–264). Athens, Greece, June

2000.

Pérez, P., Vermaak, J., & Blake, A. (2004). Data fusion for visual track-

ing with particles. Proceedings of the IEEE, 92(3), 495–513.

Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2003).

Towards robotic assistants in nursing homes: challenges and re-

sults. Robotics and Autonomous Systems, 42, 271–281.

Prodanov, P., & Drygajlo, A. (2003a). Multimodal interaction manage-

ment for tour-guide robots using Bayesian networks. In Int. conf.

on intelligent robots and systems (IROS’03) (pp. 3447–3452). Las

Vegas, Canada, October 2003.

Prodanov, P., & Drygajlo, A. (2003b). Bayesian networks for spo-

ken dialogue managements in multimodal systems of tour-guide

robots. In European conf. on speech communication and technol-

ogy (EUROSPEECH’03) (pp. 1057–1060). Geneva, Switzerland.

September 2003.

Qu, W., Schonfeld, D., & Mohamed, M. (2007). Distributed Bayesian

multiple-target tracking in crowded environments using multiple

collaborative cameras. EURASIP Journal on Advances in Signal

Processing.

Rasmussen, C., & Hager, G. (2001). Probabilistic data association

methods for tracking complex visual objects. Transactions on Pat-

tern Analysis Machine Intelligence 560–576.

Richarz, J., Martin, C., Scheidig, A., & Gross, H. M. (2006). There

you go!—estimating pointing gestures in monocular images for

mobile robot instruction. In Int. symp. on robot and human in-

teractive communication (RO-MAN’06) (pp. 546–551). Hartfield,

UK, September 2006.

Rogalla, O., Ehrenmann, M., Zollner, R., Becher, R., & Dillman,

R. (2004). Using gesture and speech control for commanding a

robot. In Advances in human-robot interaction (Vol. 14). Berlin:

Springer.

Shimizu, M., Yoshizuka, T., & Miyamoto, H. (2006). A gesture recog-

nition system using stereo vision and arm model fitting. In Int.

conf. on brain-inspired information technology (BrainIT’06), Hi-

bikino, Japan, September 2006.

Siegwart, R. et al. (2003). Robox at expo 0.2: a large scale installation

of personal robots. Robotics and Autonomous Systems, 42, 203–

222.



Auton Robot

Skubic, M., Perzanowski, D., Blisard, S., Schultz, A., & Adams, W.

(2004). Spatial language for human-robot dialogs. IEEE Transac-

tions on Systems, Man, and Cybernetics, 2(34), 154–167.

Stiefelhagen, R., Fügen, C., Gieselmann, P., Holzapfel, H., Nickel,

K., & Waibel, A. (2004). Natural human-robot interaction using

speech head pose and gestures. In Int. conf. on intelligent robots

and systems (IROS’04), Sendal, Japan, October 2004.

Stückler, J., Gräve, K., Kläß, J., Muszynski, S., Schreiber, M., Tischler,

O., Waldukat, R., & Behnke, S. (2009). Dynamaid: Towards a per-

sonal robot that helps with household chores. In Robotics: science

and systems conference (RSS’09), Seattle, USA, June 2009.

Thayananthan, A., Stenger, B., Torr, P. H. S., & Cipolla, R. (2003).

Learning a kinematic prior for tree-based filtering. In British ma-

chine vision conf. (BMVC’03) (Vol. 2, pp. 589–598). Norwick,

UK, September 2003.

Theobalt, C., Bos, J., Chapman, T., & Espinosa, A. (2002). Talking

to godot: Dialogue with a mobile robot. In Int. conf. on intelligent

robots and systems (IROS’02), Lausanne, Switzerland, September

2002.

Triesch, J., & Von der Malsburg, C. (2001). A system for person-

independent hand posture recognition against complex back-

grounds. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 23(12), 1449–1453.

Vallée, M., Burger, B., Ertl, D., Lerasle, F., & Falb, J. (2009). Improv-

ing user of interfaces robots with multimodality. In Int. conf. on

advanced robotics (ICAR’09), Munich, Germany.

Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted

Cascade of Simple Features. In Int. conf. on computer vision and

pattern recognition (CVPR’01), Hawaii, December 2001.

Waldherr, S., Thrun, S., & Romero, R. (2000). A gesture-based inter-

face for human-robot interaction. Autonomous Robots, 9(2), 151–

173.

Yoshizaki, M., Kuno, Y., & Nakamura, A. (2002). Mutual assistance

between speech and vision for human-robot interface. In Int. conf.

on intelligent robots and systems (IROS’02) (pp. 1308–1313).

Lausanne, Switzerland, September 2002.

Yu, T., & Wu, Y. (2004). Collaborative tracking of multiple targets. In

Int. conf. on computer vision and pattern recognition (CVPR’04),

Washington, USA, June 2004.

Zhao, T., & Nevatia, R. (2004). Tracking multiple humans in crowded

environment. In Int. conf. on computer vision and pattern recog-

nition (CVPR’04), Washington, USA, June 2004.

B. Burger received an engineering

diploma in Industrial Risks Man-

agement from ENSIB (Bourges,

France) and a master’s degree in

Sensors, Electronic and Robotic

Systems from the University of

Versailles-Saint-Quentin (France)

in 2006. He defended his Ph.D. in

2010 at the University of Toulouse

(France).

His work, carried out at LAAS-

CNRS and IRIT labs (Toulouse,

France), was mainly about extract-

ing audio and visual data from the

robot sensors, and fuse them in or-

der to enable advanced human-robot interaction.

I. Ferrané defended her Ph.D. in

computer science in 1991 at Paul

Sabatier University where she has

been an assistant professor since

1993. Her thesis carried out at

IRIT (Computer science Institute

of Toulouse) was about lexical and

morphosyntactic databases for spo-

ken language.

Her research activities in Samova

team at IRIT focus now on high

level event detection from multime-

dia content. By exploiting and com-

bining low or mid level features this

work aims at extracting, character-

ising and even interpreting high level events. Two main fields are con-

cerned: (1) audiovisual content indexing and structuring by studying

interaction between speakers, searching for speaker roles, interaction

sequences like interview or debate in order to focus on conversational

speech as well as (2) multimodal human-robot interaction using speech

and gesture modalities.

F. Lerasle is an assistant profes-

sor at Paul Sabatier Universitysince

September 1997, and researcher at

LAAS-CNRS in vision forrobotics

in Toulouse. His PhD thesis was

on human motion capture by multi-

ocular vision at the LASMEA, grad-

uating from Blaise Pascal Univer-

sity of Clermont-Ferrand in 1997.

His current research at

LAAS-CNRS concerns vision for

robotics, more particularly: (1) de-

tection, recognition, tracking of

people, as well as interpretation

of their gestures and activities for

human-robot interaction, (2) landmark detection/recognition for metri-

cal ortopological navigation of mobile robots in indoor environments.

He is the author or co-author of a fifty scientific papers in international

conferences or journals, most of them in the field of human perception

from mobile robotics.

G. Infantes received a master’s

degree in computer science and

applied mathematics from

ENSEEIHT, Toulouse, France in

2002 and two master’s degree from

the University of Toulouse, France

in 2002 and 2003. He received

a Ph.D. from the University of

Toulouse in computer systems in

2006, and worked at LAAS/CNRS,

one of the largest computer science

laboratories in France.

His work was mainly about mod-

elling and controlling automous be-

haviors for robotic systems. He

spent a year as a research assistant at the University of Maryland’s

Institute for Advanced Computer Studies (UMIACS). G. Infantes has

worked at ONERA (France) in autonomous systems area since 2008.


	Two-handed gesture recognition and fusion with speech to command a robot
	Abstract
	Introduction
	Overview and contributions
	Related work
	Contributions

	The Jido platform and its software architecture
	Visual perception of the robot user
	Overview and related work
	3D tracking of head and hands
	Gesture recognition
	Off-line experiments

	Multimodal fusion
	Embedded speech recognition and interpretation
	Recognizing speech with RECO
	Interpreting speech with RECO

	Speech and gesture fusion
	Related work
	Merging semantic interpretation of speech and gesture with FUSION
	Computing confidence scores for multimodal fusion robustness


	Robotic scenarios and associated live experiments
	Scenario description
	Experiments and results

	Conclusion
	Acknowledgements
	References


