
Two Heads Are Better than Two Tapes

TAO JIANG

McMaster University, Hamilton, Ontario, Canada

JOEL I. SEIFERAS

University of Rochester, Rochester, New York

AND

PAUL M. B. VIT ANYI

CWI and Universiteit van Amsterdam, Amsterdam, The Netherlands

Abstract. We show that a Turing machine with two single-head one-dimensional tapes cannot
recognize the set

{x2x'lxE{O, l}* andx' isaprefixofx}

in real time, although it can do so with three tapes, two two-dimensional tapes, or one two-head tape,
or in linear time with just one tape. In particular, this settles the longstanding conjecture that a
two-head Turing machine can recognize more languages in real time if its heads are on the same

one-dimensional tape than if they are on separate one-dimensional tapes.

Categories and Subject Descriptors: E.2 [Data]: Data Storage Representations; F.1.1 [Computation
by Abstract Devices]: Models of Computation-relations among models, bounded-action devices,

automata; F.2.3 [Analysis of Algorithms and Problem Complexity]: Tradeoffs among Complexity
Measures; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
Prob1em5--j)attem matching; G.2.m [Discrete Mathematics]: Miscellaneous

General Terms: Theory

The work of T. Jiang was supported in part by NSERC Operating Grant OGP0046613. The work of
P. M. B. Vitanyi was supported in part by the European Union through NeuroCOLT ESPRIT
Working Group Number 8556, and by NWO through NFI Project ALADDIN under Contract
Number NF 62-376.

An earlier version of this report appeared in Proceedings of the 26th Annual ACM Symposium on the
Theory of Computing (Montreal, Que., Canada, May 23-25). ACM, New York, 1994, pp. 668-675.

Authors' addresses: T. Jiang, Department of Computer Science, McMaster University, Hamilton,
Ontario LBS 4Kl, Canada, e-mail: jiang@maccs.mcmaster.ca; J. I. Seiferas, Computer Science
Department, University of Rochester, Rochester, NY 14627-0226, e-mail: joel@cs.rochester.edu;
P. M. B. Vitanyi, Centre for Mathematics and Computer Science (CWI), Kruislaan 413, 1098
SJ Amsterdam, The Netherlands, e-mail: paulv@cwi.nl.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.
© 1997 ACM 0004-5411/97/0300-0237 $03.50

Journal of the ACM, Vol. 44, No. 2, March 1997, pp. 237-256.

238 T. JIANG ET AL.

Additional Key Words and Phrases: Buffer, heads vs. tapes, Kolmogorov complexity, lower bound,
multihead tape, multitape Turing machine, on-line simulation, overlap, queue, real-time simulation,

single-head tapes, two-head tape

l. Introduction

The Turing machines commonly used and studied in computer science have
separate tapes for input/output and for storage, so that we can conveniently study
both storage as a dynamic resource and the more complex storage structures
required for efficient implementation of practical algorithms [Hartmanis and
Stearns 1965]. Early researchers [Meyer et al. 1967] asked specifically whether
two-head storage is more powerful if both heads are on the same one-dimen
sional storage tape than if they are on separate one-dimensional tapes, an issue of
whether shared sequential storage is more powerful than separate sequential
storage. Our result settles the longstanding conjecture that it is.

In a broader context, there are several natural structural parameters for the
storage tapes of a Turing machine. These include the number of tapes, the
dimension of the tapes, and the number of heads on each tape. It is natural to
conjecture that a deficiency in any such parameter is significant and cannot be
fully compensated for by advantages in the others. For the most part, this has
indeed turned out to be the case, although the proofs have been disproportion
ately difficult. 1

The case of deficiency in the number of heads allowed on each tape has turned
out to be the most delicate, because it involves a surprise: A larger number of
single-head tapes can compensate for the absence of multihead tapes [Meyer et
al. 1967; Fischer et al. 1972; Leong and Seiferas 1981]. For example, four
single-head tapes suffice for general simulation of a two-head tape unit, without
any time loss at all [Leong and Seiferas 1981]. The remaining question is just
what, if anything, is the advantage of multihead tapes.

The simplest version of the question is whether a two-head tape is more
powerful than two single-head tapes. In the case of "tapes" that are multidimen

sional, Paul has shown that it is [Paul 1984]. His proof involves using the
two-head tape to write, and occasionally to retrieve parts of, algorithmically
incompressible bit patterns. Because the diameter of a multidimensional pattern
(and hence the retrieval times) can be kept much smaller than its volume, no fast
simulator would ever have time to perform any significant revision or copying of
its representation of the bit pattern. On ordinary one-dimensional tapes, how
ever, retrievals take time that is not small compared to the volume of data, and
we cannot so easily focus on a nearly static representation of the data. We need
some more subtle way to rule out all (possibly very obscure) copying methods
that a two-tape machine might employ to keep up with its mission of fast
simulation. Our argument below does finally get a handle on this elusive
"copying" issue, making use of a lemma formulated more than ten years ago with
this goal already in mind [Vitanyi 1984, Far-Out Lemma below].

1 See, for example, _Rabin [1963], Hennie [1966], Grigoriev [1977], Aanderaa [1974], Paul et al.
[1981], Paul [1982], Duris et al. [1984], Maass (1985], Li and Vitanyi [1988], Li et al. [1992], Maass et
al. [1993], and Paturi et al. [1990].

Heads vs. Tapes 239

Our specific result is that no Turing machine with just two single-head
one-dimensional storage tapes can recognize the following language in real
time:2

L = {x2x'lx E {O, 1}* andx' is a prefix ofx}.

With a two-head tape, a Turing machine can easily recognize L in real time.
Our result incidentally gives us a tight bound on the number of single-head

tapes needed to recognize the particular language L in real time, since three do
suffice [Meyer et al. 1967; Fischer et al. 1972]. Thus, L is another example of a
language with "number-of-tapes complexity" 3, rather different from the one first
given by Aanderaa [Aanderaa 1974; Paul et al. 1981]. (For the latter, even a
two-head tape, even if enhanced by instantaneous head-to-head jumps and
allowed to operate probabilistically, was not enough [Paturi et al. 1990].)

Historically, multihead tapes were introduced in Hartmanis and Stearns' •
seminal paper [Hartmanis and Stearns 1965] which outlined a linear-time2

simulation of an h-head tape, using some larger number of ordinary single-head
tapes. StoB [1970] later reduced the number of single-head tapes to just h.
Noting the existence of an easy real-time simulation in the other direction, Beevar
[1965] explicitly raised the question of real-time simulation of an h-head tape
using only single-head tapes. Meyer et al. [1967] devised the first such simulation;
and others later reduced the number of tapes [Fischer et al. 1972; Bennison 1974;
Leong and Seiferas 1981], ultimately to just 4h - 4. We are the first to show
that this number cannot always be reduced to just h, although both the extra
power of multihead tapes and the more-than-two-tape complexity of the particu
lar language L have been longstanding conjectures.3

The reader may have noticed that we use, and even mix, two apparently
separate terminologies, that of Turing machines and language recognition, on the
one hand, and that of storage structures and simulations on the other. These are
actually closely related, however, the choice being only one of emphasis.

The main components of a "Turing machine", of course, are a finite-state
controller and some sort of simple storage (usually tape) of unlimited capacity.
(We assume any input or output is through other, separate peripheral devices to
which the controller has access. In our case of on-line language recognition,2

input symbols are consumed and output verdicts are produced sequentially, so
that one-way input and output tapes would do.) When our focus is on the nature
of the storage structure, we view it separately as a sequential machine (or
"abstract storage unit") in its own right-one that responds in an on-line manner
to input commands from some finite alphabet with appropriate output responses
from some other finite alphabet. For some input commands, such as "report the
symbol scanned by the second head", the precise response is significant; but, for

2 On-line recognition requires a verdict for each input prefix before the next input symbol is read, and
real-time recognition is on-line recognition with some constant delay bound on the number of steps
between the reading of successive input symbols. Note that even a single-tape Turing machine can
recognize L on-line in cumulative linear time; but this involves an unbounded (linear-time) delay to
"rewind" after reading the symbol 2. In cumulative linear time, in fact, general on-line simulation of a
two-head one-dimensional tape is possible using just two single-head tapes [StoB 1970]; so real time is
a stronger notion of "without time loss". (There is an analogous linear-time simulation for
two-dimensional tapes [Schnitzlein and StoB 1989], but the question is open for higher dimensions.)
3 See, for example, Fischer et al. [1972], Leong and Seiferas [1981], Vitanyi [1984], and Paul [1984].

240 T. JIANG ET AL.

others, such as "shift the first head left" or "write the symbol 1 with the second
head", it amounts to a mere acknowledgment. The on-line requirement in this
setting is just that each command's response must precede the next command. If
a machine, possibly with a completely different storage structure of its own,
efficiently produces the same output behavior, then it (or even its storage
structure, if that is our emphasis) can be said to efficiently simulate the storage
structure. The strongest time-efficiency goal is real time, requiring that there be
some single bound d on the time delay between command receipt and response.

Note that several abstract storage units can be combined into one. The
composite command alphabet is a disjoint union of the individual command
alphabets. Thus, for example, a pair of ordinary one-head one-dimensional tapes
can be viewed as a single abstract storage unit that happens to have the same
command and response alphabets as a two-head one-dimensional tape unit.
(There is no command to our two-head unit to report whether the two head
positions coincide. Such a command is easy to simulate, however, so the issue is
not important.)

An abstract storage unit with sufficiently atomic commands needs only a binary
response alphabet {O, 1}. The command to "report the symbol scanned by the
second head'', for example, can be replaced by some constant number of binary
commands of the form "report whether the symbol scanned by the second head is
a". Simulation of such a storage unit amounts to what is usually called an on-line
language recognition problem (recall footnote 2), with 1 signalling "acceptance so
far" and 0 signalling "rejection so far". It follows, for example, that a pair of
single-head tapes can simulate a two-head tape in real time if and only if every
language recognized in real time by a Turing machine with a two-head tape
("two-head Turing machine", for short) can be recognized in real time by a
Turing machine with two single-head tapes ("two-tape Turing machine", for
short), an issue that we resolve negatively in this paper.

2. Tools

2.1. OVERLAP. Part of our strategy will be to find within any computation a
sufficiently long subcomputation that is sufficiently well behaved for the rest of
our analysis. The behavior we seek involves limitations on repeated access to
storage locations, which we call "overlap" [Aanderaa 1974; Paturi et al. 1990].

Our overlap lemma is purely combinatorial, and does not depend at all on the
nature of our computations or the "storage locations" corresponding to their
steps. Nor does it depend on the computational significance of the steps
designated as "distinguished." The use of computational terminology would only
obscure the lemma's formulation and proof, so we avoid it.

An Overlap event in a sequence S = f l • ... , e T (of "storage locations", in our
application) is a pair (i, j) of indices with 1 s i < j ::::; T and f; = ei rt.
{f;+1• ... , ej_ 1} (i.e., "visit and soonest revisit"). If w1(S) denotes the number
of such overlap events "straddling" t (i.e., with i s t but j $. t), then the
sequence's internal overlap, w(S), is max{ w1(S)ll ::::; t < T}. The relative internal
overlap is w(S)JT.

Here is an example: In the sequence

S = cow, pig, horse, pig, sheep, horse, pig,

Heads vs. Tapes 241

the overlap events are (2, 4), (4, 7), and (3, 6). For t from 1 up to 6, the
respective values of w1(S) are 0, 1, 2, 2, 2, and 1; so w(S) is 2, and the relative
internal overlap is 2/7.

(In our setting below, we apply these definitions to the sequence of storage
locations shifted to on the successive steps of a computation or subcomputation.

Without loss of generality, we assume that a multihead or multitape machine
shifts exactly one head on each step.)

The lemma we now formulate guarantees the existence of a contiguous
subsequence that has "small" relative internal overlap (quantified using e), but
that is itself still "long" (quantified using e'). The lemma additionally guarantees
that the subsequence can include a quite fair share of a set of "distinguished
positions" of our choice in the original sequence.

(Without the latter guarantee, the lemma is just a simple corollary (and the
essence) of any of the "overlap lemmas" formulated in the work we have
already cited [Aanderaa 1974; Paturi et al. 1990]. The "designated positions"
in our setting will be the items in the sequence that correspond to a large
"matching"-a notion we define later, especially motivated by computations
involving two heads.)

OVERLAP LEMMA. Consider any 8 < 1 and any e > 0. Every sequence S (of

length T, say) with "distinguished-position" density at least 8 has a long contiguous

subsequence, of length at least e'T for some constant e' > 0 that depends only on 8

and e, with distinguished-position density still at least 8/4, and with relative internal

overlap less than e.

PROOF. Without loss of generality, assume T is large in terms of 8 and e. It
suffices to assume T is a power of 2, and to aim for a subsequence with

distinguished-position density still at least 8/2 (better than our general goal of
8/4). (If the given sequence does not have length that is a power of 2, then we
can discard an appropriate prefix or suffix of length less than half the total
length, to obtain such a sequence with distinguished-position density still at

least 8/2, and then work with that sequence instead.) We consider only the
sequence's two halves, four quarters, eight eighths, etc. Of these, we seek
many with sufficient distinguished-position density (at least 8/2) and with
internal overlap accounted for by distinct overlap events, planning then to use
the fact that each item in S can serve as the second component of at most one
overlap event.

Within each candidate subsequence S', we can select a particular straddle
point t for which w(S') = wr(S'), and then we can designate the w(S') overlap
events within S' that straddle position t as the ones we consider counting. The
designated overlap events in S' can be shared by another interval only if that

interval includes the corresponding selected straddle point t.
We consider the candidate sequences in order of decreasing length (i.e.,

halves, then quarters, then eighths, etc.). At each partitioning level, at least
fraction 8/2 of the subsequences must have distinguished-position density at least
fJ/2. (Otherwise, we cannot possibly have the guaranteed total 8T distinguished

242 T. JIANG ET AL.

positions in the subsequences on that level, since (8/2) · 1 + (1 - 8/2) · 8/2 < 8.)

Among these, we can count distinct overlap from

r(c5/2)2l = rsl;:::: 8/2 - 1/2 halves,

r(8/2)4l- r(c5/2)2l = 12al- l8l;:::: 8 - 1/2 quarters,

r(o/2)81-1(8/2)41 = r48l - r18l;:::: 28 - 1/2 eighths,

r (o/2)161-1 (8/2)81 = r88l - r 481;:::: 48 - 1/2 sixteenths,

etc.

Unless we find one of these sequences that has relative internal overlap less than

e, this accounts, at the ith level, for at least

distinct overlap events, and hence for more than T distinct overlap events after
I (4 + 2e)/(e8) I levels. This is impossible, so we must find the desired low-overlap
sequence at one of these levels. 0

2.2. KOLMOGOROV COMPLEXITY. A key to the tractability of our arguments
(and most of the recent ones we have cited4) is the use of "incompressible data."
Input strings that involve such data tend to be the hardest and least subject to
special handling. This general approach is discussed in more detail elsewhere
[Paul et al. 1981; Li and Vitanyi 1993].

We define incompressibility in terms of Kolmogorov's robust notion of de
scriptional complexity [Kolmogorov 1965]. Informally, the Kolmogorov complex
ity K(x) of a binary string x is the length of the shortest binary program (for a
fixed reference universal machine) that prints x as its only output and then halts.
A string x is incompressible if K(x) is at least lxl, the approximate length of a
program that simply includes all of x literally. Similarly, a string x is "nearly"
incompressible if K(x) is "almost" as large as lxl.

The appropriate standard for "almost as large" above can depend on the
context, a typical choice being "K(x) ;:::: lxl - O(loglxl)". The latter implicitly
involves some constant, however, the careful choice of which might be an
additional source of confusion in our many-parameter context. A less typical but
more absolute standard such as "K(x) ;::::: lxl - vfxT" completely avoids the
introduction of yet another constant.

Similarly, the conditional Kolmogorov complexity of x with respect to y,

denoted by K(xjy), is the length of the shortest program that, with extra

information y, prints x. And a string x is incompressible or nearly incompressible
relative toy if K(xiY) is large in the appropriate sense. If, at the opposite extreme,
K(xly) is so small that lxl - K(xly) is "almost as large as" Ix!, then we say that
y codes x [Chung et al. 1985].

4 ~ee, ~or examp~e, Paul [1982; 1984], Paul et al. [1981], Duris et al. [1984], Maass [1985], Li and
V1tany1 [1988), L1 et al. [1992), Paturi et al. [1990], and Vitanyi [1984].

Heads vs. Tapes 243

There are a few well-known facts about these notions that we will use freely,
sometimes only implicitly. Proofs and elaboration, when they are not sufficiently
obvious, can be found in the literature (especially Li and Vitanyi [1993]). The
simplest is that, both absolutely and relative to any fixed string y, there are
incompressible strings of every length, and that most strings are nearly incom
pressible, by any standard. Another easy one is that significantly long substrings
of an incompressible string are themselves nearly incompressible, even relative to
the rest of the string. More striking is Kolmogorov and Levin's "symmetry of
information" [Zvonkin and Levin 1970]: K(x) - K(xJy) is very nearly equal to
K(y) - K(yJx) (up to an additive term that is logarithmic in the Kolmogorov
complexity of the binary encoding of the pair (x, y)); that is, y is always
approximately as helpful in describing x as vice versa! (Admittedly, the word
"helpful" can be misleading here-the result says nothing at all about the relative
computational complexity of generating the two strings from each other.) All
these facts can be relativized or further relativized; for example, symmetry of
information also holds in the presence of help from any fixed string z:

K(xJz) - K(xly I z) = K(yJz) - K(y/x J z).

(The meaning of "K(xly I z)" is the same as that of "K(xlw)", where w is some
standard binary encoding of the pair (y, z).)

3. Proof Strategy

For the sake of argument, suppose some two-tape Turing machine M does
recognize {x2x' Ix E {O, 1}* andx' is a prefix ofx} in real time. Once a binary
string x E { 0, 1} * has been read by M, the contents of M's tapes tend to serve
as a very redundant representation of prefixes of x, because M has had to be
prepared to retrieve them at any time. (Our problem and this observation were
motivation for Chung, Tarjan, Paul, and Reischuk's investigation of "robust
codings of strings by pairs of strings" [Chung et al. 1985]. One way around this
would be for M to keep one or the other of its tapes' heads stationed at some
stored record of a long prefix of x, as "insurance." The early real-time multitape
simulations of buffers [Meyer et al. 1967; Fischer et al. 1972; Bennison 1974] do
follow this strategy, but we show that a machine with only two tapes will not be
able to afford always to use one in this way for insurance: There will have to be
a significant subcomputation in which the heads on both tapes "keep moving,"
even "essentially monotonically"-essentially as they would for straightforward
"copying." Under these circumstances, in fact, we will be able to use part of the
computation itself, rather than the combination of the two tapes' contents, as the
very redundant representation, to contradict the following lemma, which we

prove later.

ANTI-HOLOGRAPHY LEMMA. Consider any constant C, and consider any binary

string x that is long in terms of C, and that is nearly incompressible.5 Suppose y =
YtY2 •• ·Yk (each Y; a binary string) is a "representation" with the following proper

ties:

5 We need K(x) > Blxl, for some fraction 13 that is determined by C; so certainly K(x) > \xl - Viti will

be enough if x is long.

244 T. JIANG ET AL.

The prefixes of x:

I X1/8 I

Xs/8

Xs/8

Xe/8

Xs/8

Some of the encoded prefix locations in y:

I Y1 Y2 I Y3 I Y4

X1/8 x118 here Xt/8 X1/8 x118 here X1/8 X1/8 X1/8

here here here here here here

x218 here x218 here x218 here x218 here

x4/8 here x,18 here

Xs/s here

FIG. 1. "Holography" example (k = 8).

(1) I.YI s C!xl;
(2) For each e::;; k, x's prefix ''xe;k" of length i~l!k is coded by Y;+1 · · · Y;+e for each

i::5k-.e.

(See Figure 1.) The k is bounded by some constant that depends only on C.

For (the binary representation of) a T-step subcomputation by M to serve as a
representation y that contradicts this lemma, we need the following:

(1) A nearly incompressible input prefixx of length at least IYl/C = @(TIC) was
read before the subcomputation.

(2) There is a parse of the subcomputation into a large number k of pieces so
that each Xe;k is coded in every contiguous sequence of e pieces.

(3) k is (too) large in terms of C.

We accomplish these things by finding a subcomputation that has a spatially
monotonic "matching" (a notion intended to model aspects of standard "copy
ing") that is both long and so well separated spatially that needed information on
tape contents cannot be spread over many pieces of the subcomputation.

The first step is to define and find "a large matching," and the second is to
refine it in a suitable way. In a two-tape or two-head computation or subcompu
tation, a monotonic sequence of time instants is a matching if neither head scans
the same tape square at more than one of the time instants. (So there is actually
a separate one-to-one "matching" for each head, between the time instants and

Heads vs. Tapes

previous range

......____,____
overlap:::; p

(start here)

guaranteed separation ;::: p

overlap :s; p

(end here)

FIG. 2. Range of a rightward head.

245

next range

the tape squares scanned by that head at those times.) We prove the following
lemma later on.

LARGE-MATCHING LEMMA. If a two-tape Turing machine recognizes

{x2x' Ix E {O, 1}* and x' is a prefix of x}

in real time, then its computation on an incompressible binary input of length n
includes a matching of length O(n). (The implicit constant does depend on the
machine.)

(Note that this lemma does not hold if the two heads can be on the same tape,
since the straightfoxward real-time recognizer leaves one head completely sta
tionary until the symbol 2 is reached.)

In a two-tape or two-head computation or subcomputation, a matching is
(spatially) monotonic if, for each of the two heads, the spatial order of the
corresponding sequence of tape squares being scanned at the specified time
instants is strictly left-to-right or strictly right-to-left. The minimum separation of
a monotonic matching is the least distance between successive tape squares ir

either corresponding sequence of tape squares.

MONOTONIZATION LEMMA. If a multitape or multihead computation or sub
computation has a matching of length m and internal overlap at most p, then it has
a monotonic sub matching of length at least Im{ 3p 11 and minimum separation at

least p.

PROOF. Just choose every I 3p 1-th matching-time instant, starting with the

first.
To see that this works, consider parsing the computation into I m/l 3p 11

subcomputations, each (except possibly the last) including a matching of length
at least 3p. Because the tapes are one-dimensional, each subcomputation
involves a contiguous set, or "range", of at least 3p distinct tape squares visited
by each head. Because of the overlap bound, these ranges overlap by no more
than p, and each head begins and ends each subcomputation within p of opposite

ends of its range for that subcomputation. (See Figure 2.) 0

4. Careful Argument

Now let us put together the whole argument, taking care to introduce the v~rious
"constants" in an appropriate order-M (and d), then 8, then e, and finally
e' -all before the input length n and the particular input string x o on which we
focus. Each of these values is allowed to depend on earlier ones, but not on later

ones.

246 T. JIANG ET AL.

For the sake of argument, suppose some two-tape Turing machine M does
recognize the language {x2x' Ix E {O, 1}* andx' is a prefix ofx} in real time,
say with delay bound d. Citing the Large-Matching Lemma, take 8 > 0 small
enough so that M's computation on any sufficiently long incompressible input
string x E { 0, 1} * includes a matching of length at least 2 8lx I + 2. Let e > 0 be
small in terms of d, 8, and M; and let e' be small in terms of d, 8, and e. Let n be
large in terms of all these constants, and let x0 be any incompressible string of n

bits.
Split the computation by M on input x 0 into an initial subcomputation and a

final subcomputation, each including a matching of length at least 8n. The
number of steps in each of these subcomputations will lie between Sn and dn.

Therefore, the initial one will involve a prefix of x 0 of length at least 8n/d, and
the final one will have "match density" at least (8n)/(dn) = 8/d.

Applying the Overlap Lemma to the final subcomputation above, we obtain a
subcomputation of some length T;::::: e'n, with match density at least 8/(4d) and
relative internal overlap less than e, provided e' was chosen small enough in
terms of d, 8, and e. Then applying the Monotonization Lemma, we obtain within
this subcomputation a monotonic submatching of minimum separation at least
eT, and of length 2k + 1, where 2k + 1 is either f(S/(4d))Tl3eTll or
I (8/(4d))T/13eTll - 1 (whichever is odd). If e was chosen small, then k will be
large. Note that ke is approximately equal to a constant 8/(24d) that depends
only on M.

To obtain the desired contradiction to the Anti-Holography Lemma, take y to
be a complete record of the T-step subcomputation obtained above, including
the symbols scanned and written by each head on each step. To obtain y 1 ,

Ji, ... , y k> split this record at every second one of the time instants correspond
ing to the matching of length 2k + 1, starting with the third and ending with the
third-to-last. Take x to be x0 's prefix of length LkeT/dJ. Since 8n/d exceeds this
length (by a factor of at least about 24, since T :'.5 dn), all of x was already read
during the initial subcomputation above, and hence before the beginning of the
subcomputation described by y. Note that, for some constant D that depends
only on M,

and that k is large (in fact, too large for the Anti-Holography Lemma) in terms of
the constant C = 24d2 DI 8, assuming we chose e small enough.

To see that Xe;k is coded by Yi+l · · · Y;+e (for each appropriate e and i),
suppose we interrupt M with "the command to begin retrieval" (i.e., with the
symbol 2) at the (2i + .e + 1)-st of the time instants corresponding to the
matching of length 2k + 1. (This is the middle match point in Y;+i · · · Yi+e·)
Since M must be able to check xm by reading only the information within
distance d.elxl!k :'.5 .eeT of its heads, that prefix must be coded by that
information. Since this distance in each direction is just e times the minimum
separation of the matching, and since the matching is monotonic, the same
information is available within the subcomputation record y, between the
matching's time instants 2i + .e + 1 - .e and 2i + .e + 1 + .e. Since

Heads vs. Tapes 247

Y;+ 1 • · · Y;+c runs from the matching's time instant 2i + 1 to the matching's
time instant 2i + 2f + 1, therefore, it does code the desired prefix.

5. Proof of Anti-Holography Lemma

Recall from above the statement of the lemma (and Figure 1). Without loss of
generality, assume k is equal to 2e for some integer exponent e. 6 Then the target
constant can be 2 zc- i. Again without loss of generality, assume k is at most this
target constant times two.7 Finally, without loss of generality, assume that lxl = n
is divisible by k, with x = x1 ••. xk and lx;j = n/k for every i. 8

The key idea is to obtain dramatically shortened descriptions of y in terms of
prefixes of x. Since each prefix of x is coded in many disjoint substrings of y, we
can use symmetry of information to efficiently abbreviate all those substrings in
terms of the same one prefix of x. For each j :S e, and for j = e - 1 in
particular, this approach will yield

K(ylx 1 · • · x2i):::;::; IYI - (1 + ~)n + O(log n).

Unless k is smaller than 2 zc- 1, e - 1 will be so large that this will imply that
x 1 • • • x 2,-1 codes y. Since y in turn codes all of x = x 1 • • • x 2,, this will mean that
the first half of x codes the whole string, contradicting the incompressibility
assumption for x.

By induction on j (j = O, 1, ... , e), we actually prove "more local" .bounds
that imply the ones above: For each appropriate i(i = 0, l, ... , k - 21),

·(j) n K(y;+1 · · · Y;+z.;lx1 · · · x2i) :S IY;+1 · · · Y;+2il - 21 1 + 2 k + O(log n).

Both the base case and the induction step are applications of an intuitively clear
corollary, the Further-Abbreviation Lemma below, of the symmetry of informa
tion. For the base case, we apply the lemma with y' equal to Y; +I• x' equal to the
null string, and x" equal to x 1, to get the desired bound on K(y' \x"):

K(y'\x") s K(y') - K(x") + C(log n)

n
:S iy' \ - - + ('.)(log n).

k

II nd y"' - y . • • • y j+I For the induction step, we let y = Y;+1 · · · Y;+zi a - ;+'.21+ 1 ,, ;+2 '

and apply the lemma withy' equal to y"y"', x' equal to X1 · · · XzJ, and x equal to

6 If it is not then just reduce it until it is.
7 Otherwise'. pair up y;'s to reduce k by factors of 2 until it is. . 2c- i

s If x's length is not divisible by k, then just discard at most its last 2 bits, until its length 1s

divisible by k.

248 T. JIANG ET AL.

x 2j+ 1 • • ·x/+ 1, to get the desired bound onK(y'lx'x"):

K(y' lx'x") s; K(y'lx') - K(x") + <!J(log n)

s; K(y"lx') + K(y"'lx') - K(x") + O(log n)

(j) n n
s; ll'I + IY"'I - 2 · 2i 1 + - - - 2i - + O(log n)

2 k k

(
(j + 1)) n

= ll'I + ll"I - 2i+l 1 + 2 k + O(log n). D

FURTHER-ABBREVIATION LEMMA. Assume y', x', and x" are strings of length
®(n), with

K(x"ly') = O(log n)

and

K(x"lx') = K(x") - O(log n).

(That is, y' codes x", which is nearly incompressible relative to x' .) Then

K(y'lx'x") s; K(y'lx') - K(x") + O(log n).

PROOF. Let d(ulv) denote a shortest description of u in terms of v, so that
ld(uJv)I = K(ulv). Then

K(y' lx'x") :5 K(d(y' lx')lx'x") + O(log n)

s; K(d(y'lx')lx"lx') + O(log n)

:5 K(d(y'lx')lx') - K(x"lx') + K(x"ld(y'lx')lx') + O(logn)

:5 K(y'lx') - K(x"lx') + K(x"ly') + O(log n)

::sK(y'lx') - K(x") + O(logn).

6. Proof of Large-Matching Lemma

D

Our proof of the Large-Matching Lemma is based on an earlier theorem of
Vitanyi:

FAR-OUT LEMMA. [VITANYI 1984].9 If a two-tape Turing machine recognizes

{x2x' Ix E {O, 1}* and x' is a prefix of x}

9 For a sketch of the proof, see the appendix.

Heads vs. Tapes

heads here for u

+-- close far ~

rarely

crossed
central boundary

FIG. 3. M's computation on uv.

249

heads here after uv

in real time, then its "worst-case closest head position"10 on incompressible inputs
x E {O, l}n is il(n).

!n other words, incompressible binary data is guaranteed at some point to
dnve both heads of such a machine simultaneously far from their original
positions. By the continuity of sequential access, of course, this means that the
heads actually spend long intervals of time simultaneously far from their original
positions; and this is the fact that we exploit.

We actually show that even any two-head Turing machine (with both heads on
the same one-dimensional tape) that recognizes our language and that satisfies
the conclusion of the Far-Out Lemma also satisfies the desired conclusion of the
Large-Matching Lemma. (Of course, the obvious two-head machine, that does
recognize our language in real time, does not satisfy the conclusion of either

lemma.) This simplifies the exposition, since we have only one tape to talk about.
Note that the "matching" notion does make sense even when both heads are on

the same tape.
As earlier, let us take explicit care to introduce our "constants" in an

appropriate order. Consider any two-head Turing machine M alleged to recog

nize

{x2x'lx E {O, 1}* and x' is a prefix ofx}

in real time, say with delay bound d, and that satisfies the conclusion of the
Far-Out Lemma. (Without loss of generality, assume M's tape has a left end,
where both heads start, and is unbounded to the right only.) Let c be small
enough to serve as the implicit constant in that conclusion. Let e be small in
terms of Mand c; let 8 be small in terms of M, c, and e; let n be large in terms
of M, c, e, and 8; and let x be an incompressible string of n bits. Exploiting the
conclusion of the Far-Out Lemma, parse x into three pieces, x = uvw, such that
u v leaves both heads at least en tape squares from where they started and the

length of u is Lcn/(3d)J = @(n).
Consider M's computation on uv2u. The first u must be read before either

head gets as far as even cn/3 tape squares from where it started, but the second
u must be read while neither head gets closer than 2cn/3 tape squares to where it
started. (See Figure 3.) During its subcomputation on v, therefore, it seems that
M must somehow "copy" its representation of u across the intervening cn/3 tape
squares. We show that this process has to involve a matching larger than 8n.

10 If p 1(t) denotes the net displacement of head i at time t, then the "worst-case closest head

position" is max, min; p 1(t).

250 T. JIANG ET AL.

For the sake of argument, suppose there is not a matching larger than Bn.

Then there must be a maximal matching of size only m ::;; 8n. We will select
some correspondingly small "interface" through which a description of u must
pass. That interface will involve some rarely crossed boundary at distance
between cn/3 and 2cn/3 from the heads' starting position, and some other
rarely crossed boundaries that tightly isolate the 2m tape squares involved in
the maximal matching. (Think of the latter tape squares as "shortcut termi
nals" through which we can "ship" information about u without a head
carrying it. Maximality will ensure that there is always at least one head on
one of these terminals.) Since there are 2cn/3 - cn/3 candidates for the
former, we can select one that is crossed only a constant number of times
(bounded in terms of d and c). We will refer to the tape squares on the left
side of this selected central boundary, where the heads were when u was read,
as close; and we will refer to the tape squares on the right side as far. (See
Figure 3 again.) By the following purely combinatorial lemma, we can tightly
isolate the 2m matched tape squares with at most 4m additional boundaries,
each of which is crossed only a constant number of times (bounded in terms
of d, c, and our "tightness criterion" e).

TIGHT-ISOLATION LEMMA. Consider a finite sequence S of nonnegative num

bers, the first and last of which are 0. Let some of the separating "commas" be

specially designated-call them "semicolons". For each threshold e 2:: 0, let Se be the

subsequence (not necessarily contiguous) consisting of the items11 that are reachable

from the semicolons via items that exceed e (and that themselves exceed e). Then,

for each e > 0, there is some e such that e!Sel < e }:S, where LS denotes the sum

of the entire sequence S and e is bounded by some constant that depends only on e.

PROOF. Let T = LS, and let k = 2f 2/e l. Since 2T/k ::;; eT/2 < eT, let us
aim for e!Sel ::;; 2T/k. If no e in {ki I 0 ::;; i ::;; k} were to work, then we would
have

for every i. But this would lead to the contradiction

k

T > 2: ki(!Skil - ISki+il)
i=O

T
= (k + 1) -

k"
0

11 Note that the number of such items can be small even if the number of semicolons is large. For e
large enough, in fact, !Se! will be 0.

Heads vs. Tapes 251

In our application, the numbers are the lengths of the crossing sequences

associated with the boundaries between tape squares, their sum is at most dn,

and the semicolons are the matched tape squares. We obtain our desired

"isolation neighborhoods" from the at-most-2m contiguous neighborhoods that

comprise Se 12 by adding one item at each end of each neighborhood. (This might

cause neighborhoods to combine.) This adds at most 4m items to Se and results

in nonempty isolation neighborhoods whose boundary items are at most C.

Actually, the picture is clearer if we select our central boundary after we select

the isolation neighborhoods. Assuming e and 8 are chosen appropriately small,

this lets us select a boundary not included in or adjacent to any of the isolation

neighborhoods. (There are at most ISel + 4m::::; edn + 4on :::;; ch/6 boundaries

(half the original number of candidates) to avoid.)

Finally, we use our suggested interface to give a description of u in terms of v

that is too short-say shorter than Jul/2 = cn/(6d). (We could substitute a

description this short for u in x to contradict the incompressibility of x.) We

claim we can reconstruct u from M, v, the length of u, and the following

information about the subcomputation of M while reading the v part of input u v:

(1) The sequence of all 0(m) selected boundary locations.

(2) The sequence of all O(m) crossings of these selected boundaries, and their

times (implicitly or explicitly including the corresponding input positions).

(3) The following information for each close-to-far crossing:

-M's control state and head positions.

-The full content of every isolation neighborhood.

(4) The following information for each crossing out of an isolation neighbor

hood:

-The full content of that isolation neighborhood.

-The full content of the isolation neighborhood in which the other head

remains-provided that there has been a new crossing into that neigh

borhood since the previous time such information was given for it.

To determine u, it suffices to reconstruct enough of M's configuration after its

computation on input u v so that we can check which additional input string 2u'

of length 1 + iu I leads to acceptance. The far tape contents suffice for this.

Our reconstruction strategy is mostly to simulate M step by step, starting with

the first close-to-far crossing. During step-by-step simulation, we maintain the

contents of any currently scanned close isolation neighborhood and of the entire

far side. We temporarily suspend step-by-step simulation whenever a head shifts

onto a close tape square not in any isolation neighborhood (at which time the

other head must lie within some isolation neighborhood). We aim to resume

suspended step-by-step simulation whenever a head shifts onto a far tape square

not in any isolation neighborhood. Between a suspension and the desired

resumption, the far tape contents are not scanned and do not change, except in

the (at most) one scanned isolation neighborhood. Therefore, since the desired

resumption is inaugurated by either a close-to-far crossing or a crossing out of

12 To include all the semicolons, some of these "contiguous neighborhoods" might have to be the

empty neighborhoods of the semicolons.

252 T. JIANG ET AL.

that one isolation neighborhood, it follows that all the prerequisite information
for resumption is indeed available at resumption time. Finally, since both heads
are on the far side when the computation on u v ends, our step-by-step simulation
is active at that point, and we do obtain the desired far tape contents.

It remains only to show that lul/2 bits suffice for our description of u in terms
of v. For each of the sequences in (1) and (2), the trick is to give only the first
number explicitly, and then to give the sequence of successive differences. The
length of this encoding is O(m log(n/m)) = <!J(n log(l/8)/(118)), which can be
limited to a small fraction of lul/2 = cn/(6d) by choosing 8 small enough. For
(4), note that that the contents of each isolation neighborhood is given at most
once for each of the (at most) .e crossings into and out of the neighborhood. For
(3) and (4), therefore, straightforward encoding requires only O(log n + C(m +
IS<:I)) = O(log n + C8n + edn) bits, where the implicit constant is bounded in
terms of d and c. This can be limited to another small fraction of I u I! 2 by
choosing e small enough, 8 small enough, and n large enough. For the remaining
information, M, lu I, and a description of this whole discussion, we need only
O(log n) bits, which can be limited to a final small fraction of I u I! 2 by choosing n

large enough. D

7. Further Discussion and Remaining Questions

In retrospect, our contribution has been a constraint on how a Turing machine
with only two storage heads can recognize L in real time. Even if the two heads
are on the same one-dimensional tape, such a Turing machine cannot recognize
L in real time unless it violates the conclusion of (the first sublemma of)
Vitanyi's Far-Out Lemma (see Appendix A). Only in the latter do we ever really
exploit an assumption that the two heads are on separate tapes.

Our result rules out general real-time simulation of a two-head tape unit using
only a pair of single-head tapes. It remains to be investigated whether the result
extends to some notion of probabilistic real-time simulation (cf., Paturi et al.
[1990]). Another extension might rule out simulation using three single-head
tapes, yielding a tight result; but this would require a more difficult witness
language. Perhaps allowing the "back" head of the defining two-head machine
also to move and store random data, but much more slowly than the "front"
head, would let us combine our arguments with those of Aanderaa [Aanderaa
1974; Paul et al. 1981; Paul 1982]. A slightly weaker possibility might be to show
that two single-head tapes and a pushdown store do not suffice, and a slightly
stronger one might be to show that even three single-head tapes and a pushdown
store do not suffice.

It might be even more difficult to rule out general real-time simulation of a
two-head one-dimensional tape unit using two or three higher-dimensional
single-head tapes. Our particular language L can be recognized in real time by a
Turing machine with just two such two-dimensional tapes-the idea is to strive to
maintain the n bits of data within an O(Vn) radius on both tapes, along with
O(Vn) strategically placed copies of the first O(Vn) bits, to serve as insurance
alternatives at the same time that the array of their left ends provides a
convenient area for temporary collection of data and for copying data between
the tapes.

Heads vs. Tapes 253

The implications for real-time simulation of one-dimensional tape units with

more than two heads remain to be investigated. For example, how does a

three-head tape compare with three single-head tapes or with one single-head

tape and one two-head tape? (Paul's results [Paul 1984] do answer such

questions for tapes of higher dimension.) How tight is the known bound of 4h -

4 single-head tapes for real-time simulation of one h-head (one-dimensional)

tape [Leong and Seiferas 1981]? Perhaps the many-heads setting is the right one

for a first proof that even an extra head is not enough to compensate for the loss

of sharing; for example, can a 1000-head tape be simulated in real time by 1001
single-head tapes, or by 1000 single-head tapes and a pushdown store?

Finally, does any of this lead to more general insight into the heads or tapes

requirements for arbitrary computational tasks? That is, when asked about some

computational task, can we tightly estimate the structure of the sequential
storage that suffices for the task?

Appendix A. A Proof Sketch for Vitanyi's Far-Out Lemma

Suppose two-tape Turing machine M recognizes the language in real time.

Without loss of generality, assume M's storage tape is only semi-infinite, and
assume M writes only O's and l's. Let d be the delay of M.

Our ultimate goal is to show that both heads simultaneously range linearly far
when the input is incompressible, but first we show that each one separately does

so even when the input is just nearly incompressible. (The subsequent application

is to significantly long prefixes of input strings that are not compressible at all.) It

is only this part of the proof that requires the hypothesis that the two heads are

on separate tapes. Like the proof of our Large-Matching Lemma above, this part

is based on the "bottleneck" argument that Valiev [1970/1973] (and, indepen

dently, Meyer (1971]) used to show that no single-tape Turing machine can

accept the simpler language { x2.x I x E { 0, 1} * } in real time.

Suppose e is small in terms of M and d, n is large in terms of all of the

preceding, and x is of length n and nearly incompressible (K(x) ;;:;: n - Vn).
We want to show that each head ranges farther than en.

Suppose the head on one of the tapes, say the first, does not range farther than
en. Then the head on the second tape must certainly range farther than, say, n/3.

(Otherwise, the total state after storage of x is a too-short description of x.) Let
u vw be the parse of x with u v the shortest prefix of x that leaves M's second

head at least n/3 tape squares out, and with lul = n/(9d), so that that same head
gets no farther than n/9 tape squares out during input of u. On that head's tape,

there must be a "bottleneck" boundary between n/9 and 2n/9 tape squares out

that gets crossed at most 9d times (cf. Figure 3). Since all of u gets read when

the second head is to the left of this bottleneck, it is possible to describe x =

uvw in terms of vw and the bottleneck's "crossing sequence," which should

include, for each crossing, the step number and the "crossing state," which in

turn should include the complete but relatively small contents of the first storage

tape at the time of the crossing. The following information suffices:

(1) vw,

(2) a description of this discussion,

(3) a description of M,

254 T. JIANG ET AL.

(4) the value of n,

(5) the location of the bottleneck,

(6) the crossing sequence at the bottleneck.

If we provide vw as a literal suffix, then we can limit the length of this

description to little more than n - lu I bits, contradicting the near incompress

ibility of x. To recover u, we can use the information to determine enough of M's
instantaneous description after reading u v (omitting from the instantaneous

description only what is to the left of the bottleneck on the second tape) to then

try each input continuation 2u' with lu' I = n/(9d).
Finally, we return to our ultimate goal. Here is the idea: If the heads do not

both go far out together, then they must take turns, so that some region gets

crossed many times; abbreviate the symbols read while a head is in that region.

Suppose e is small in terms of M and d (as above), e2 is small in terms of the

preceding parameters (in particular, e2 << e), e1 is small in terms of the now

preceding parameters (in particular, e1 << e2), n is large in terms of all of the

above, and x is of length n and incompressible. We want to show that both heads

range farther than e1n, simultaneously.
Suppose, to the contrary, that there is always at least one head within e1n tape

squares of the origin. We count the crossings of the region from e1n to e2n: It
follows from our assumptions that a left-to-right crossing must occur between

input symbol number (d/e)i(e2n/e) and input symbol number (d/e)i+ 1(e2n/e),

for every i. (We use the fact that these input prefixes are themselves nearly

incompressible.) By input symbol number n, therefore, the number of complete

crossings (either direction) is at least r = 2 logd1ie/e2) (which is large because
e2 is so small).

There is a complication, however: There might also be partial crossings,

involving fewer input symbols but additional overhead in the description we plan

to give. To control this problem, we shrink the region slightly, replacing e1 and e2

with eJ. and e2 from the first and last quarters, respectively, of the range [e1, e2],

chosen so that each of the boundaries eJ.n and e2n is crossed at most R = 8d/e2

times. This is possible, since R(e2 - e1)n/4 exceeds dn.

Finally, then, we formulate a description of the incompressible input that
differs from the completely literal one as follows: We eliminate the input read

while a head is in the range between eJ.n and e2n, for a savings of at least r(e2 -
el.)n/d :z: r(e2 - e1)n/(2d) bits. We add descriptions of the crossing sequences

at these two boundaries, including times, states, and the tape contents out to

boundary e1n (the second term below), and also the full final contents of the tape

squares between the two boundaries (the first term below), for a total cost of

(
8d(log n + e1n))

O((e2 - el)n + R(Iog n + e1n)) = 0 (e2 - E1)n + e
2

= O((e2 - e1)n)

bits, which can be kept significantly smaller than the savings. D

ACKNOWLEDGMENTS. The authors thank Wolfgang Maass for discussions that

contributed to an early version of the Anti-Holography Lemma in 1985. The

authors also thank Ming Li for other valuable discussions, and for first bringing

Heads vs. Tapes 255

the problem addressed here to the attention of T. Jiang. Thanks are also due to
Zvi Galil, Ken Regan, and the anonymous referee for helpful comments on the
manuscript.

REFERENCES

AANDERAA, S. 0. 1974. 1974. On k-tape versus (k - 1)-tape real time computation. In Complexity

of Computation (SIAM-AMS Proceedings 7) R. M. Karp. ed. American Mathematical Society,

Providence, R. I., pp. 75-96.

BECVAR, J. 1965. Real-time and complexity problems in automata theory. Kybemtika 1, 6, 475-

497.

BENNISON, V. L. 1974. Saving tapes in the simulation of multihead Turing machines. SIGACT
News 6, 2 (Apr.), 23-26.

CHUNG, F. R. K., TARJAN, R. E., PAUL, w. J., AND REISCHUK, R. 1985. Coding strings by pairs of

strings. SIAM J. Disc. Math. 6, 3 (July), 445-461.

DURIS, P., GALIL, Z., PAUL, W. J., AND REISCHUK, R. 1984. Two nonlinear lower bounds for

on-line computations. Inf Cont. 60, 1-3 (Jan.-Mar.), 1-11.

FISCHER, P. c., MEYER, A. R., AND ROSENBERG, A. L. 1972. Real-time simulation of multihead

tape units. J. ACM 19, 4 (Oct.), 590-607.

GRIGORIEV, D. Yu. 1977. Imbedding theorems for Turing machines of different dimensions and

Kolmogorov's algorithms. Sov. Math. 18, 3 (May-June), 588-592.

HARTMANIS, J., AND STEARNS, R. E. 1965. On the computational complexity of algorithms. Trans.

Am. Math. Soc. 117, 5 (May}, 285-306.

RENNIE, F. C. 1966. On-line Turing machine computations. IEEE Trans. Elect. Comput. EC-15, 1

(Feb.), 35-44.

KoLMOGOROV, A. N. 1965. Three approaches to the quantitative definition of information. Prob.

Inf Transm. l, 1 (Jan.-Mar.), 1-7.

LEONG, B. L., AND SEIFERAS, J. I. 1981. New real-time simulations of multihead tape units. J. ACM

28, 1 (Jan.), 166-180.

LI, M., LoNGPRE, L., AND VITANYI, P. M. B. 1992. The power of the queue. SIAM J. Comput. 21, 4

(Aug.), 697-712.

LI, M., AND VrTANYI, P. M. B. 1988. Tape versus queue and stacks: The lower bounds. Inf

Comput. 78, 1 (July), 56-85.

LI, M., AND VITANYI, P. M. B. 1993. An Introduction to Kolmogorov Complexity and Its Applica

tions. Springer-Verlag, New York.

MAAss, W. 1985. Combinatorial lower bound arguments for deterministic and nondeterministic

Turing machines. Trans. Am. Math. Soc. 292, 2 (Dec.), 675-693.

MAASS, w., SCHNITGER, G., SZEMEREDI, E., AND TuRA.N, G. 1993. Two tapes versus one for

off-line Turing machines. Comput. Complex. 3, 4, 392-401.

MEYER, A. R. 1971. An optimal time bound for a one tape on-line Turing machine computation.

Unpublished manuscript. (Earlier version cited in MEYER ET AL. 1967.)

MEYER, A. R., ROSENBERG, A. L., AND FISCHER, P. c. 1967. Turing machines with several

read-write heads, preliminary report. In IEEE Conference Record of 1967 8th Annual Symposium on
Switching and Automata Theory. IEEE Computer Society, Long Beach, Calif., pp. 117-127.

PATURI, R., SEIFERAS, J. I., SIMON, J., AND NEWMAN-WOLFE, R. E. 1990. Milking the Aanderaa

argument. Inf Comput. 88, 1 (Sept.), 88-104.

PAUL, W. J. 1982. On-line simulation of k + 1 tapes by k tapes requires nonlinear time. Inf Cont.

53, 1-2 (Apr.-May}, 1-8.

PAUL, W. J. 1984. On heads versus tapes. Theoret. Comput. Sci. 28, 1-2 (Jan.), 1-12.

PAUL, w. J., SEIFERAS, J. I., AND SIMON, J. 1981. An information-theoretic approach to time

bounds for on-line computation. J. Comput. Syst. Sci. 23, 2 (Oct.), 108-126.

RABIN, M. 0. 1963. Real time computation. Is. J. Math. 1, 4 (Dec.), 203-211.

SCHNITZLEIN, W., AND SToB, H.-J. 1989. Linear-time simulation of multihead Turing machines.

Inf Comput. 81, 3 (June}, 353-363.
STOB, H.-J. 1970. k-Band-Simulation von k-Kopf-Turing-Maschinen. Computing 6, 3, 309-317 (in

German).

VALIEV, K. 1970/1973. Certain estimates of the time of computation on Turing machines with an

input. Cybernetics 6, 6 (June 1973), 734-741 (translated from Russian, published in Kibemetika 6, 6

(Nov.-Dec. 1970), 26-32).

256 T. JIANG ET AL.

VITANYI, P. M. B. 1984. On two-tape real-time computation and queues. J. Comput. Syst. Sci. 29, 3
(Dec.), 303-311.

ZVONKIN, A. K., AND LEVIN, L. A. 1970. The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms. Russ. Math.

Surv. 25, 6 (Nov.-Dec.), 83-124.

RECEIVED SEPTEMBER 1995; REVISED FEBRUARY 1997; ACCEPTED NOVEMBER 1996

Journal of the ACM, Vol. 44, No. 2, March 1997.

