
Two Improved Differential Evolution Schemes for Faster 
Global Search

Swagatam Das 
  Electronics & Telecom Eng Dept. 

 Jadavpur University 
Kolkata 700032, India 
+(91) (33) 2528-2717 

swagatamdas19@yahoo.co.in 

Amit Konar 
 Electronics & Telecom Eng Dept. 

Jadavpur University 
Kolkata 700032, India 
+(91) (33) 2416-2697 
babu25@hotmail.com 

Uday K. Chakraborty 
 Math & Computer Science Dept. 

University of Missouri 
St. Louis, MO 63121, USA 

 +1 (314) 516-6339 
uday@cs.umsl.edu 

 
ABSTRACT 
Differential evolution (DE) is well known as a simple and 
efficient scheme for global optimization over continuous spaces. 
In this paper we present two new, improved variants of DE.    
Performance comparisons of the two proposed methods are 
provided against (a) the original DE, (b) the canonical particle 
swarm optimization (PSO), and (c) two PSO-variants. The new 
DE-variants are shown to be statistically significantly better on a 
seven-function test bed for the following performance measures:  
solution quality, time to find the solution, frequency of finding the 
solution, and scalability. 

Categories and Subject Descriptors 
 I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search -- Heuristic methods; G.1.6 [Numerical 
Analysis]: Optimization -- Global optimization; G.3 [Probability 
and Statistics] --- Probabilistic algorithms 

General Terms 
Algorithms  

Keywords 
 Differential evolution, particle swarm optimization, evolutionary 
computation 

1. INTRODUCTION 
Differential evolution (DE) [10] seeks to replace the classical 
crossover and mutation schemes of the genetic algorithm (GA) by 
alternative differential operators. The DE algorithm has recently 
become quite popular in the machine intelligence and cybernetics 
community, and has, in many cases, been shown to be better than 
the GA or particle swarm optimization (PSO).  
 
 However, DE does suffer from the problem of premature 
convergence to local optima. Also, like most other stochastic 
optimization techniques DE is not free from the so-called “curse 
of dimensionality”.   In the present paper we propose two 
modifications to Storn and Price’s DE (“scheme DE1”) [10].  
First, we introduce the concept of time-varying scale factor by 
which the difference vector is to be multiplied. Second, the scale 
factor is made to vary in a random way. The primary 
consideration behind these modifications is to try to avoid (or 

slow down) premature convergence in the early stages of the 
search and to facilitate convergence to the global optimum 
solution during the later stages of the search. Empirical 
simulations with well-known benchmarks show the usefulness of 
these modifications.  
 
The remainder of this paper is organized as follows. In Section 2 
we provide a brief outline of differential evolution.  Section 3 
introduces the two modifications to the basic scheme. 
Experimental settings for the benchmarks and the simulation 
strategies are explained in Section 4.   Results are presented in 
Section 5, before concluding in Section 6. 

2. THE CLASSICAL DE 
DE searches for a global optimum point in an N-dimensional 
hyperspace. It begins with a randomly initialized population of N-
dimensional real-valued parameter vectors. Each vector forms a 
candidate solution to the multi-dimensional optimization problem. 
Unlike the conventional GA, the reproduction phase in DE is 
implemented as follows. For each individual vector Gk

D belonging 
to generation D, randomly sample three other individuals Gi

D, Gj
D 

and Gm
D from the same generation (for distinct i, j, k and m), 

calculate the difference of the components of Gi
D and Gj

d , scale it 
by a scalar R (є [0, 1]) and create a trial vector by adding the 
result to the chromosomes of Gk

D. For the n-th component of each 
parameter vector 

Gk ,n
D+1 = Gm ,n

D  + R.(Gi, n
D – Gj, n

D)   if randn (0, 1) < CR  
                                                                                                  (1) 
             = Gk, n

D,                                  otherwise.                       
                                                                                                                          

where CR (є [0, 1]) is the crossover constant. Parameters R and 
CR govern the convergence speed and robustness of DE. The 
algorithm is outlined below: 

Procedure Differential-evolution 

Begin 

    Initialize population; 

    Evaluate fitness; 

   While termination condition not satisfied 

       For j = 0 to population-size do 

               Create Difference-Offspring; 

               Evaluate fitness; 

               If an offspring is better than its parent  

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’05, June 25-29, 2005, Washington, DC, USA. 
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00. 
 

991



              Then replace the parent by offspring in the next   
generation; 

              End If 

         End For 

    End While 

End. 

3.  PROPOSED IMPROVEMENTS 
Generally in population-based search and optimization methods, 
considerably high diversity is necessary during the early part of 
the search to utilize the full range of the search space. On the 
other hand during the latter part of the search, when the algorithm 
is converging to the optimal solution, fine-tuning is important to 
find the global optimum efficiently. Considering these issues, we 
propose two new strategies to improve the performance of the DE. 

3.1 DE with Random Scale Factor (DERSF)  
In the original DE [10] the difference vector (Gi - Gj) is scaled by 
a constant factor ‘R’. The usual choice for this control parameter 
is a number between 0.4 and 1. We propose to vary this scale 
factor in a random manner in the range (0.5, 1) by using the 
relation 
      R = 0.5*(1+ rand (0, 1))                                                      (2) 
where rand (0, 1) is a uniformly distributed random number 
within the range [0, 1]. 
 The mean value of the scale factor is 0.75. This allows for 
stochastic variations in the amplification of the difference vector 
and thus helps retain population diversity as the search progresses. 
Even when the tips of most of the population vectors point to 
locations clustered near a local optimum due to the randomly 
scaled difference vector, a new trial vector has fair chances of 
pointing at an even better location on the multimodal functional 
surface. Therefore the fitness of the best vector in a population is 
much less likely to get stagnant until a truly global optimum is 
reached.   

3.2 DE with Time Varying Scale Factor 
(DETVSF)  
In most population-based optimization methods (except perhaps 
some hybrid global-local methods) it is generally believed to be a 
good idea to encourage the individuals (here, the tips of the trial 
vectors) to sample diverse zones of the search space during the 
early stages of the search. During the later stages it is important to 
adjust the movements of trial solutions finely so that they can 
explore the interior of a relatively small space in which the 
suspected global optimum lies. To meet this objective we reduce 
the value of the scale factor linearly with time from a 
(predetermined) maximum to a (predetermined) minimum value:  
   R = ( Rmax – Rmin) * (MAXIT–iter) / MAXIT                           (3) 
where Rmax and Rmin are the maximum and minimum values of 
scale factor F, iter is the current iteration number and MAXIT is 
the maximum number of allowable iterations. The locus of the tip 
of the best vector in the population under this scheme may be 
illustrated as in Fig. 1. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 1. Illustrating the concept of time-varying scale factor 
in a 2-D parameter space. 

4.  EXPERIMENTAL SETTINGS  
4.1 Benchmarks  
We have used seven well-known benchmarks (Table 1) [12] to 
evaluate the performance of the new variants of the DE. In Table 
1, n represents the number of dimensions (we used n = 5 to 30, in 
steps of 5). Here the proposed algorithms have been tested against 
(a) the original DE, (b) the canonical PSO, and (c) two other 
versions of PSO. The first two test functions are unimodal, having 
only one minimum. The others are multimodal, with a 
considerable number of local minima in the region of interest. All 
benchmark functions except f7 have the global minimum at or  
very close to the origin [9], [12]. For Shekel’s foxholes (f7), the 
global minimum is at (-31.95, -31.95) and f7 (-31.95, -31.95) ≈ 
0.998. 

Table 1. Benchmark functions for simulation 
  Function           Mathematical Representation 

Sphere 
function ∑

=
=

n

i
ixxf

1

2
1 )(  

Rosenbrock 
function ])1()(100[)( 222

1

1
12 −+−=∑

−

=
+ ii

n

i
i xxxxf  

Rastrigin 
function ]10)2cos(10[)(

1

2
3 +−= ∑

=
i

n

i
i xxxf π  

Griewank 
function ∏∑

==

+−=
n

i

i
n

i
i

i
x

xxf
11

2
4 1)cos(

4000
1)(  

Ackley 
Function ex

n
x

n
xf

n

i
i

n

i
i ++−−−= ∑∑

==

20)2cos1exp()1(2.0exp(20)(
11

2
5 π  

Schaffer’s 
f6 function 

222

222

6 ))(001.00.1(
5.0)(sin

5.0)(
yx

yx
xf

++
−+

+=  

Shekel’s 
Foxholes 
function 

1
25

1
2

1

6
7 ]

)(

1
500

1[)( −

=

=

∑
∑ −+

+=
j

i
iji axj

xf
 

 

992



4.2 PSO Methods Compared  
In PSO [5], a population of particles is initialized with random 
positions Xi and velocities Vi, and a function, f, is evaluated, using 
the particle’s positional coordinates as input values. In an n-
dimensional search space, Xi = (xi1, xi2, xi3,...,xin) and Vi = (vi1, vi2, 
vi3,...,vin).   Positions and velocities are adjusted, and the function 
is evaluated with the new coordinates at each time-step.  The basic 
update equations for the d-th dimension of the i-th particle in PSO 
may be given as 

Vid (t+1) = ω.Vid (t) + C1. φ1. (Plid -Xid (t)) + C2. φ2. (Pgd-X id(t))                   
                                                                                                               (4)                        
Xid (t+1) = Xid (t) + Vid (t+1) 
 

The variables φ1 and φ2 are random positive numbers, drawn from 
a uniform distribution and defined by an upper limit φmax which is 
a parameter of the system. C1 and C2 are called acceleration 
constants whereas ω is called inertia weight. Pli is the local best 
solution found so far by the i-th particle, while Pg represents the 
positional coordinates of the fittest particle found so far in the 
entire community.  

PSO-TVIW.  Shi and Eberhart [9] improved the performance of 
the PSO method by using a linearly varying inertia weight (ω) 
over iterations from a predefined maximum to a minimum value. 
They empirically observed that the performance could be 
improved by varying ω from 0.9 at the beginning of the search to 
0.4 at the end of the search for most problems. We use these 
values while implementing this scheme. We call this version PSO-
TVIW (PSO with Time Varying Inertia Weight).  

PSO-RANDIW.  Eberhart and Shi [3] proposed a random inertia 
weight for tracking dynamic systems. However, when the random 
inertia weight factor is used, the acceleration coefficients are kept 
constant at 1.494. In the rest of this paper this method is referred 
to as PSO-RANDIW. 

4.3 Population Initialization  
Since most of the test functions used in this paper have their 
global minimum at or near the origin of the search space, we use 
the asymmetric initialization method proposed by Angeline [1]. 

 Under this scheme the population is initialized only in a certain 
portion of the search space. The most common dynamic ranges 
used in the literature are used in this paper and each dimension is 
confined to the same dynamic range [3], [2].  Table 2 shows the 
range of initialization and the range of search for each function. 

Table 2. Initialization and range of search for test functions   
Function Range of search Range of Initialization 

f1 (-100, 100)n (50, 100)n 

f2 (-100, 100)n (15, 30)n 

f3 (-10, 10)n (2.56, 5.12)n 

f4 (-600, 600)n (300, 600)n 

f5 (-32, 32)n (15, 32)n 

f6 (-100, 100)2 (15, 30)2 

f7 (-65.536, 65.536)2 (0, 65.536)2 

 

4.4 Simulation Strategy 
Simulations were carried out to obtain a comparative performance 
analysis of the proposed methods with respect to: (a) canonical 
PSO (b) PSO-TVIW (c) PSO-RANDIW and (d) classical DE. 
Thus a total of six algorithms were considered – two new, the 
other four existing in the literature. All benchmarks except 
Schaffer’s f6 and Shekel’s Foxholes were tested with dimensions 
5 through 30 (in steps of 5).  Schaffer and Shekel are two 
dimensional. Fifty independent runs of each of the six algorithms 
were executed, and the average and the standard deviation of the 
best-of-run values were recorded. Different maximum generations 
(Gmax) were used according to the complexity of the problem. For 
all benchmarks (excluding Schaffer’s f6 and Shekel’s f7) the 
stopping criterion was set as reaching a fitness of 0.001. For 
Schaffer’s f6, the widely used error limit of 0.00001 [6], [11] was 
used.  For Shekel’s Foxholes the criterion was 0.998.  

In the case of DE and its new extensions, we chose CR = 0.9. For 
the original DE, scale factor R = 0.8 was used. After some trial 
runs we found that varying the scale factor linearly from 1.2 to 0.4 
gave good results for DE-TVSF. For PSO and its variants it is 
quite common to limit the value of each component of the 
velocity vector of each particle (Vid) to the maximum allowable 
value. Through empirical studies on numerical benchmarks, 
Eberhart and Shi [4] suggested that it is good to limit the 
maximum velocity Vmax  to the upper limit of the dynamic range 
of search, i.e., Xmax. Therefore we too use this limit in this 
investigation. 

4.5 Population Size  
It is common practice in DE research to use a population size ten 
times the dimensionality of the search space. DE maintains a 
constant population size across generations because each 
population member is either replaced by a trial vector (if the trial 
solution is fitter than the original one) or left unaltered at each 
generation. However, it is quite common in the PSO literature to 
limit the number of particles to limit the number of particles to the 
range 20 to 60 [4], [7] and [8]. Van den Bergh and Engelbrecht 
[11] have shown that though there is a slight improvement of the 
optimal value with increasing swarm size, a larger swarm 
increases the number of function evaluations to converge to an 
error limit.  Eberhart and Shi [4] showed that the population size 
has hardly any effect on the performance of the PSO method. In 
this paper empirical experiments for all the six algorithms have 
been carried out with the same population sizes (100, 200, and 
300).   

5. RESULTS 
The following performance measures are used for our 
comparative study: (a) quality of the final solution (b) speed of 
convergence towards the optimal solution, (c) success rate 
(frequency of hitting the optimum), and (d) scalability of the 
algorithms against the growth of problem dimensions. Table 3 
compares the algorithms on the quality of the optimum solution. 
The mean and the standard deviation (within parentheses) of the 
best-of-run values for 50 independent runs of each of the six 
algorithms are presented in Table 3.  Missing values of standard 
deviation in this table indicate a zero standard deviation. The best 
solution in each case has been shown in bold. Table 4 shows 
results of unpaired t-tests between the better of the two new 
algorithms and the best of the other four in each case (standard 
error of difference of the two means, 95% confidence interval of 

993



this difference, the t value, and the two-tailed P value).  For all 
cases in Table 4, sample size = 50 and degrees of freedom = 98. It 
is interesting to see from Tables 3 and 4 that in a majority of cases  
one of the two proposed methods meets or beats the nearest 
competitor in a statistically meaningful way.  Table 3 shows that 
in two cases the proposed methods’ means are numerically larger 
(i.e., worse) than the mean of the competitor, but as Table 4 
shows, one of these two differences is not statistically significant. 
Table 5 shows, for the same set of runs as used in Tables 3 and 4, 
the number of runs (out of 50) that managed to find the optimum 

solution (within the given tolerance) and also the average number 
of generations (in parentheses) needed to find that solution. In 
Figure 2 we have graphically presented the rate of convergence of 
all the methods for all the functions (in 30 dimensions).  Figure 3 
shows the scalability of the six methods on the first five test 
functions -- how the average time to convergence varies with an 
increase in the dimensionality of the search space.  These results 
show that the proposed methods lead to significant improvements 
in most cases. 

 
Table 3. Average and the standard deviation of the best-of-run solution for 50 runs 

                                              Average 
                        (Standard Deviation) 

 

       
F 

 

Dim 
 

 

      
Gmax 

Canonical    
PSO 

PSO-
TVIW 

PSO-
RANDIW     DE DE-

TVSF 
DE-

RANDSF 

10 1000 0.001 0.001 0.001 0.001 0.001 0.001 

20 2000 0.001 0.001 0.001 0.001 0.001 0.001 

 

 

f1 
 30 4500 0.001 0.001 0.001 0.001 0.001 0.001 

10 3000 23.535 

(32.312) 

20.25 

(26.187) 

3.254 

(41.032) 

2.051 

(2.048) 

0.0543 

(0.0117) 

0.0049 

(0.0121) 

20 4000 54.21 

(35.221) 

32.33 

(16.309) 

5.322 

(11.132) 

1.089 

(9.675) 

0.0654 

(0.453) 

0.0913 

(0.554) 

 

 

 

f2 

30 5000 78.90 

(44.786) 

60.561 

(27.523) 

12.122 

(25.434) 

0.834 

(10.285) 

0.486 

(2.278) 

    0.427 

(1.582) 

10 3000 3.334 

(2.218) 

2.084 

(1.443) 

4.78 

(2.493) 

0.025 

(0.0109) 

0.06 

(0.0045) 

0.0018 

(0.0067) 

20 4000 18.997 

(6.489) 

11.36 

(4.128) 

29.371 

(8.313) 

0.5367 

(0.0361) 

0.0021 

(0.0231) 

0.0013 

(0.033) 

 

 

 

f3 

30 5000 10.457 

(12.801) 

24.536 

(3.757) 

8.435 

(2.169) 

0.043 

(0.0914) 

0.0026 

(0.112) 

0.0058 

(0.277) 

10 2500 0.1003 

(0.077) 

0.072 

(0.041) 

0.0081 

(0.037) 

0.052 

(0.03) 

0.021 

(0.0187) 

0.024 

(0.180) 

20 3500 0.043 

(0.0332) 

0.02612 

(0.0334) 

0.0311 

(0.017) 

0.025 

(0.0033) 

0.0012 

(0.031) 

0.016 

(0.0223) 

 

 

 

f4 

30 5000 0.0198 

(0.166) 

0.0186 

(0.023) 

0.0148 

(0.029) 

0.019 

(0.0035) 

0.0026 

(0.0035) 

0.0019 

(0.0022) 

10 2000 0.341 

(3.435) 

0.538 

(0.9812) 

0.143 

(0.669) 

0.0346 

(0.0446) 

0.0015 

(0.0154) 

0.0127 

(0.0454) 

20 3500 0.457 

(2.934) 

0.624 

(1.658) 

0.677 

(0.5241) 

0.057 

(0.0075) 

0.0543 

(0.0082) 

0.008 

(0.0618) 

 

 

f5 
 

 

 
30 5000 1.454 

(0.224) 

1.002 

(0.5351) 

0.0659 

(0.768) 

0.731 

(0.0572) 

0.0445 

(0.069) 

0.0011 

(0.088) 

f6 2 1000 0.0045 

(0.2322) 

0.0042 

(0.015) 

0.0013 

(0.0018) 

0.00006 

(0.0011) 

0.00045 

(0.016) 

0.00013 

(0.01225) 

f7 2 1000 1.551 

(2.645) 

1.934 

(1.432) 

1.772 

(2.327) 

1.002 
(0.0854) 

1.221 

(0.0421) 

0.998 

(0.000) 

 

 

994



 

 
 
 
 
 
 
 

(a) Sphere Function (f1)                                                                                (b) Rosenbrock Function (f2) 
                                                     
              
                  
 
 
 
 
 
 
 
 
 
 
 
  (c) Griewank Function (f3)                                                                       (d) Rastrigin Function (f4) 
                                                                                                  
                                                                                                                       
 
 
 
 
 
 
 
 
 
 
 
 
(e) Ackley Function (f5)                                                                            (f) Schaffer’s f6 Function (f6) 
 
                                                                                                   
 
 
 
 
 
 
 
 
 
 
  
 
                                                              
                                                              (g) Shekel’s Foxholes Function (f7)                                                        
                                                                  

Figure 2. Progress to the optimum solution (all plots are for dimension = 30, except f6 and f7 which are 2D) 

995



 

(a)     Sphere Function (f1)                                                                                                                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Rosenbrock Function ((f2) 
 
 
 
 
 
 
 
 
 
 
 
(c) Griewank Function (f3)  
 
 
 
 
 
 
 
 

 
 
(e) Ackley Function (f5)  
Figure 3. Variation of mean convergence time with increase in 

dimensionality of the search space.  
 
 

Table 4. Results of unpaired t-tests on the data of Table 3 
Fn, 
Dim 

Std. 
Err 

t 95% Conf. Intvl Two-
tailed P 

Significance 

f2, 10 0.290 7.0644 (-2.621, -1.471) < 0.0001 Extremely 
significant 

f2, 20 1.370 0.7473 (-3.742, 1.695) 0.4567 Not significant 

f2, 30 1.472 0.2766 (-3.327, 2.513) 0.7827 Not significant 

  f3, 10 0.002 12.822 (-0.027, -0.020) < 0.0001 Extremely 
Significant 

f3, 20 0.007 77.404 (-0.549, -0.522) < 0.0001 Extremely 
Significant 

f3, 30 0.020 1.9761 (-0.081, 
0.00018) 

 0.051 Not quite 
significant 

f4, 10 0.006 2.2003 (-0.025, -0.001) 0.0301  Significant 

f4, 20 0.004 5.3983 (-0.033, -0.015) < 0.0001 Extremely 
significant 

f4, 30 0.004 3.1364 (-0.021, -0.005)  0.0023 Very significant 

f5, 10 0.007 4.9604 (-0.046, -0.020) < 0.0001 Extremely 
significant 

f5, 20 0.009 5.5657 (-0.066, -0.032) < 0.0001 Extremely 
significant 

f5, 30 0.109 0.5927 (-0.282, 0.152)  0.5547 Not significant 

f6, 2 0.002 0.0402 (-0.004, 0.003) 0.968 Not significant 

f7, 2 0.012 0.3312 (-0.028,  0.020) 0.7412 Not significant 

 
 
 
 
 
 

 
(d) Rastrigin Function (f4) 

 

996



Table 5. Number of runs (out of 50) that converged to optimality  
and the corresponding mean number of generations 

 

No. of runs that converged to optimality  
(Average number of generations) 

 

 
Fn 

 

Dim 
 

 

     
Gmax 

Canonical    
PSO PSO-TVIW PSO-

RANDIW     DE DE-TVSF DE-
RANDSF 

10 1000 50 

(678.4) 

50 

(520.9) 

50 

(197.4) 

50 

(189.7) 

50 

(248.3) 

50 

(167.4) 

20 2000 50 

(2213.8) 

50 

(1453.67) 

50 

(776.5) 

50 

(743.7) 

50 

(589.3) 

50 

(1124.7) 

 

 

f1 

   

30 3000 50 

(2133.5) 

50 

(2500.4) 

50 

(1852.5) 

50 

(2335.8) 

50 

(1500.6) 

50 

(1966.4) 

10 3000 0 0 16 

(2300.5) 

18 

(2257.5) 

22 

(2026.5) 

35 

(2889.6) 

20 4000 0 0 2 

(3431) 

7 

(4323.6) 

16 

(4067.3) 

10 

(6213.7) 

 

 

 

f2 

30 5000 0 0 0 0 7 

(4604.3) 

14 

(4989.4) 

10 3000 2 

(3190.5) 

2 

(3089) 

7 

(2566) 

14 

(3435.6) 

46 

(2298.2) 

48 

(1675.3) 

20 4000 0 0 

 

0 5 

(5647.9) 

40 

(4655.8) 

44 

(3984.7) 

 

 

 

    
f3 

30 5000 0 0 0 3 

(6004.2) 

42 

(5087.6) 

38 

(4751.4) 

10 2500 0 10 

(2457.8) 

32 

(2446.5) 

19 

(2079.9) 

12 

(2066.5) 

10 

(2196.5) 

20 3500 10 

(3386) 

16 

(3351) 

19 

(3409.7) 

12 

(3485.7) 

25 

(3449) 

23 

(2632) 

 

 

 

    
f4 

30 5000 26 

(4357.5) 

35 

(4231.6) 

12 

(4254.8) 

22 

(3256.6) 

40 

(3043.2) 

46 

(4582.5) 

10 2000 12 

(1114.6) 

10 

(1974.3) 

30 

(1429.4) 

43 

(1999.4) 

45 

(1231.5) 

42 

(1209.6) 

20 3500 3 

(3482.4) 

4 

(3184.5) 

10 

(2897.4) 

24 

(3461.9) 

33 

(3100.8) 

38 

(3446.6) 

 

 

f5 

 

 

 
30 5000 0 0 19 

(4438) 

30 

(4871.4) 

43 

(4970) 

46 

(4981.4) 

      
f6 

2 1000 19 

(625.4) 

12          

(386.5) 

19 

(463.6) 

48 

(344.8) 

46 

(521.5) 

43 

(503.1) 

f7 2 1000 24 

(549.5) 

20 

(892) 

23 

(783.3) 

45 

(657.8) 

46 

(556.4) 

50 

(643.1) 

 

 
 
 
 
 
 
 

997



6. CONCLUSION 
Two new variants of DE have been presented, based on the 
mechanism of controlling the scale factor. The new schemes have 
been shown to improve performance in a statistically meaningful 
way. The new DE-variants have been compared against (a) the 
basic DE, (b) the PSO, and (c) two PSO-variants using a seven-
function test suite. The following performance metrics have been 
used: (a) solution quality, (b) speed of convergence, (c) frequency 
of hitting the optimum, and (d) scalability. The proposed variants 
have been shown to meet or beat the competitor in most cases.    

7. ACKNOWLEDGMENTS 
Partial support of UGC-sponsored projects on i) AI and Expert 
Systems and ii) Excellence Program in Cognitive Science is 
acknowledged. We are thankful to four anonymous referees for 
their valuable comments. 

8. REFERENCES 
[1] Angeline, P. J. Evolutionary optimization versus particle    

swarm optimization: Philosophy and the performance 
difference, Lecture Notes in Computer Science (vol. 1447), 
Proceedings of 7th International Conference on. Evolutionary 
Programming –    Evolutionary Programming VII (1998) 84-
89. 

[2] Blackwell, T. A., Bentley, P. Improvised music with swarms,  
In Proceedings of IEEE Congress on Evolutionary 
Computation 2002, vol. 2, Honolulu, HI, (2002) 1462-1467. 

[3] Eberhart, R. C., Shi, Y. Particle swarm optimization: 
Developments, applications and resources, In Proceedings of 
IEEE International Conference on Evolutionary 
Computation, vol. 1, (2001) 81-86. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

[4] Eberhart, R. C., Shi, Y. Comparing inertia weights and       
constriction factors in particle swarm optimization, 
Proceedings of IEEE International Congress on 
Evolutionary Computation, vol. 1, (2000) 84-88. 

[5] Kennedy, J., Eberhart, R. Particle swarm optimization, In 
Proceedings of   IEEE International Conference on Neural 
Networks, (1995) 1942-1948. 

[6] Kennedy, J. Stereotyping: Improving particle swarm 
performance with cluster analysis, Proc. IEEE Int. Conf. 
Evolutionary Computation, vol. 2, (2000) 303-308. 

[7] Shi, Y., Eberhart, R. C.  Comparison between genetic      
algorithm and particle swarm optimization, Lecture Notes in 
Computer Science -- Evolutionary Programming VII, vol. 
1447, (1998) 611-616. 

[8] Shi, Y., Eberhart, R. C. Parameter selection in particle         
swarm optimization, Lecture Notes in Computer Science   
Evolutionary Programming VII, vol. 1447, (1998) 591-600. 

[9] Shi, Y., Eberhart, R. C. Empirical study of particle swarm 
optimization. In Proceedings of IEEE International 
Conference on Evolutionary Computation, vol 3, (1999) 101-
106. 

[10] Storn, R., Price, K. Differential evolution – A simple and   
efficient heuristic for global optimization over continuous 
spaces, Journal of Global Optimization, 11(4) (1997) 341–
359. 

[11]   van den Bergh, F., Engelbrecht, P. A. Effects of swarm size 
on cooperative particle swarm optimizers, In Proceedings of 
GECCO-2001, San Francisco, CA, (2001) 892-899. 

[12] Yao, X., Liu, Y., Lin, G. Evolutionary programming made 
faster, IEEE Transactions on Evolutionary Computation, vol 
3, No 2, (1999) 82-102. 

 
 
 
 
 

998


