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ABSTRACT

We consider several classes of interfering queues that appear in packet-radio

networks. We analyse the class of systems where one of the queues is given full

priority and obtain an expression for the joint probability distribution of the queue

lengths. For ALOHA-type systems with two symmetric queues we calculate the average

packet waiting time and queue lengths and for symmetric systems with an arbitrary

number of subscribers we develop a method to approximate these quantities. The

approximation turns out to be close to the analysis and simulation results.
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1. Introduction

The present study was motivated by the problem of investigating the behavior

of random-multiple-access systems and of packet-radio networks. These systems are

characterized by the fact that a number of radio stations exchange digital informa-

tion by using a distributed random access algorithm on a common radio channel. In

such situations, whenever a given station attempts transmission of a packet to

another station, the attempt may be unsuccessful, in which case the packet must be

retransmitted. In addition to channel noise, unsuccessful transmissions occur

because of interference from another station trying to send a packet over the

common channel at the same time or by the fact that the intended receiver is itself

in transmission mode, in which case it is not able to detect incoming packets. The

fact that the activity at one node affects the behavior of the queue at other nearby

stations gives rise to statistical dependence between the queues at the nodes.

Unfortunately, in generalthe queue length statistical dependence is quite

complicated and there is little hope to obtain explicit analytical results for general

topology networks. The purpose of this paper is to present several analytic as well

as approximation results for certain classes of interfering queues. We assume

throughout the paper that all packets have equal length and that the time is divided

in slots corresponding to the transmission time of a packet. A station may start

packet transmissions only at the beginning of a slot and the distances between stations

are assumed to be such that propagation delay is negligible. Also, we neglect channel

noise and assume no channel errors.

Because of the difficulty in the analysis of dependent queues of the type

introduced above, even the case of two queues cannot be treated analytically in the

general case. However, we consider here two classes of systems with two dependent

queues where such results can be obtained. The first is the case when the length of

one of the two queues is not allowed to decrease, unless the other queue is empty. A

two node ALOHA system where one of the nodes is given full priority is an example for
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such a situation; other examples are given in Sec. 2. No other restrictions are

necessary in order to allow for analytical solution of this class; in particular,

the inputs may have arbitrary distributions and need not be independent processes.

For this class of problems we present a general method for deriving the generating

functions of the queue lengths and of the average delay times. Then these general

results are applied to three special cases of packet-radio networks that can be shown

to belong to the considered class of systems.

The second class of problems for which we can obtain explicit analytical

results is the case of a two node symmetric ALOHA system. For this situation we

cannot obtain the queue length probability distribution (or generating function),

but we give a method for calculating the average queue length and hence the average

time delay. The results are given in Sec. 3.

Since, as said before, explicit analytical results are hard to obtain for more

general situations, another way to approach the problem is to obtain good approxima-

tions. An approximation method applicable to a symmetric ALOHA-type system with

arbitrary number of stations is introduced in Sec. 4. We obtain there the approximate

average queueing delay in such systems and compare this with the exact result for two

node networks and with simulation results for larger networks.

Discrete time systems involving interfering queues have been rarely treated in

the literature. In [2] a loop system using Asynchronous Time-Division Multiplexing

has been analysed. In this system user i may use a slot for transmission only if

all users 1,2,...,i-1 have nothing to transmit. In [3], the author investigates

the case of two queues in tandem where each queue always attempts transmission

provided it has a message in the buffer. Both systems considered in [2] (for two

users) and 131 are cases that belong to the first general class of systems considered

in the present paper. In [4] another system of two interfering queues is considered,

whereby only one event (i.e. an arrival or departure) may occur during a given slot.
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This system has been shown to have the product form solution. Finally, we may

mention [5] and [6], where a slotted ALOHA network with finite number of users has

been examined and a method was suggested for obtaining an approximate solution for

this system.
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2. Analytical Results

In this section we consider a class of discrete-time queueing systems consisting

of two queues with the following properties : packets arrive randomly at the queues

from two sources, that in general may be correlated. Let Al(t) and A2(t) be the

number of packets entering node 1 and node 2 from their corresponding sources in

the time interval (t, t+l]. The input process [(A (t), A2(t)] is assumed to be a

sequence of independent identically distributed random vectors with integer-valued

elements. Let
Co co

a(i,j) = Prob(Al(t)=i,A2(t)=j) ; a(i,j) = 1 . (1)
i=0 j=o

and

F(x,y) = E[xAl(t)yA2(t)] = a(i,j)xiy i (2)

i=o j=O

We assume that F(x,y) cannot be x-independent, namely that packets arrive at the

first queue with nonzero probability and that the queues have infinite buffers.

Next, we describe the departure processes. It is assumed that no more than

one packet may leave each queue in any given time slot and the combined departure

process is taken to be as follows : When both queues are empty, no departures may

occur (packets arriving during a given slot may depart only in the next one). When

only one of the queues is nonempty, a departure from that queue may occur and the

packet may be transferred either to the outside of the system or to the other queue.

0 1
We denote by POl0 PO1 the respective probabilities when the nonempty queue is queue

0 1
2 and by p10, p1 0 the corresponding probabilities when the nonempty queue is queue 1.

0 1
Clearly 1 - O01 - P01 is the probability that no departure occurs from the nonempty

queue 2. The specific class of dependent queues considered in this section is

characterized by an assumption on departures when both queues are nonempty. For this

case it is assumed that a departure may occur only from queue 2. We denote by Pll,

P1 the probabilities that the departing packet leaves the system or joins the other

queue (queue 1) respectively.
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Consider the steady-state joint generating function of the queue lengths :

G(x,y) = lim E t) L2y (3)

where Ll(t), L2(t) are the queue lengths at time t at nodes 1 and 2 respectively,

and where we assume that the Markov chain [Ll(t), L2(t)] is ergodic, namely

G(O,O)>O. For the class under consideration we can compute the function G(x,y) and

in the Appendix it is shown that G(x,y) has the following form :

G(xy) = F(xy) * b(x,y)G(x,O) + c(x,y)G(O,y) + d(x,y)G(O,O) (4)
x.e(x,y)

where the functions b(x,y), c(x,y), d(x,y), e(x,y), G(y,O), G(O,y) and the constant

G(O,O) are defined in the Appendix.

This general form can be made more explicit for certain special cases. We

next consider several examples of two node packet networks, where it turns out that

the general assumptions, given earlier, characterizing the class of two dependent

queues indeed hold. The networks under consideration are given in Fig. 1. In all

cases the nodes share a common radio channel and are equipped with radio transmitter

devices and in systems 2 and 3, node 2 has also a receiving device. Node 2 can either

transmit or receive, but not simultaneously. The circle in Fig. 1 represents a station

equipped with a radio receiver that receives packets correctly provided that there is

no interference. Finally, instantaneous feedback to the transmitter is assumed,

meaning that a transmitter knows at the end of the slot if the packet has been received

correctly.

In all three systems of Fig. 1 node 2 is assumed to have full access capability

to the common channel. This means that it always transmit a packet when its buffer is

not empty, while if its buffer is empty the node does not transmit and in systems 2

and 3 it is able to receive packets transmitted by node 1. Node 1 has only partial

access capability to the channel and its transmission policy is randomized as follows :
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At the beginning of each slot for which its own buffer is nonempty, node 1

tosses a coin with probability of success p, independently of any other event

in the system and in case of success the node attempts to transmit the packet at

the head of the queue. Both nodes are able to detect at the end of the slot if

their transmissions were successful. At any node, if the transmission is not

successful, either because the packet was sent to the other node while that node was

not ready to receive it, or because of interference with a packet transmitted by the

other node, the transmitter repeats the procedure described above.

Since node 2 has full access capability to the channel and node 2 cannot

receive and transmit packets at the same time, it is clear that in all cases no

packets can leave node 1 whenever the queue at node 2 is nonempty and therefore all

cases of Fig. 1 belong to the class of queues considered earlier in this section.

We now turn to calculate the parameters {p Oi ,j,k<l, i+j>O} in each of
i,

these three systems. System 1 depicted in Fig. l(a) represents a two node non-

symmetric ALOHA network, where both nodes send their packets to the station. Since

1 1 1
no packets are sent from one node to the other we have P1O = Poi = Pll = O. When

one of the nodes has packets to transmit while the other is empty, any attempted

transmission is successful. Since node 2 transmits with probability 1 and node 1

0 0
with probability p, we have p1 0

= p; p = 1. When both nodes have nonempty

queues, successful transmission occurs at node 2 whenever node 1 does not attempt

10
transmission and therefore Pll = p. System 2, depicted in Fig. l(b) represents a

situation of two tandem nodes where the station that is the "sink" for the packets

transmitted by node 2, is out of the transmission range of node 1. Therefore node 1

cannot interfere with the transmissions of node 2. However node 2 does interfere

with the transmissions of node 1 since when it is transmitting, it does not accept

1 0 0
packets transmitted by node 1. Consequently p10 = p; PO1 = P11 = 1;

0 1 1
Plo = Pol= = Pll = O. System 3, depicted in Fig. l(c) differs from system 2 only in

that the station is in the transmission range of node 1, therefore node 1 does
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interfere with the transmissions of node 2 in this case, and therefore the parameters

i O 0 - 0 1 1
are Plo = p; P01 = 1; Pll = p; P10 = PO1 = pl = 0.

Numerical Results

Although the results of this section hold for general input processes, the

equations become much simpler when one considers independent Bernoulli processes.

In this case we have

F(x,y) = (xr1 + rl)(Yr2 + r2) (5)

where r1, r2 are the input rates. For this example we calculate for each of the

three systems the average delays (in units of slots) T1, T2 at nodes 1 and 2

respectively and the total average delay T in the network. This is done by first

calculating the average queue lengths at the nodes and then applying Little's Theorem

[7]. After straightforward but tedious algebra the following results are obtained :

System 1 (Fig. l(a))

(P) 2 +r 2 rlr2PP
T 1 + + (6)

+ 2
P(P-r 2)-rl (p-r 2 ) [P(P-r2) -rp]

rlP
T 1 + 2 (7)2 2

(p-r2)

and

rlT1 + r2T2
T - 1 (8)

rl+r 2

where these equations hold for p(p-r2) > rlP which is the ergodicity condition in

this system.

In Fig. 2,3,4 we plot T1'T 2 and T respectively versus p, the transmission

probability at node 1, for rl = 0.1 and r2 ranges from 0.01 to 0.4. As expected

the average delay at node 2 increases when p increases since then its transmissions

are more frequently interfered with transmissions from node 1. More interesting is
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the behavior of the average delay at node 1. Here p has some value for which T1

is minimized (for given rl and r2), When p either increases or decreases from this

value T1 increases. The reason is that when p becomes small, node 1 attempts

to transmit relatively rarely, so its queue increases. When p becomes large, then

node 1 attempts to transmit more frequently, thus interfering with the transmissions

of node 2, and the queue lengths at both nodes are large. As we see from Fig. 4 the

parameter p is a very critical design parameter of this system and for given values

for rl and r2, there exists an optimal p, denoted by p*, that minimizes the

total average delay in the network. In Fig. 5 p* is plotted versus r1 for various

values of r2. Notice that p* is much less sensitive to changes in rl than to

changes in r2. When r2 is small, then p* should be large for all values of rl,

since interference between transmissions is rare. When r2 increases, p* should

decrease in order to reduce the interference. Finally, in Fig. 6, Tmin the minimum

total average delay is plotted versus y the total throughput of the system, when

r 1 = r2 = r (clearly y = 2r).

System 2 (Fig. l(b))

The average delays are :

r lp+ 2(1-pr2)
T1 = 1 + (9)

r2 [P(l-rl-r 2)-r1]

T2 1 r2 + 1 r (10)r+r 2 2

and
r1

T r +r T1 + 2 (11)

where these equations hold for p(l-rl-r 2) > r1 which is the ergodicity condition

for this system.

In this system node 1 does not interfere with the transmissions of node 2.

Therefore, it is optimal to always attempt transmission at node 1 as well, namely to

take p = 1. Eq. (9) indeed shows that T1 is monotonically decreasing when p
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increases, and it achieves its minimum value for p = 1. In Fig. 7,8 T1 and T are

plotted respectively versus r1 for p = 1 when r2 ranges from 0.01 to 0.8. T2

is not plotted here since it takes values from 1 to 1.5 only when 0.Ol0r2<0.8,

0 < r 1 < 0.5. From Fig. 7 we see, as expected, that T1 increases when the arrival

rate r1 to node 1 increases. When r2 increases, then the time spent by node 2

in the transmitting mode increases. Therefore, packets transmitted by node 1 are

rarely received by node 2 and the average time delay T1 at node 1, increases in

this case as seen in Fig. 7.

System 3 (Fig. 1(c))

p(rl+r2 r 2 ) + (P-r2)(p)2 P[rl+r2 (rl+rlr2 )]
T = 1 +r - _ (12)

[p(p-r2 )-r 1 ] (P-r 2 ) [rlr2) 2 -p(-rlr 2 )] (P-r2)

2 r 1+r2r2 P[rl+r2(rr l r2)] [p(p-r2)-rl] 1lT. 5 _ _ -2 -r1](13)

r1 2 P-l r2 )(r l(r2) - p(l - rr2)]

and
r1

T = - T + T 2 (14)
rl+r2 1 2

where the[s ~ quations hold for p(p-r2) - r1 > 0 which is the ergodicity condition

for this system. Similarily to System 1, T1, T2 and T are plotted in Fig. 9,10,11

for System 3. The behavior of the average delay in this system is very similar to

that of System 1, therefore we will not give here more detailed explanations.
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3. Symmetric Two-Node ALOHA Network Delay Analysis

In this section a two node symmetric ALOHA network is considered. This network

is similar to System 1 with the following modifications. Here node 2 uses the same

channel access scheme as node 1, i.e. at the beginning of each slot, if its buffer is

not empty, node 2 tosses a coin, independently from any other event in the system,

with probability of success p. According to the outcome, the node either transmits

or remains silent during the current slot. In addition, it is assumed that the

arrival processes to the nodes are independent Bernoulli processes with equal rates,

denoted by O<r<l/4. Therefore we have for this system F(x,y) = (xr+r)(yr+r). By

the same method used in the Appendix it is easy to see that for the current system

we have :

G(x,y)=F(x,y)[ x (Y- ) -p (2xy-x-y)]G(xO)+[y(x-l)-p(2xy-x-y)]G(Oy) +p [2xy-x-y]G(O' O) (15)

xy-F(x,y) [(x+y)pp+xy(p +(p) )]

In this case we cannot obtain an explicit form for G(x,O), G(O,y), G(O,O) and hence

for G(x,y). However we can exploit the symmetry to obtain an expression for the

average delay in the system. If we denote by Gl(x,y), G2 (x,y) the derivative of

G(x,y) with respect to x and y respectively, we clearly have Gi( 1,l) = G2(1,1)

and G1(l,O) = G2(0,1). Then from (15) we obtain

r[p+(p)2 ] p2G1 (,O)

G 1(l,l) = r + (16)

PP - r
and

dr GGl (l,O)p(l-2p) r2+2r-4rpp
d-[G(x,x)] = 2r + + (17)

x=l pp- r 2(pp - r)

for pp > r.

Now, if we use the fact that

-~[G(x,x)] = G1(1,l) + G2(1,1) = 2G1 (1 ,1) (18)
x=l



we can solve for G1(1,O) and hence for G1(l,l) and obtain

(-2 1
(p)+ rp

Gi(l,1) = G2(1,1) = r + r _ (19)
pp - r

Therefore, applying Little's Theorem we obtain the average system delay

G1(l,l) (p)2 + 2 rp
T = = 1 + for pp > r . (20)

pp - r

From (20) it is found that p* = 1-{0.5r + [0.5r(l-r+O.5r)]/ }/(l-O.Sr) minimizes

T for O<r<0,25. In Fig. 6 the minimum total average delay Tmin is plotted versus

y, the total throughput of this system. Comparing the curves in Fig. 6 it is clear

that the non-symmetric access scheme used in system 1 provides very slight better

performance than the symmetric access scheme, when the arrival rates into the nodes

are equal (the difference in the minimum delay is less than 3.5% in the range O<y<0.5).

However the former scheme is unfair, giving priority to queue 2, although the arrival

rates into the two queues are the same.

Finally we may mention that the method presented in this section for calculating

average delay times without obtaining explicitly the generating functions, can be used

in many other symmetric (i.e. G(x,y) = G(y,x)) two node systems. Specifically, we can

easily obtain average delay time in the symmetric two nodes ALOHA network for general

arrival processes into the nodes for which F(x,y) = F(y,x).
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4. Symmetric ALOHA Network with M Nodes : Approximate delay

Consider an ALOHA network consisting of M nodes, that share a common radio

channel. Assume that all nodes in the network use the same channel access scheme

as the two nodes in the previous section, i.e. each node tosses independently a

coin with the same probability of success p at the beginning of each slot when

its queue is nonempty. Also assume that the arrival process at each node is a

Bernoulli process, independent from node to node, with rate r. For this case

we cannot obtain the exact average delay for M>2, and therefore we must consider

approximations. The approximation method proposed here is the following. Each node

i in the network may at any time be in one of M possible situations. Situation

j refers to the case where j-l nodes other than i have nonempty queues, while

the other M-j nodes (not including i) are empty. The approximation considered here

consists of assuming that in steady state, while in situation j, node i behaves

as a discrete M/M/l queue with arrival parameter r and departure parameter

p(l-p)j 1. If the transitions between the various situations are neglected then the

average number of packets at node i denoted by Li is :

M
r(l-r) jLi j 0. - -~~~ -(21)

j-=l p(l-p)j-1-r

M-l
for i=l,2,...,M and r<p(l-p) , where e. is the probability of being in

situation j. We approximate .j as

0. = (1 - r)Mj(L)jl j = 1,2,...,M (22)
Iej = (1-P p

where r approximates the probability that a node has packets ready for transmission
p

and we assume independence between the nodes. Using (21) and (22) and applying

Little's Theorem we find that the approximate total average delay Tap is given by :

T = (r)J (1 -r IM-j l1-rT X (p-l((1 (23)
ap .- 

Jp(1-p) j-l-r
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The general formula (23) can be specialized to the case M=2, and for this case we

can compare the approximate and exact results. For M=2 we have from (20)

2 1
(p) + 2 rp

T : i + (24)
analysis (24)

pp - r

and from (23)

T = + (P1 + (r25)p-ap I 2- (25)
ap

pp - r

T and Tanalysis are plotted versus p in Fig. 12, for various values of r.ap analysis

It can be seen that although we have used a simple approximation, it is quite close

.to the exact values. We also compare this approximation versus simulation results,

for networks having three and four nodes. This comparison is plotted in Fig. 13

and 14 and shows again good results.
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Footnotes

1. We use the notation v = 1-v.

2. The subscripts 1 and 2 correspond to the derivative of the function with

respect to the first and second variables respectively.
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Appendix A

In order to describe the behavior of the queue lengths, we need several

definitions. Let DOl(t) be a binary-valued random variable that takes value

I if Ll(t) = 0, L2(t) > 0 (Ll(t) and L2(t) are the queue lengths at time

t at nodes 1 and 2 respectively), a departure occurs (from queue 2) and

the packet leaves the system. Similarly Dol(t) takes value 1 under the same

conditions, except that the packet is transferred to queue 1. In a similar way

we define the binary-valued variables D10 (t), Dlo(t) for the case that

0 1
Ll(t)>O, L2(t)=0 and D01 (t), D1 (t) for the situation when both queues are

nonempty and departure occurs from queue 2. Then the recursive equations for

Li(t) are :

Al(t) if Ll(t)=O, L2(t)=O

0 1
A1 (t)+L (t)-Dlo(t 0 i)-D10 L1 (t)>O, L2 (t)=0

l(t+l) =(Al) 1

Al(t)+D l0 (t) if Ll(t)=O, L2(t)>O

Al (t ) + L l( t ) + D l l( t ) if L l ( t ) >O, L2(t)>O

A2(t) if Ll(t)=O, L2(t)=O

A2(t)+Dlo(t) if Ll(t)>O, L2(t)=O

L2(t+l) = A2(t)+L 2(t)-D 0 (t)-D0 l(t) if Ll(t)=O, L2(t)>O (A2)

0 1
A2(t)+L 2(t)-Dll(t)-Dll(t) if Ll(t)>O, L2(t)>0

From (Al), (A2) and (3) we have for t-+ that

G(x,y) = F(x,y){G(O,O)+[G(x,O)-G(O,O)][x 1p1 +x yp10+ (p10 +p10)] +
= ' Py)-c~o~o l10 10 P10+P10 ]

I ~0 - 1 0 1+ [G(O,y)-G(O,O)][y Pol+Y xpOl + (Pol+p l)] +

+ [G(x,y)-G(x,O)-G(O,y)+G(0,0)][y lpll+y xp ll + (pl+ll)]} (A3)

(Remember that v denotes l-v).
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Arranging (A3) we obtain

G(x,y) = F(x,y) b(x,y)G(x,O)+c(x,y)G(O,y)+d(x,y)G(O,O) (A4)
x e(x,y)

where

b(x,y) = y(P0 +yp10) - x(Pll +xll)+xy(Pll+P ll-P1o-P lo (A5)

0 0 1 1 0 1 0 1 )
c(x,y) = x[P 1-Pll+x(

p O
1-p

l l)] + XY(Pll+P11 P-Po01 (A6)

0 1 0 0 1 1 0 1 0 1 0 1
d(x,y) =-y(P lo+ypl0 )+X[Pll-P1 o+X(Pll-Po 1)] + xy(Plo0 +p 0+Po +Pol+pl-Pll-P)

0 1 0 1
e(x,y) = y-F(x,y)[p 1 ll xp 11 +Y(PllP 1 1)] (A8)

From (A4) we see that the steady-state generating functions for the queues' lengths

are :

For queue 1 :

G(x,l) F(x,1 ) b(x,l)G(x,O)+c(x,l)G(O,1)+d(x,1)G(O,O ) (A9)
x e(x,l)

For queue 2 :

b(l, y)G (1,0)+c(1,y)G(y)(0y)+d(1,y)G(0,0)
G(l,y) = F(l,y) (AlO)

e(1,y)

We still have to determine the functions G(x,O), G(O,y) and the constant G(O,O).

To find G(O,y) let x+O in (A3). Then

0 1
G(O,y) = F(O,y){G(O,O)+G 1 (0,0)(p lO +yp 10) +

+ [G(O,y)-G(0,0)][y Po+ (POl+P1)]} (All)

where Gl(x,y) is the derivative of G(x,y) with respect to x.

From (All) we obtain

0 1 -10 0 1

(Pol+Pol-Y Po1)G(O,O)+(Plo+YPlo)G 1 (0,0)
G(O,y) = F(O,y) (p+P-y 0 1 10 1 (A12)

1 - F(O,y)[y1 Pl+(P8 +pl1 )]

Before proceeding we need to prove the following Lemma.
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Lemma

For Ixl<l the equation

e(x,y) = 0

where e(x,y) is the expression of (A8) has a unique solution within the unit

circle lYj=l.

Proof

Since F(x,y) is not independent of x, then there exists a(i,j)>O for some

i and some i>O. Therefore for Ixl<l and yjl = 1 we have

0F(x,y)[p 1 O 1
IF(x ,y)~[P11+Pll+Y (Pll+P11)] l<

co 00 00 O 0 00 00

S IF(x,y) = I X Y a(i,j)xly[l < X I a(i,j)Jxj' < I I (a(i,j)=l=IyI (A13)
i=O j=O i=O j=0 i=0 j=O

Hence, applying Rouches' theorem [8], e(x,y) has exactly one zero within lyl=l for

1xl < 1.

Q.E.D.

Now let t be the solution of

-10 0 1
F(O,t)[t P01 + (Pol+Po 1 )] = 1 (A14)

in the unit circle. Using the Lemma for x=O, it is clear that t is unique.

Then from the analyticity of G(O,y) for llI < 1 it follows that

-10 0 1

G1 (0,0) = p G O,O) (A15)

10+tP10

Substituting (A15) in (A12), G(O,y) is determined up to the constant G(O,O).

To find G(x,O) let f=f(x), be the solution for |x| < 1 of

e(x,f) = 0 (A16)

in the circle Ifj = 1. In the lemma it was proved that such a solution f is

unique.
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Then again from the analyticity of G(x,y) for Ixl < 1 it follows that

G(x,0) = c C(, f)G(, f)+d(x,f) G(00) (A17)
b(x,f)

Substituting (A12) in (A17), the function G(x,O) is determined up to the constant

G0,O0). To find G(0,0) let x-*l in (A9) and y-+l in (A10) and use the normaliza-

tion condition G(1,1) = 1 to obtain

el(,l)=b 1 (l,l)G(l,O)+c (l,l)G(0,l)+d1 (1,l)G(0,0) (A18)

and

e2(1,1)=b2(1,l)G(l,O)+c 2 (1,1)G(0,l)+d2 (1,1)G(0,0) (A19)

and from (A12) we have

Po1 G(0,0)+(PlO+plO)G1 (,O)
G(0,1) = F(0,1) (A20)

1 - F(O,l)pol

Solving (A15), (A18),(A19) and (A20), we obtain G(0,0). The ergodicity condition

is that G(0,0) > 0.
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Fig. 1 - Two-node networks. (a) System 1: non-symmetric ALOHA network.
(b) System 2: tandem network; no interference at the station.
(c) System 3: tandem network; interference at the station.
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Fig. 3 - System 1: T2 versus p.
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Fig. 5 - System 1: p* versus rl.
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Fig. 9 - System 3: T1 versus p.
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Fig. 10 - System 3: T versus p.
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Fig. 12 - Comparison of analysis and approximation of two node
symmetric ALOHA network.
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Fig. 13 - Comparison of approximation and simulation results for three-node
symmetric ALOHA network.
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Fig. 14 - Comparison of approximation and simulation results of

four-node symmetric ALOHA network.


