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Placozoa is an enigmatic phylum of simple, microscopic, 
marine metazoans1,2. Although intracellular bacteria have 
been found in all members of this phylum, almost nothing 
is known about their identity, location and interactions with 
their host3–6. We used metagenomic and metatranscriptomic 
sequencing of single host individuals, plus metaproteomic 
and imaging analyses, to show that the placozoan Trichoplax 
sp. H2 lives in symbiosis with two intracellular bacteria. One 
symbiont forms an undescribed genus in the Midichloriaceae 
(Rickettsiales)7,8 and has a genomic repertoire similar to that 
of rickettsial parasites9,10, but does not seem to express key 
genes for energy parasitism. Correlative image analyses and 
three-dimensional electron tomography revealed that this 
symbiont resides in the rough endoplasmic reticulum of its 
host’s internal fibre cells. The second symbiont belongs to the 
Margulisbacteria, a phylum without cultured representatives 
and not known to form intracellular associations11–13. This sym-
biont lives in the ventral epithelial cells of Trichoplax, prob-
ably metabolizes algal lipids digested by its host and has the 
capacity to supplement the placozoan’s nutrition. Our study 
shows that one of the simplest animals has evolved highly 
specific and intimate associations with symbiotic, intracellu-
lar bacteria and highlights that symbioses can provide access 
to otherwise elusive microbial dark matter.

Placozoa are marine invertebrates at the base of the animal tree 
and are considered among the simplest animals known. These 
millimetre-sized benthic animals can be easily cultured and are 
considered key models for understanding metazoan evolution, 
developmental biology and tissue formation1,14–16. Electron micros-
copy studies as early as in the 1970s revealed the presence of intra-
cellular bacteria in these animals3–6. Remarkably, nearly five decades 
later, only very little is known about the biology of these symbionts 
and their interactions with their hosts.

The phylum Placozoa encompasses 19 cryptic species, on the 
basis of mitochondrial haplotypes2,6. These benthic animals do 
not have a mouth or gut and feed on algae and bacterial biofilms 
by external digestion and subsequent uptake via their ventral epi-
thelium17,18. All placozoans have three cell layers and six morpho-
logically differentiated cell types3,6,19,20. The thick ventral epidermis 
consists of ciliated epithelial cells in which glandular and lipophilic 
cells are irregularly interspersed17,18. Ciliated epithelial cells make 
up the thin dorsal epidermis in which crystal cells occasionally 
occur. An internal meshwork of fibre cells, sandwiched between the 

two epidermal layers, connects the ventral and dorsal body walls20. 
Intracellular symbionts were first described in these fibre cells3,5,20. 
The bacteria were present in all seven haplotypes examined, inde-
pendent of sampling site or time, and were hypothesized to reside in 
the lumen of the rough endoplasmic reticulum (rER)3,5,6,20. Persistent 
and stable residence of a bacterium in the rER of a host would be 
remarkable as the vast majority of intracellular symbionts live in the 
cytoplasm or vacuoles, and the few known exceptions inhabit the 
nucleus or mitochondria21–23.

In this study, we focused on the Trichoplax sp. haplotype H2 
(Trichoplax H2), previously reported to host two bacterial morpho-
types5. Sequencing of placozoan genomes consistently yielded rick-
ettsial and other bacterial sequences6,24,25. However, as thousands of 
host individuals were pooled for these analyses, it was neither clear 
whether these bacterial sequences originated from contaminants 
or symbionts nor whether they were present in all host individu-
als. Our recent advances in high-throughput sequencing of single 
placozoan individuals, together with correlative imaging analyses 
and three-dimensional (3D) reconstruction, allowed us to explore 
the patterns, structure and function of the placozoan symbiosis at 
the individual and cellular level.

The Trichoplax H2 microbiome is dominated by two bacterial 
symbionts. We isolated a placozoan H2 haplotype lineage from 
a seawater tank at the Kewalo Marine Laboratory, University of 
Hawai’i (Supplementary Fig. 1). To characterize the microbiome 
of this Trichoplax H2, we combined highly sensitive DNA and 
RNA extraction and library preparation protocols to sequence 
the metagenomes and metatranscriptomes of microscopic single 
individuals that have an estimated biovolume of 0.02 µl and from 
which we could isolate 0.5 to 4 ng of nucleic acids (n = 5). All five 
individuals had similar microbial communities based on 16S ribo-
somal RNA (rRNA) gene reads, but only two taxa were consistently 
dominant in all five host individuals (Supplementary Fig. 2 and 
Supplementary Table 1).

The first and most abundant 16S rRNA phylotype was an alp-
haproteobacterium from the family Midichloriaceae (Rickettsiales)7 
(Fig. 1a). Midichloriaceae are obligate intracellular, often patho-
genic, bacteria found in protists and animals, including humans8. In 
16S rRNA analyses, the Trichoplax H2 midichloriacean phylotype 
formed an unnamed lineage that consisted of sequences recovered 
from diverse invertebrate hosts and sequences from subsurface  
sediment samples (98.4–99.4% pairwise identity; Fig. 1a). We recov-
ered a high-quality26 1.26 Mb metagenome-assembled genome that 
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included the midichloriacean 16S rRNA phylotype. Sequences from 
the Trichoplax adhaerens haplotype H1 genome project15 included a 
midichloriacean 16S rRNA gene fragment and a partial genome of 
a rickettsial phylotype (RETA1) was also recovered25. Phylogenetic 
analyses based on the 16S rRNA gene and phylogenomic analy-
ses based on 43 conserved marker genes placed the Trichoplax 
H2 phylotype and Trichoplax H1 RETA1 in the Midichloriaceae. 
The Trichoplax H2 and H1 phylotypes were phylogenetically dis-
tinct and, according to amino acid sequence identity, these two 
symbionts belong to two separate but undescribed genera, with 
Candidatus ‘Bandiella’27,28 as the closest characterized genus  
(Fig. 1a,b, Supplementary Note 1). We propose the Candidatus 
taxon ‘Grellia incantans’ for the midichloriacean phylotype from 
our haplotype H2 isolate (see Supplementary Note 1 for description 
and etymology).

The second most abundant and consistently present bacte-
rial taxon in the Trichoplax H2 metagenomes belonged to the 
Margulisbacteria, a phylum without isolated representatives that 
forms the sister clade to Cyanobacteriota11–13,29. No 16S rRNA 
gene sequences with >90% identity to this bacterium were found 
in public sequence databases, warranting the establishment of a 
taxon at the genus or even family level. We therefore propose the 
Candidatus taxon ‘Ruthmannia eludens’ for this bacterium (see 
Supplementary Note 2 for a detailed description and etymology). 

Using metagenomics binning, we recovered a high-quality 1.51 Mb 
metagenome-assembled genome for ‘R. eludens’. Our phyloge-
nomic analyses confirmed our 16S rRNA gene analysis and placed 
‘R. eludens’ in the Marinamargulisbacteria (Margulisbacteria) 
(Fig. 1c). Marinamargulisbacteria are aquatic bacteria that occur 
worldwide11,13. ‘R. eludens’ is distantly related to single-cell ampli-
fied genomes and metagenome-assembled genomes from marine 
pelagic samples13 (Fig. 1c). Marinamargulisbacteria are known 
only from sequence-based studies, with recovered draft genomes of  
0.5–2.0 Mb, and all genomes are classified as medium to low quality26.  
Despite the small genome size, our metagenome-assembled genome 
was classified as a high-quality draft genome (Supplementary Note 2).

Both symbionts are intracellular, spatially segregated and spe-
cific to the host cell type. We used fluorescence in situ hybridiza-
tion (FISH; Fig. 2a; Supplementary Table 2) to link the bacterial 
sequences to their morphotypes and visualize the distribution of the 
two symbionts in Trichoplax. No bacteria except the two symbionts 
‘G. incantans’ and ‘R. eludens’ were detected in all the placozoan indi-
viduals examined (Fig. 2a; Supplementary Fig. 4). ‘G. incantans’ was 
thin and rod-shaped (≤1.2 × 0.30 μm2; Fig. 2a and Supplementary 
Fig. 4). In contrast, ‘R. eludens’ had a wider and stouter rod-shaped 
morphology (≤1.2 × 0.47 μm2; Fig. 2a and Supplementary Fig. 4; for 
details see Supplementary Notes 1 and 2). Our correlative FISH and 
transmission electron microscopy (TEM) analyses of five Trichoplax 
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H2 individuals revealed that the two bacterial symbionts were always 
intracellular, spatially segregated and specific to one of the six host 
cell types (Fig. 2b and Supplementary Figs. 5−7). ‘G. incantans’ was 

observed only in fibre cells and was the only bacterium located in 
these cells (Fig. 2b and Supplementary Figs. 5 and 6). All ‘G. incan-
tans’ cells were surrounded by a host membrane that was densely 
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Fig. 2 | ‘R. eludens’ and ‘G. incantans’ are specific to two spatially segregated host cell types. a, A false-coloured FISH image using probes specific for ‘G. 

incantans’ (GRIN-61-2, Atto-647) and ‘R. eludens’ (RUEL-846-22, Atto 594); host nuclei are stained with 4,6-diamidino-2-phenylindole (DAPI). The results 
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colour (for raw image data see Supplementary Fig. 5). c,d, TEM images of fibre cells. ‘G. incantans’ is indicated with white arrows and the rER with white 
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covered with ribosomes (Fig. 2c,d and Supplementary Fig. 6; n = 49 
symbiont cells in 9 specimens). Similar host structures surrounding 
the bacteria in other Trichoplax lineages were interpreted as indi-
cating that the bacteria reside inside the host’s rER3. An alternative 
interpretation for such host membrane structures was shown for 
the human intracellular pathogens Brucella and Legionella, as well 
as the amoebal midichloriacean parasite Candidatus ‘Jidaibacter’. 
These bacteria remodel the phagosome surfaces of their hosts so 
that they become covered by host ribosomes as an effective strategy 
for avoiding digestion by their hosts21,30.

To resolve the subcellular architecture of ‘G. incantans’ symbi-
osis, we used high-resolution 3D TEM tomography to determine 
whether the structures surrounding the symbiont cells were remod-
elled phagosomes or rER. Our 3D electron tomographic reconstruc-
tions revealed that the ribosome-covered membranes, in which  
‘G. incantans’ occurred, formed networks that were connected to 
the nuclear envelope31. This indicates that the structure in which  
‘G. incantans’ is embedded is in fact rER. ‘G. incantans’ symbionts 
were only observed in the rER, some even within the same rER 
lumen, and never in other host structures (Fig. 3; Supplementary 
Fig. 8; Supplementary Video 1). These analyses suggest that  
‘G. incantans’ persistently resides in the rER of its host. The second 
symbiont, ‘R. eludens’, colonized only the ventral epithelial cells. 
These symbionts were always found within cytoplasmic vacuoles of 
the host (Fig. 2e,f). The vacuoles contained numerous membrane-
bound vesicles, presumably outer membrane vesicles produced by 
‘R. eludens’ (Supplementary Fig. 7). Thin, tubular structures that 
resemble fimbriae appeared to connect the bacterial cells to the host 
vacuole membrane (Fig. 2f; Supplementary Fig. 7).

Bacteria that live inside animal cells are known from only 6 of 
the 114 recognized bacterial phyla32. The number of bacterial phyla 
with representatives that can live as intracellular symbionts has not 
increased since the characterization of Mycoplasmatales in the early 
1960s, despite huge advances in the sequencing of animals from a 
wide range of phyla and environments that have led to the discovery 
of numerous lineages of microbiota11,32. Marinamargulisbacteria is 
one of the most phylogenetically remote clades of bacteria, discov-
ered through high-throughput sequencing of environmental sam-
ples33. The remote position of the placozoans in the animal tree of life 
has probably contributed to this late discovery of Margulisbacteria 
as the seventh bacterial phylum with intracellular symbionts of 
animals. Our study of the Trichoplax microbiome highlights how 
bacteria captured by eukaryotes provide a route for studying bacte-
rial groups that are otherwise known only from sequences found in 
water or sediment samples.

‘R. eludens’ gains nutrition from lipids degraded by its host. We 
sequenced the metatranscriptomes of the same single placozoan 
individuals that were used for metagenomic analyses (n = 3) and 
generated metaproteomes from pooled samples of 10 to 30 individu-
als (n = 3) to investigate the physiology of ‘R. eludens’. Physiological 
modelling of these expression data revealed that ‘R. eludens’ is an 
aerobic chemoorganoheterotroph, with a complete tricarboxylic 
acid (TCA) cycle that generates energy and biomass from glycerol 
and the β-oxidation of fatty acids (Fig. 4a; Supplementary Table 3). 
The source of the glycerol and fatty acids is probably lipids from 
the algal diet of the host. Our analyses of the host’s transcriptome 
revealed that Trichoplax H2 expressed several lipases, most prob-
ably for the digestion of the algae it feeds on (Supplementary  
Table 4). These host lipases hydrolyze lipids to glycerol and fatty acids. 
The genome of ‘R. eludens’ also encodes lipases that would allow  
‘R. eludens’ to digest lipids independently of its host. Interestingly, 
we found neither transcripts nor peptides for these symbiont lipases, 
suggesting that ‘R. eludens’ relies on the lipases expressed by its host 
(Supplementary Table 3).

The transfer of glycerol and even-chain fatty acids from the host 
to ‘R. eludens’ probably occurs passively, as they can easily diffuse 

through cell membranes. We predict that the fatty acids are taken 
up and activated by ‘R. eludens’ on the basis of its high expression 
of a long-chain fatty acid coenzyme A (CoA) ligase (among the top 
25% of expressed genes; Fig. 4a; Supplementary Table 3). The fatty 
acids are then probably catabolized to acetyl-CoA and respired, as 
indicated by the expression of all the genes needed for β-oxidation 
and the oxidative TCA cycle. However, the anabolic incorporation 
of fatty acids is unlikely, as we could not detect the genes for the 
glyoxylate shunt.

‘R. eludens’ encoded genes for synthesizing all nucleotides and 
amino acids, including the nine amino acids considered essential 
for animals. However, we found no genomic or transcriptomic indi-
cations that ‘R. eludens’ exports nutrients to its host, for example 
via amino acid exporters (see Fig. 4a and Supplementary Note 3). 
Moreover, in our TEM analyses, we found no evidence for the intra-
cellular, lysosomal digestion of ‘R. eludens’, such as lamellar bodies 
or tertiary lysosomes commonly observed in other nutritional sym-
bioses34,35. Our ultrastructural analyses did, however, reveal large 
numbers of putative outer membrane vesicles in the host vacuole 
surrounding ‘R. eludens’ (Fig. 2e,f and Supplementary Fig. 7). It is 
tempting to speculate that the host takes up outer membrane vesi-
cles produced by ‘R. eludens’ via phagocytosis and thus supplements 
its diet, as the host lacks synthesis pathways for essential amino 
acids. However, the beneficial effects of such putative amino acid 
provisioning by ‘R. eludens’ are not clear, given that the animal’s 
algal diet may contain sufficient amounts of essential amino acids.

‘G. incantans’ has the genes for energy parasitism but does not 
express them: it lives in the rER of fibre cells and seems to be a 
typical Rickettsiales based on genomic features alone, namely a het-
erotroph that relies on its host for biomass and energy generation 
(Fig. 4b). The ‘G. incantans’ genome encodes the hallmark feature 
for intracellular energy parasites that is present in all Rickettsiales 
genomes: a fully functional ADP/ATP-translocase for importing 
ATP from its host9. In contrast to all other known energy para-
sites, we found no transcripts or respective peptides of the ADP/
ATP-translocase in ‘G. incantans’ (Supplementary Table 5). Instead, 
‘G. incantans’ generated ATP with an ATP synthase, and the sub-
units a and b were highly expressed in the bacterium’s proteome 
(Supplementary Table 6). Compared to the typical energy-parasitic 
lifestyle of cytosolic Rickettsiales that rely on ATP imported from 
their hosts10, the ability of ‘G. incantans’ to synthesize ATP by itself 
likely lowers its detrimental impact on its host considerably.

High transcription of key genes of the oxidative TCA cycle and 
the presence of a complete electron transport chain in the genome, 
with some of the subunits of the electron transport chain among the 
most highly transcribed genes, suggests that the proton gradient for 
ATP synthesis is fuelled by oxidative phosphorylation (Fig. 4b and 
Supplementary Table 5). An incomplete glycolysis pathway and sev-
eral importers for α-ketoacids and C4-dicarboxylates suggest that 
the metabolites respired in the TCA cycle are imported from the 
host (Fig. 4b).

The genome and transcriptome of ‘G. incantans’ revealed a 
strong host dependence on both amino acid and nucleotide supply 
(Fig. 4b; see Supplementary Note 4 for details). In contrast, the tran-
scription profile of ‘G. incantans’ suggested that it could supply its 
host with riboflavin (vitamin B2), an essential vitamin that cannot 
be synthesized by most metazoans. Our analyses of the transcrip-
tomic data of Trichoplax H2, as well as the genome and proteome of 
the closely related haplotype H124,36, revealed that both seem to lack 
the known genes for synthesizing riboflavin (Supplementary Fig. 9) 
and rely on an external source of riboflavin (Supplementary Table 
4). This suggests that when riboflavin availability is limiting for the 
host, ‘G. incantans’ could supplement the nutrition of its host.

‘G. incantans’ does not seem to be detrimental to Trichoplax H2, 
despite the fact that it has to import most of the compounds it needs 
for generating energy and biomass from its host. Our metagenomic, 
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FISH and TEM data revealed 2−20 symbiont cells per fibre cell, so 
that the total number of ‘G. incantans’ cells per host individual is 
roughly the same as the number of host cells (Supplementary Note 5).  
This indicates closely regulated control of symbiont growth by 
the symbiont, the host or both partners. Pathogen abundances are 
typically orders of magnitude higher per host cell and often result 
in rapid exploitation and destruction of host cells and the impair-
ment of host reproduction37. The relatively low abundance of  
‘G. incantans’ in Trichoplax H2 together with the rapid dou-
bling rates of these hosts (2−3 d in our aquaria) are in contrast to  
virulent pathogenic infections. Unlike all other known energy 
parasites, ‘G. incantans’ seems to generate its own ATP and might 
even modulate its host immune response to prevent apoptosis 
(Supplementary Note 4).

Bacterial phylotypes highly similar or identical to ‘G. incantans’ 
occur worldwide in aquatic environments. To assess how wide-
spread the two Trichoplax symbionts are in other environments 
and hosts, we surveyed the ~300,000 publicly available amplicon-
based 16S rRNA sequence libraries using the IMNGS pipeline.  

We did not find any sequences related to ‘R. eludens’, using a cut-off 
of 99% identity. In contrast, sequences highly similar or identical to  
‘G. incantans’ were present in aquatic environments, both marine 
and limnic, from across the globe (Supplementary Table 7). Of the 
8,026 libraries from aquatic environments, we found sequences that 
were at least 99% identical to ‘G. incantans’ in almost 10% of these 
libraries (n = 845). One third of the sequences were identical to  
‘G. incantans’ and almost all were attributed to the genus Grellia 
on the basis of evolutionary placement analysis (Supplementary  
Fig. 10). This is remarkable for Midichloriaceae, because all other 
genera are much rarer and were found in only 0–55 libraries, 
depending on the genus (Supplementary Table 7). The presence of 
Grellia phylotypes in such a wide range of environments, including 
limnic ones, indicates that these bacteria have host ranges beyond 
placozoans. Indeed, our phylogenetic 16S rRNA analyses showed 
that sequences that group with the genus Grellia have been found 
in marine protists (Eutreptiella), sea cucumbers (Apostichopus) 
and oysters (Crassostrea), as well as in the limnic cnidarian Hydra 
oligactis (see Fig. 1a). The Hydra sequences came from specimens  
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the rER and the bacteria. For ease of interpretation, d has been false-coloured using the colour key from a. For raw data, see Supplementary Fig. 8.
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collected freshly from their natural environments and animals 
reared in the laboratory for more than 30 yrs, indicating the stability 
of this association in these hosts38.

The recent realization that human pathogens such as Chlamydiae, 
Legionellales and Rickettsiales have close relatives that live in hosts 
ranging from protists to fish and from aquatic and soil habitats has 
led to a paradigm shift in our view of the ecology and evolution 
of intracellular bacteria27,39,40. ‘G. incantans’ extends our concep-
tual understanding of the pervasiveness of such bacteria and shows 
that a single environmental rickettsial genus occurs worldwide in 
marine and limnic habitats. This remarkable distribution raises the 
question of whether all Grellia are host-associated. If ‘G. incantans’ 
had a free-living stage, this would be in contrast to all other known 
Rickettsiales that infect animals27.

Unlike other animals at the base of the animal tree, such as 
sponges, cnidarians or ctenophores, Placozoa is the only phylum in 
which intracellular bacteria have been observed in all individuals 
and haplotypes investigated. Intracellular symbiosis thus seems to 
be an invariant trait across this phylum. Our study identifies these 

bacteria in Trichoplax H2, shows that they are found in every speci-
men examined and defines the specificity and fidelity to the host 
cell type in which the symbionts reside.

How might the Trichoplax symbionts be transmitted within a 
growing individual and to its offspring? Within a host individual, 
the symbiont-containing cells could pass on their bacteria during 
division, or the symbionts could continuously reinfect host cells 
derived from aposymbiotic cells. However, little is known about cell 
turnover and proliferation in placozoans and it remains to be deter-
mined whether they even have stem cells. Similarly, we can only 
speculate on transmission during asexual reproduction (the main 
mode of reproduction in placozoans). In Trichoplax H2, which has 
been reproducing asexually in our aquaria for several years, the 
symbionts are transmitted with high fidelity, as all host individu-
als had both symbionts. Information on sexual reproduction, which 
is much rarer and has not been observed in nature, is too limited 
to allow us to know whether the symbionts are incorporated into 
resulting embryos. If not, the symbionts must be obtained from the 
environment. Symbiont uptake from the environment could explain 
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why the midichloriacean symbionts of Trichoplax H1 and H2 do not 
belong to the same clade, although their hosts are very closely related 
and separated only a few decades ago24. This split could have been 
caused by their midichloriacean symbionts, as Rickettsiales are well 
known to induce reproductive incompatibility in insects41. Future 
studies of the microbiomes of the large number of extant haplotypes 
are needed to fully understand the ecology and evolution of symbio-
ses between placozoans and their bacterial symbionts.

Methods
Isolation and cultivation. The placozoans were isolated from a coral tank at the 
Kewalo Marine Laboratory, University of Hawai’i at Mānoa in October 2015 by 
placing glass slides, mounted in plastic slide boxes that had the top and bottom cut 
out, into the tank for 10 d (ref. 17). Placozoans were identified under a dissection 
microscope, transferred to 400 ml glass beakers with 34.5‰ artificial seawater and 
fed weekly with 2 × 106 cells ml−1 of Isochrysis galbana from a log-phase culture. 
Doubling times were 2−3 d at 25 °C in 34.5‰ artificial seawater and with a 16:8 h 
light:dark regime.

Nucleic acid extractions. DNA was extracted from two single individuals from the 
Trichoplax H2 cultures using the DNeasy Blood & Tissue Kit (Qiagen) and DNA 
and RNA from three additional single individuals were extracted using the AllPrep 
DNA/RNA Micro Kit (Qiagen), according to the manufacturer’s protocols for both 
kits except for the following modifications. Proteinase K digests were performed 
overnight. Elution volumes were halved and all samples were eluted twice, reusing 
the first eluate. Elutions were carried out with a 10-min-long waiting step before 
centrifugation.

DNA and RNA sequencing. Illumina-library preparation and sequencing were 
performed by the Max Planck Genome Centre. In brief, DNA/RNA quality was 
assessed with the Agilent 2100 Bioanalyzer (Agilent) and genomic DNA was 
fragmented to an average fragment size of 500 base pairs (bp). For the DNA 
samples, the concentration was increased (MinElute PCR Purification Kit; Qiagen) 
and an Illumina-compatible library was prepared using the Ovation Ultralow 
Library Systems Kit (NuGEN) according to the manufacturer’s protocol. For the 
RNA samples, the Ovation RNA-seq System V2 (NuGen) was used to synthesize 
complementary DNA and sequencing libraries were then generated with the DNA 
Library Prep Kit for Illumina (BioLABS). All libraries were size selected by agarose 
gel electrophoresis and the recovered fragments quality-assessed and quantified by 
fluorometry. For each DNA library, 14–22 million 150 bp paired-end reads were 
sequenced on a HiSeq 4000 (Illumina) and, for the RNA libraries, 150 bp single-
end reads were sequenced to a depth of 42–44 million.

Host mitochondrial 16S rRNA gene phylogenetic analyses. The metagenomic 
assembly was screened for the contig containing the host mitochondrial 16S rRNA 
gene (m16S) using BLAST v2.7.1 as implemented in Geneious R1142. The gene was 
extracted from the contig and aligned together with a database of publicly available 
m16S sequences using MAFFT v7.394 in G-Insi mode. The phylogenetic tree was 
reconstructed using FastTree v2.1.5 (ref. 43) with a GTR model, 20 rate categories 
and Gamma20 likelihood optimization, generating approximate likelihood-ratio-
test values for node support. The tree was drawn with Geneious42. The tree was 
rooted with clade A placozoans2.

Bacterial diversity 16S rRNA gene phylogenetic analyses. For the 16S rRNA gene 
database of all phylotypes recovered, the phyloFlash v3.0 beta1 pipeline (https://
github.com/HRGV/phyloFlash) assembled full-length SSU genes for all samples. 
The dataset was aligned and phylogenetic trees were calculated and visualized as 
for the host m16S dataset above. The tree was rooted with the Eukarya and only the 
bacterial part of the tree is shown in this Letter.

Genome analyses. Full-length 16S rRNA gene sequences were reconstructed for 
each metagenomic and metatranscriptomic library using phyloFlash v3.0 beta1 
(https://github.com/HRGV/phyloFlash) from raw reads.

For assembly, adapters and low-quality reads were removed with bbduk v37.9 
(https://sourceforge.net/projects/bbmap/) with a minimum quality value of 2 and a 
minimum length of 36; single reads were excluded from the analysis. Each library 
was error corrected using BayesHammer v3.6244. A combined assembly of all the 
libraries was performed using SPAdes 3.62 (ref. 45) with standard parameters and 
k-mers 21, 33, 55, 77 and 99.

The reads of each library were mapped back to the assembled scaffolds using 
bbmap v37.9 (https://sourceforge.net/projects/bbmap/) with the option fast = t. 
Scaffolds were binned on the basis of the mapped read data using MetaBAT v1.046. 
The binning was refined using Bandage v0.8.147 by collecting all contigs linked to 
the contig that contained the full-length 16S rRNA gene of the target organism. 
The bin quality metrics were computed with QUAST v5.0.248 and the completeness 
for all bins was estimated using checkM v1.07 (ref. 49).

Annotation of the symbiont draft genomes was performed using RAST50 and 
verified with PSI-BLAST v2.7.151 for selected genes discussed. Average nucleotide 

and amino acid identities between genomes52,53 were calculated with the ANI/
AAI matrix calculator (http://enve-omics.ce.gatech.edu/g-matrix). Comparative 
analyses were conducted using the PATRIC database and services54. Pathway 
Tools v22.055, in combination with the BioCyc database56, was used to analyse the 
metabolic capacities of ‘G. incantans’ and ‘R. eludens’. The genomes were screened 
for secretion systems and effectors using EffectiveDB57.

Transcriptomic analyses. Adapters and rRNA gene reads were removed from 
the RNA-seq reads using bbduk v37.9. The gene expression for each symbiont 
genome bin and of the host (based on the published predicted proteome of T. 
adhaerens H1) was calculated from RNA-seq libraries using kallisto v0.45.0 with 
default settings58. Transcription levels were mapped onto metabolic pathways using 
Pathway Tools v22.055.

Proteomic analyses. Peptide samples for proteomics were prepared and quantified 
from two samples of 10 Trichoplax each and one sample of 30 Trichoplax 
specimens, as described by Kleiner et al.59 and according to the filter-aided 
sample preparation protocol described by Wisniewski et al.60. In addition to 
minor modifications described in Hamann et al.61, we did not clear the lysate by 
centrifugation after boiling the sample in lysis buffer. Instead, as the sample size 
was extremely limited (10 Trichoplax specimens = 0.2 µl), we loaded the whole 
lysate onto the filter units used for the filter-aided sample preparation procedure. 
Centrifugation times before column washes with 100 μl UA (8 M urea in 0.1 M 
Tris/HCl pH 8.5) were halved as compared to Hamann et al.61. Peptides were not 
desalted. Peptide concentrations were determined with the Pierce Micro BCA assay 
(Thermo Fisher Scientific) following the manufacturer’s instructions.

All samples were analysed by one-dimensional LC−MS/MS as described in 
Kleiner et al.59 with the modification that a 75 cm analytical column was used. 
Briefly, the sample containing 30 specimens was measured in technical replicate, 
for the others the whole sample was used in one analysis. The peptide (0.8–3 μg) 
was loaded with an UltiMate 3000 RSLCnano Liquid Chromatograph (Thermo 
Fisher Scientific) in loading solvent A (2% acetonitrile, 0.05% trifluoroacetic 
acid) onto a 5 mm × 300 µm ID C18 Acclaim PepMap100 pre-column (Thermo 
Fisher Scientific). Elution and separation of peptides on the analytical column 
(75 cm × 75 µm analytical EASY-Spray column packed with PepMap RSLC C18, 
2 µm material, Thermo Fisher Scientific; heated to 60 °C) was performed at a flow 
rate of 225 nl min−1 using a 460 min gradient going from 98% buffer A (0.1% formic 
acid) to 31% buffer B (0.1% formic acid, 80% acetonitrile) in 363 min, then to 50% 
B in 70 min, to 99% B in 1 min and ending with 99% B. The analytical column was 
connected to a Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer 
(Thermo Fisher Scientific) via an Easy-Spray source. Eluting peptides were ionized 
via electrospray ionization. Carry-over was reduced by two wash runs (injection 
of 20 µl acetonitrile, 99% eluent B) between samples. Data acquisition in the Q 
Exactive Plus was performed as in Petersen et al.62.

A database containing protein sequences from the Trichoplax host as well as 
the two symbionts was used. Sequences of common laboratory contaminants were 
included by appending the cRAP protein sequence database (http://www.thegpm.
org/crap/). The final database contained 13,801 protein sequences. Searches of 
the MS/MS spectra against this database were performed with the Sequest HT 
node in Proteome Discoverer v2.2.0.388 (Thermo Fisher Scientific) as in Petersen 
et al.62. For protein quantification, normalized spectral abundance factors63 were 
calculated per species and multiplied by 100, to give the relative protein abundance 
as a percentage.

Phylogenetic and phylogenomic analyses. A 16S rRNA gene database for ‘G. 
incantans’ was constructed using the assembled 16S rRNA gene sequence from 
each metagenomic library, the 20 best BLAST64 hits in the nr database and all 
other sequences of described Candidatus taxa in the Midichloriaceae. We added 
the five type strains with the best BLAST hit score (five species of Rickettsia) as an 
outgroup. We also screened the trace reads from the Trichoplax H1 genome project 
for reads containing Midichloriaceae 16S rRNA gene fragments using BLAST 
v2.7.164, assembled them in Geneious R9 (http://www.geneious.com)42 and added 
the resulting sequence to the database. A similar search for margulisbacterial 16S 
rRNA fragments yielded no hits.

The 16S rRNA gene dataset was aligned using MAFFT v7.39465 and the 
phylogenetic tree was calculated using FastTree v2.1.1043 with a GTR model for 
nucleotide substitution. The tree was drawn with Geneious R942.

For ‘G. incantans’, the database of genomes for phylogenetic analysis was 
compiled from all available genomes from the Midichloriaceae as well as 
representatives for all genera of the Anaplasmataceae and Rickettsiaceae. We also 
screened the assembly of the Trichoplax H1 genome project for contigs that belong 
to Midichloriaceae contamination using BLAST v2.7.164 with the ‘G. incantans’ 
genome as implemented in Geneious R9 (http://www.geneious.com)42. The 
identified set of contigs corresponded to the set found by Driscoll et al.25 and was 
added to the database. We similarly searched for sequences related to ‘R. eludens’ in 
the H1 genome project, but no hits were detected.

For genome-based alignments of the amino acids of 43 conserved phylogenetic 
marker genes, the tree workflow as implemented in CheckM v1.0.11 was used49. 
For Ruthmannia, the genome bin data were integrated into a taxonomically 
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selected part of the alignment from Hug et al.11 that covered all Melainabacteria 
and Cyanobacteria, WOR-1 and RBX-1 (Margulisbacteria), as well as five short 
branching Firmicutes as an outgroup. The phylogenetic reconstructions of the 
concatenated alignments were calculated using FastTree v2.1.10 with the WAG 
model for amino acid substitutions and visualized and analysed using iTOL66.

Tag-sequence data analysis. The 16S rRNA gene sequences from ‘G. incantans’, as 
well as representative sequences from all characterized midichloriacean Candidatus 
taxa were used as query sequences to search the global collection of the microbial 
tag-sequencing library. The search was carried out using the IMNGS service67 with 
a minimal alignment length of 200 bp and a minimal identity of 99%. Identified 
amplicon libraries were grouped according to their deposited metadata. For the 
top 10% of libraries with the highest number of sequences from ‘G. incantans’, the 
habitat type (limnic or marine) and geolocation were manually collected from 
the deposited metadata and related publications. The detected 16S rRNA reads 
were aligned to the Rickettsiales dataset using MAFFT—addfragments and the 
evolutionary placements in the tree were performed using raxml v8.2.1268.

TEM. Live specimens were high-pressure frozen with a HPM 100 (Leica 
Microsystem) in 3 mm aluminium sample holders, using hexane as filler as 
needed. The samples were transferred onto frozen acetone containing 1% osmium 
tetroxide and processed using a very quick freeze-substitution method69. After 
reaching room temperature, the samples were washed three times with acetone 
and infiltrated using centrifugation, modified after McDonald70, in 2 ml tubes 
sequentially with 25%, 50%, 75% and 2 × 100% Agar Low Viscosity Resin (Agar 
Scientific). For this process, the samples were placed on top of the resin and 
centrifuged for 30 s with a benchtop centrifuge (Heathrow Scientific) at 2,000g for 
each step. After the second pure resin step, they were transferred into fresh resin in 
embedding moulds and polymerized at 60 °C for 12 h.

Ultrathin (70 nm) sections were cut with an Ultracut UC7 (Leica Microsystem) 
and mounted on formvar-coated slot grids (Agar Scientific). They were contrasted 
with 0.5% aqueous uranyl acetate (Science Services) for 20 min and with 2% 
Reynold’s lead citrate for 6 min before imaging them at 20–30 kV with a Quanta 
FEG 250 transmission electron microscope (FEI Company) equipped with a 
scanning TEM detector using the xT microscope control software v6.2.6.3123.

For electron tomography, 300 nm serial sections were placed on formvar-coated 
2 × 1 mm2 slot grids and stained with uranyl acetate and lead citrate. 30 nm gold 
fiducials were applied on both sides of the slot grid. Dual-axis tilt series (±60°, step 
size 1°) were acquired with a FEI Tecnai F30 300 kV electron microscope equipped 
with an Axial Gatan US1000 CCD camera. SerialEM software was used for the 
automated acquisition of tomographic tilt series71. Alignment and reconstruction 
of the tilt series were carried out with IMOD v4.972. The serial tomograms were 
aligned with TrakEM2 v1.0i73 in Fiji74 and visualization and segmentation were 
carried out using the software Amira 3D v6.5.

FISH. We used ARB−SILVA database 128 (ref. 75) and the ARB PROBE_DESIGN 
tool (the ARB software package v6.0.6)76 to design two FISH probes for each 
symbiont that were specific to their 16S rRNA sequences (Supplementary Table 2).  
We confirmed the specificity of the probes by comparing their sequences to all 
available sequences in the ARB−SILVA 128 database and Ribosomal Database 
Project release 11.5 (ref. 77). The most specific probe for ‘R. eludens’ had two 
mismatches to first non-target hit sequences; the most specific probe for G. 
incantans also matched the six most closely related Grellia sequences; detailed 
results are presented in Supplementary Table 2.

Specimens were fixed on coverslips with 2% formaldehyde and 0.1% 
glutaraldehyde in 1.5× PIPES, HEPES, EGTA and MgCl2 (PHEM) buffers modified 
from Montanaro et al.78 at 4 °C for 12 h. After three washing steps in 1.5× PHEM 
buffer, the samples were stored in 70% ethanol until use. Samples were rehydrated 
in PBS and hybridization was performed according to Manz et al.79. Mono-
labelled-, DOPE-80 or MIL-81 probes (Supplementary Table 2) at a concentration 
of 8.4 pmol µl−1 were diluted with hybridization buffer containing 35% formamide, 
900 mM NaCl, 20 mM Tris/HCl and 0.01% SDS at a ratio of 15:1. Whole animals 
were incubated in 30 µl of the probe/hybridization buffer mix at 46 °C in 250 µl 
PCR tubes for 3−4 h, followed by a 30-min-long washing step in washing buffer 
containing 700 mM NaCl, 20 mM Tris/HCl, 5 mM EDTA and 0.1% SDS. After a 
10-min-long washing step in PBS, the animals were stained with DAPI for  
30 min, washed twice again in PBS and mounted on glass slides in Vectashield 
mounting medium.

To test the probes designed for this study, 30 clonal individuals of Trichoplax 
H2 were pooled, fixed as described above, homogenized by sonication and 
applied to a filter. The parts of the filter were then tested with different formamide 
concentrations and the optimal formamide concentration was determined.

Fluorescence images were taken with a Zeiss LSM 780 equipped with a GaAsP 
detector or an Airyscan detector and a Plan-Apochromat 63×/1.4 and a Plan-
Apochromat 100×/1.46 oil immersion objective using the ZEN software (black 
edition, 64bits, v14.0.1.201; Carl Zeiss Microscopy GmbH).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The metagenomic and metatranscriptomic raw reads and assembled symbiont 
genomes are available in the European Nucleotide Archive under Study Accession 
Number PRJEB30343. The mass spectrometry metaproteomics data and protein 
sequence databases were deposited in the ProteomeXchange Consortium82 
via the PRIDE partner repository with the dataset PXD012106. The TEM 3D 
reconstruction data were deposited in figshare; the aligned tomography slices 
used for the reconstruction shown in Fig. 4 are available at https://figshare.com/
s/886b869a9ada0264ffb2 (ref. 31).

code availability
The script used for the assembly graph-based binning is available at https://github.
com/HRGV/tools_and_scripts.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

The metagenomic and metatranscriptomic raw reads and assembled symbiont genomes are available in the European Nucleotide Archive under Study Accession 

Number PRJEB30343 

The mass spectrometry metaproteomics data and protein sequence database were deposited in the ProteomeXchange Consortium via the PRIDE partner repository  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation 
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established. 

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this 
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates 
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information 
(e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving 
existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale 
for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria 
were used to decide that no further sampling was needed.
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Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether 
the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale 
behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Placozoans were isolated from a coral tank to study their symbiotic association with intracellular bacteria

Research sample Placozoans were isolated from a coral tank at the Kewalo Marine Laboratory, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi by 

placing glass slides mounted in cut-open plastic slide holders into the tank for 10 days. Placozoans were identified under a dissection 

microscope, transferred to 400 ml glass beakers with 34.5 ‰ artificial seawater (ASW) and fed weekly with 2x10^6 cells ml-1 of 

Isochrysis galbana from a log-phase culture. At 25°C in 34.5 ‰ ASW and with a 16:8 hour light/dark regime, doubling times were 2-3 

days.  

 

Sampling strategy All individuals used in the experiments originated from an asexually dividing clonal lineage of Trichoplax H2, which was established 

from a single individual. Individual specimens were sampled from the cultures at chance for all experiments conducted. Only intact, 

healthy-looking animals were used in the experiments. Single individuals were used for metagenomic, metatranscriptomic and 

imaging analyses. Samples were pooled (10-30) for metaproteomic analyses. Sample size was chosen according to sizes used in 

comparable studies. 

Data collection The gene expression data were generated by DNA and RNA sequencing at the Max Planck Genome Centre in Cologne under the 

supervision of Dr. B. Huettel. Metaproteomics data were generated by mass spectrometry at the University of Calgary by Dr. M. 

Kleiner and Tjorven Hinzke. Imaging data were collected at the MPIs for Marine Microbiology (Bremen) and of Molecular Cell Biology 

and Genetics (Dresden) by Dr. Nikolaus Leisch.  

Timing and spatial scale Placozoan specimens were collected in Hawai'i in October 2015 and cultivated in the lab until used for this study. Animal specimens 

for metagenomics and metatranscriptomics were taken from the lab cultures in February 2016, for proteomics 2017 and for 

microscopy between January 2016 and September 2018

Data exclusions none

Reproducibility DNA metagenomic libraries were constructed from five specimens, transcriptomic libraries from 3 of the five metagenomic 

specimens. Proteomic data were generated from 3 separate pools of 10 to 30 specimens. Microscopy data were generated from 

three to nine separate specimens as indicated in the text and materials and methods. Using the deposited raw sequencing, 

proteomic and imaging data, the data analyses that were performed in this study can be easily and repeatedly reproduced. All 

attempts to repeat the experiments were successful.

Randomization All experiments were performed on a clonal lineage and specimens were randomly chosen for experiments.

Blinding Blinding was not performed because it was not relevant to this study. This study was an exploratory survey of microbial diversity 

without a priori expectations that would influence the analyses.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water 
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and 
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing 
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals A clonal lineage of haplotype H2 placozoans was isolated from a coral tank at the Kewalo Marine Laboratory, University of 

Hawaiʻi at Mānoa, Honolulu, Hawaiʻi. Initial specimens were sampled by placing glass slides mounted in cut-open plastic slide 

holders into the tank for 10 days. Placozoans were identified under a dissection microscope, and single individuals were 

transferred to 400 ml glass beakers with 34.5 ‰ artificial seawater (ASW). The cultures were fed weekly with 2x10^6 cells ml-1 

of Isochrysis galbana from a log-phase culture. At 25°C in 34.5 ‰ ASW and with a 16:8 hour light/dark regime, doubling times 

were 2-3 days. The culture is available upon request.

Wild animals An initial sample of placozoans was used to isolate a clonal lineage that was then used for all experiments - see section on 

laboratory animals above. The culture is available upon request.

Field-collected samples No field collected samples were used.
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Ethics oversight Work on placozoans is not subjected to a approval by an ethics committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design 
questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how 
these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.
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Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.
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Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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