
Two Issues in Setting Call Centre Staffing Levels

Bert P. K. Chen ∗

Department of Statistics
University of Oxford
1 South Parks Road
Oxford, OX1 3TG

UK

Shane G. Henderson
School of Operations Research and Industrial Engineering

Rhodes Hall
Cornell University
Ithaca, NY 14853

U.S.A.

2nd August, 2001

Abstract

Motivated by a problem facing the Police Communication Centre in Auckland, New Zealand, we consider
the setting of staffing levels in a call centre with priority customers. The choice of staffing level over
any particular time period (e.g., Monday from 8am - 9am) relies on accurate arrival rate information.
The usual method for identifying the arrival rate based on historical data can, in some cases, lead to
considerable errors in performance estimates for a given staffing level. We explain why, identify three
potential causes of the difficulty, and describe a method for detecting and addressing such a problem.

1 Introduction

Motivated by a project conducted with the Police Communication Centre (PCC) in Auckland, New
Zealand, we discuss two issues related to the setting of staff levels in inbound call centres. Our focus is
primarily on the application, and indeed, we will use the PCC project as a running example throughout
this paper.

The PCC receives emergency calls, allied emergency calls, and non-emergency (general) calls from
the upper half of the North Island of New Zealand. Allied emergency service calls are calls for assistance
received from other emergency services such as the fire department and ambulance service. The class
of a call may be determined from its source. For example, emergency (111) calls are first routed to a
telephone operator, and then to the call centre, and therefore can be recognized. Emergency (111) calls
and allied emergency service calls are treated identically by the call centre. Therefore, we treat these
calls as a single class (class 1) calls. The non-emergency (general) calls form the second class.

Calls are answered by call takers who log information on the call, and pass the call on to the relevant
dispatcher who coordinates police response. Class 1 calls have non-preemptive priority over class 2 calls,
i.e., if a call taker is unavailable when a call arrives then the call is queued, irrespective of the call’s class,
and queued class 2 calls are answered only after any queued class 1 calls have been completed.

∗This research was conducted while the authors were members of the Department of Engineering Science at the University
of Auckland.
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The PCC is interested in determining the number of call takers required to ensure that 90% of
emergency calls are answered within 10 seconds, and 80% of general calls are answered within 30 seconds.
We do not consider the related question of how many dispatchers are required to ensure that dispatchers
are not overloaded. The answer to this question depends on factors such as a person’s ability to handle
psychological stress that we are not qualified to address.

This specific problem may be modeled as follows.
Consider a queueing system that receives calls of several types or classes, 1, . . . , p. Calls of class i

receive nonpreemptive priority over calls of class j if i < j, i.e., a free service agent will answer a call
of class j only if there are no calls of class 1, . . . , j − 1 waiting, and calls are never interrupted. We
assume that calls of class i arrive to the system according to a nonhomogeneous Poisson process with
rate function (λi(t) : t ≥ 0), and require a service time that is exponentially distributed with mean µ−1

i ,
for i = 1, . . . , p.

We wish to determine staffing levels that ensure that all call classes receive “satisfactory” service. By
satisfactory service we mean that at least pi% of class i calls are served within mi seconds, for i = 1, . . . , p.
This definition of satisfactory service is common in the call centre industry, and is used by the PCC.
Notice that this definition allows one to ensure, for example, that some percentage of class i calls are
answered immediately (set mi = 0). Other definitions of satisfactory service are, of course, possible,
although we do not discuss them further here.

The presence of a time-dependent arrival rate makes an exact analysis of this model extremely difficult.
As is common in analyzing call centres, we apply the stationary, independent, period by period (SIPP)
approximation (Green, Kolesar and Soãres 1999) to this problem. That is, we consider each time-period
of the day in isolation, assuming calls of class i arrive according to a homogeneous Poisson process with
rate λi, compute stationary measures of this approximate system, and use these to determine staffing
levels.

To the best of our knowledge, expressions for the steady-state customer waiting time distribution
(exclusive of service) are not available for this model. However, if one assumes that the service rates
are not class-dependent, i.e., that µi = µ for all i, then the Laplace-Stieltjes transforms (LSTs) can be
derived (Davis 1966). Kella and Yechiali (1985) obtained the same results as Davis in a simpler fashion.

The LST for the class 1 call waiting time distribution is easily inverted, and so it is possible to easily
predict the performance on class 1 calls for any given staffing level. However, for i > 1, it is not possible
to analytically invert the LST for the waiting time distribution of class i customers. Therefore, one might
turn to numerical transform inversion (Abate and Whitt 1995) to compute the tail probabilities needed
to set staffing levels in the above model.

Unfortunately, the algorithms given in Abate and Whitt (1995) rely on calculations involving complex
variables. Such calculations are not easily implemented in a spreadsheet setting. This is an important
consideration in selecting a method for setting staffing levels, since staffing levels are typically set by a
local manager who has little or no familiarity with, or access to, specialized computer packages.

Therefore an alternative to numerical transform inversion may be required. We use easy-to-implement
inequalities to obtain a bound on waiting time performance for non-emergency calls in the PCC appli-
cation, and this approach is discussed in Section 2, where we consider the setting of staffing levels in a
priority queue.

Once an appropriate queueing model is chosen, it remains to identify the parameters of the model
for each period in which a separate staffing level is considered. The typical approach used is to extract
historical data from a database on the number of calls in a particular period in the past, take the average
of these values, and use the average as the arrival rate parameter. For example, if we are considering
the time period Monday from 8am - 9am, then each datum gives the number of calls received on a past
Monday from 8am - 9am. If one has n weeks of recorded data, then the data set will be of size n.

There are at least 3 potential sources of error in estimating the arrival rate for a future period in this
fashion.

1. Estimation error: The arrival rate estimator is an average of a finite number of random variables,
and as such will not give the “exact” value of the arrival rate parameter, even in the case where
the data are assumed to be independent and identically distributed (i.i.d.) with finite mean.

2. Nonstationarity: There may be nonstationarities in the data, even when one focuses on a particular
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period like Monday 8am-9am, so that it is not reasonable to assume that the data are identically
distributed. In such cases the arrival rate in a future period may not be well-predicted by the
number of arrivals in the corresponding previous periods. Such nonstationarities could arise in the
PCC, for example, due to changes in climate over the year. The winter months are colder and
wetter than the summer months, so that people’s lifestyles also change. This can lead to a change
in both the volume and nature of calls. Such nonstationarities might be detected and predicted
using standard time-series methods, at least when one has several “seasons” of data. This quantity
of data was not available when we completed our study for the PCC.

3. Random arrival rate: It may be that in any particular period calls are arriving according to a
Poisson process with rate Λ say, but the arrival rate Λ itself may be random. Note that conditional
on a realization of the random variable Λ, calls arrive according to a Poisson process with rate Λ.
For example, call takers at the PCC have observed that they tend to be busiest on days with poor
weather conditions. This suggests that the arrival rate Λ may be a function of weather conditions,
and as such may be viewed as being random.

All 3 of these mechanisms lead to uncertainty in the true arrival rate that will be experienced in
the period for which one is making staffing level decisions. One might use the terminology “forecasting
error” to describe this situation. Forecasting error might also arise at a call center dedicated to retail
sales after the introduction of a new product. One cannot exactly predict the arrival rate that will be
faced. Forecasting error can be modeled by assuming that the actual arrival rate is random. Note that in
the case of nonstationarities the arrival rate may not actually be random, but mathematically speaking,
the procedure one follows to set resource levels can be captured within a random arrival rate framework;
see Section 5.

We therefore have strong motivation for considering the case where, conditional on a realization of the
random arrival rate, calls arrive according to a Poisson process. Such processes are known as conditional
Poisson processes (see, e.g., Ross 1983, p. 49), doubly-stochastic Poisson processes or Cox processes.
Rolski (1981, 1986) investigated such processes in relation to single-server queues, and established bounds
on certain performance measures.

Remark 1: A more general form of this problem is one where the arrival rate to the system is both
time-varying and random. Given the complexities of dealing with the special case of a time-varying
nonrandom arrival rate, we will not address this more general problem here. Instead, we will focus on
the case where the random arrival rate, once realized, is constant. The justification for this approach is
similar to that for the SIPP approach. In particular, if the periods under consideration are long enough
relative to the relaxation time of the system, then it is reasonable to approximate the performance in a
given period by steady-state performance measures evaluated at the random arrival rate.

Remark 2: Several authors are currently developing techniques to incorporate the effect of forecasting
error for a variety of parameters (not just arrival rates) in the simulation setting; see Chick (2001) and
the references therein.

Thompson (1999) explored the impact of a random arrival rate, and suggested methods for dealing
with it. Our theoretical results in Section 3 and Section 4 complement the empirical results of Thompson.
In Section 3 we explore the impact of a random arrival rate on predicted service performance in very
general terms. This impact is most easily isolated when the service measure is a concave or convex
function of the arrival rate of calls. The results of this section are straightforward to establish, but their
implications may be very important in setting staffing levels in some call centres.

To buttress this point, in Section 4 we consider several models that are commonly used in the call
centre industry to predict service performance, and examine their convexity/concavity characteristics.
Our results show that one will typically overestimate the performance that will be achieved with a given
staffing level if a random arrival rate is ignored, although the reverse is possible in some contexts.

In Section 5 we provide an approach for detecting and modeling a random arrival rate. We assume
that it is possible to compute performance conditional on a fixed, deterministic arrival rate. Therefore, we
do not limit ourselves to the models considered in Section 4. In particular, we can apply these ideas to the
PCC problem, and to more complicated call centres where more complicated models may be appropriate.
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As we describe in Section 5, it is possible to use straightforward techniques to test whether there is a
need to go to the extra trouble of explicitly modeling a random arrival rate. We describe how this can
be done in Section 5, and in Section 6 explain the outcome of such calculations in our study of the PCC.

Finally, in Section 6, we offer some conclusions. In particular, we elaborate on when we believe that
it is important to explicitly model a random arrival rate.

In summary, we view the primary contributions of this paper as follows:

1. We show how to apply a multi-server priority queueing model to assist in setting staffing levels in
call centres.

2. We use easily implemented inequalities as a simple substitute to numerical transform inversion to
obtain bounds on service time performance that can be easily computed within a spreadsheet.

3. We explore the implications of a random arrival rate in terms of setting staffing levels in call centres,
and show that one will typically overestimate service level performance if a random arrival rate is
ignored. These results reinforce, and help explain, the empirical results of Thompson (1999).

4. We provide an approach for detecting, modeling and accounting for a random arrival rate in setting
staffing levels for call centres.

2 The Non-Preemptive Priority Queue

In this section we summarize results from Davis (1966), and Kella and Yechiali (1985) for a non-preemptive
priority queue model, and show how to apply these in setting staffing levels for call centres with customer
classes of differing priorities.

Consider a queueing system where customers may be one of p priority classes. Customers of class i
(1 ≤ i ≤ p) arrive according to a Poisson process with rate λi > 0. Service times for all customers are
exponentially distributed with common mean µ−1 and there are c servers. Customers of class i < j have
non-preemptive priority over customers of class j, so that queued customers of class i are served before
queued customers of class j. Within each class, customers are served in FIFO order. We assume that∑

λi < cµ, so that the system is stable.
Let Wi denote the steady-state waiting time in the queue (exclusive of service) for class i customers.

Davis (1966) and Kella and Yechiali (1985) both derive the LST W̃i(s) = E exp(−sWi) of Wi for i =
1, 2, . . . , p. In what follows, we borrow heavily from Kella and Yechiali’s notation.

Let λ and ρ be the total arrival rate, and overall traffic intensity respectively, so that λ =
∑p

i=1 λi

and ρ = λ/(cµ). For 1 ≤ i ≤ p, define the traffic intensity due to class i customers ρi = λi/(cµ), and the
cumulative traffic intensity due to class i customers and above σi =

∑i
j=1 ρj . Define σ0 = 0.

For i ≥ 2, define λ<i to be the cumulative arrival rate of customers in classes 1 through i− 1, so that
λ<i =

∑i−1
j=1 λj , and set λ<1 = 0. For i ≥ 2, let γ̃i(s) denote the LST of the busy period B in an M/M/1

queue with arrival rate λ<i and service rate cµ, so that

γ̃i(s) = E(e−sB) =
s + λ<i + cµ− [(s + λ<i + cµ)2 − 4λ<icµ]1/2

2λ<i
,

where it is understood that the square root in the numerator is the nonnegative square root. For i = 1,
we define γ̃i(s) = cµ/(cµ + s).

The LST W̃i of the steady-state waiting time Wi in the queue for class i customers is then given by

W̃i(s) = E(e−sWi) = (1− η) + η
cµ(1− σi)(1− γ̃i(s))

s− λk + λkγ̃i(s)
,

where

η =
(λ/µ)c

c!(1− ρ)

[
c−1∑

k=0

(λ/µ)k

k!
+

(λ/µ)c

c!(1− ρ)

]−1

,

the steady-state probability that all servers are busy.
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We now turn to specializing these results to the case in point, namely setting staffing levels in call
centres with calls that receive different priority.

When i = 1, the LST for Wi simplifies somewhat to

(1− η) + η
cµ− λ1

cµ− λ1 + s
,

so that conditional upon a class 1 call having to wait, the waiting time is exponentially distributed with
parameter cµ− λ1. We immediately conclude that for w ≥ 0,

P (W1 > w) = ηe−(cµ−λ1)w. (1)

For i ≥ 2, it does not appear to be possible to analytically invert the LST W̃i, so that another method
is needed to determine tail probabilities of the form (1) for these customers.

Abate and Whitt (1995) provide algorithms for numerically computing tail probabilities such as (1)
from LSTs. One could certainly use their algorithms to determine the required tail probability for class
i customers (i > 1). These algorithms require complex arithmetic, which is not likely to be available to
the average call centre manager through the spreadsheets that they typically use. In particular, we were
using Microsoft Excel at the PCC, which does not have built-in support for complex arithmetic.

Markov’s inequality (see, for example, p. 74 of Billingsley 1986) for a non-negative random variable
X and constants x, α > 0 states that

P (X ≥ x) ≤ EXα

xα
.

Hence, we may immediately conclude that for i ≥ 2,

P (Wi > w) ≤ min{EWi

w
,
EW 2

i

w2
}. (2)

Equation (2) provides us with an upper bound on the tail probabilities of Wi, and hence a lower bound
on P (Wi ≤ w) for any w > 0. In particular, in the PCC application, if w = 30 seconds, then we obtain a
lower bound on the fraction of class 2 calls that wait for 30 seconds or less in the call centre. This bound
is not the exact value that we would prefer, but it is a reasonable indication of service level for a given
number of servers.

It is worth noting that we could use several other well-known inequalities, such as Chebyshev’s in-
equality, or the Chernoff bound

P (Wi > w) ≤ e−θwE(eθWi),

valid for any θ > 0 such that the expectation exists. None of these inequalities dominates the other, so
that it may be worthwhile considering several of these in the expression (2). However, we found that (2)
was sufficient for our purposes.

Now, assuming that the arrival rates λi, i = 1, . . . , p of calls to the call centre are fixed, one can
use these results to determine the number of servers c required to ensure that the call centre service
requirements are met. Indeed, one simply increases c until (1) with w = m1 seconds falls below (100 −
p1)%, and (2) with w = mi falls below (100− pi)% for i ≥ 2. Since the right-hand side of (2) is a bound,
and not the exact value, it follows that this process is conservative, in that the required service levels will
certainly be met (under the distributional assumptions of the model).

An alternative approach is to ignore the class i requirements (i > 1) for the purposes of setting staffing
levels, and simply report the bound generated by (2). Here, we increase c until (1) with w = m1 seconds
falls below (100 − p1)%. This procedure will not guarantee that the performance requirements will be
met for low priority customers. However, if the lower bounds generated by (2) are not too far from their
targets, then we can be reasonably confident of coming close to these goals.

This was the approach we adopted in setting staffing levels for the PCC. We ignored the requirement
for class 2 (non-emergency) calls in setting the staffing levels. The bounds that we generated showed that
typically, at least 70% or so of class 2 calls would be answered within 30 seconds, whereas the requirement
was 80%. Our contacts at the PCC were very happy with this conclusion.
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3 The Impact of a Random Arrival Rate

It is reasonable to expect that the same staffing plan will be used at the PCC on Mondays through
Wednesdays, partly to keep the complexity of the staff schedule low, and partly because of the similar
nature of the demand for calls on these days. Since we will use a single staffing level to cover demand at
a variety of times, it is worth exploring whether the data support the notion of a common arrival rate at
such times.

As part of our analysis of the data, we considered the number of calls received between 8am and 9am
on Mondays through Wednesdays from March 2 1998 through August 31 1998. This is a period of 26
weeks, and so there were a total of 78 observations. We then computed the mean of all 78 observations,
and tested the null hypothesis that the data were Poisson with the computed mean. If the arrival process
of calls to the PCC follows a nonhomogeneous Poisson process where the arrival rate function is the same
on Mondays, Tuesdays and Wednesdays, then one would expect to not reject the null hypothesis.

A chi-squared test using 9 bins gave a test statistic of 60.2. The cutoff value at the 99% level for
a chi-squared test with 8 degrees of freedom is 20.1. Therefore, the null hypothesis was resoundingly
rejected.

This result suggests that we may need to explicitly consider a random arrival rate in computing
staffing levels. Whether the result is caused by nonstationarities in the data, or a random arrival rate, or
perhaps some other mechanism, the fact remains that we wish to use the same staffing levels from 8am -
9am on all 3 days. Therefore, it is reasonable to model the arrival of calls during this period as a Poisson
process with an arrival rate that varies from day to day. The mechanism that drives this variation in
arrival rate is due to weather and other factors that will almost certainly be unknown at the time that
staffing level decisions are being made. Hence, we may view the arrival rate as being random.

This same “random arrival rate” phenomenon arises when there is considerable uncertainty in one’s
forecasts of the future arrival rate of calls, perhaps because of a change in business practices. This might
occur with the introduction of a new product, for instance. Furthermore, if one only has a limited amount
of data with which to predict the arrival rate, one could view the arrival rate estimate as being somewhat
uncertain, and so once again, we can view the arrival rate as being random; see Section 3 of Whitt (1999).

Most call centre planners do not explicitly consider such issues. Therefore, it is worth exploring the
potential impact of a random arrival rate on staffing level decisions, when the arrival rate is assumed to be
deterministic. To supply as general a result as possible, we first consider a relatively abstract framework.
In Section 4 we will consider more concrete examples, and in Section 6, we will discuss how these results
apply to the PCC problem.

Let the real-valued random variable Λ denote the random arrival rate to the system of interest. Let
f(λ) denote the (assumed deterministic) service performance of the system conditional on Λ = λ. For
example, f(λ) might represent the probability that a customer waiting time is less than some prespecified
bound. Clearly, the function f may depend on other factors, such as service rate and number of servers,
but we suppress this dependence in our notation for clarity. We can, and do, assume that f is decreasing
in λ, so that performance deteriorates as the system becomes more heavily loaded. It is also reasonable
to assume that performance is increasing in the resource levels provided, although we suppress this
dependence in our notation. For the purposes of discussion, we assume that the call centre planner
wishes to set resource levels so that service performance equals or exceeds some lower limit `.

It is common to assume that the arrival rate is deterministic. We call this the “deterministic ap-
proach”. In the deterministic approach, a deterministic arrival rate is estimated in some fashion, and
then f is calculated at this value to determine an estimate of performance. Often, the arrival rate is
estimated by averaging the observed number of arrivals in previous periods. The deterministic approach
then amounts to estimating EΛ, and choosing the resource level so that f(EΛ) ≥ `. However, when the
arrival rate is random, the performance that is observed will be random, and equal to f(Λ).

There are several ways that one might deal with this random performance. A highly conservative
policy is to consider the worst possible case, and plan for that situation, i.e., to select resource levels so
that f(λmax) ≥ `. This might be the approach adopted in an emergency service call centre, for example.

A second approach is to attempt to plan so that the desired service level is achieved “in the long-run”,
i.e., when the performance on many days is averaged. If Λk is the (random) arrival rate on the kth day,
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then the average performance over n days is

1
n

n∑

k=1

f(Λk). (3)

The sample average (3) is known to converge under very general conditions on the stochastic process
(Λk : k ≥ 1). All that is needed is that the process (f(Λk) : k ≥ 1) be ergodic. For example, this holds if
the Λk’s are i.i.d. and f(Λ1) has a finite mean, or if Λk is derived from the kth iterate of a positive recurrent
Markov chain, and Ef(Λ∞) is finite, where Λ∞ is distributed according to the stationary distribution
of the Markov chain; see Theorem 17.0.1 of Meyn and Tweedie (1993). Hence, in great generality, this
second approach may be viewed as attempting to choose resource levels so that Ef(Λ) ≥ `.

It is our view that “most” service providers believe that their planning is in the vein of the long-run
average approach, namely, ensuring that Ef(Λ) ≥ `. However, by assuming a deterministic arrival rate,
they are, in effect, setting resource levels to ensure that f(EΛ) ≥ `. The following result, known as
Jensen’s inequality, shows that if the function f is concave, then they will fall short of their target service
level `. For a proof, see p. 283 of Billingsley (1986).

Theorem 1 Suppose that f is concave (convex) over an interval containing the range of Λ, and both
Ef(Λ) and EΛ are finite. Then Ef(Λ) ≤ (≥)f(EΛ).

While Theorem 1 is easy to establish, its consequences may be important. If f is concave and the
resource level is determined by ensuring that f(EΛ) ≥ `, then the long-run service level Ef(Λ) could
fall short of the required minimum `. Hence, the decision maker will provide too few resources in such
a case. The question then arises as to how serious the shortfall in performance will be. This is related
to how non-linear the function f is over the range of the random variable Λ. To this end we provide the
following result.

Theorem 2 Suppose that f is twice continuously differentiable over an interval N containing the range
of Λ. Suppose also that there exist constants K1 and K2 such that K1 ≤ f ′′(λ) ≤ K2 for all λ ∈ N , and
that EΛ2 < ∞. Then

K1

2
Var(Λ) ≤ Ef(Λ)− f(EΛ) ≤ K2

2
Var(Λ).

Proof: Expanding f in a Taylor series about EΛ gives

f(Λ)− f(EΛ) = f ′(EΛ)(Λ− EΛ) + f ′′(ξ)
(Λ− EΛ)2

2!
,

for some ξ = ξ(Λ) lying between Λ and EΛ. Applying the bounds on f ′′ and then taking expected values
gives the result.

Theorem 2 establishes bounds on the difference between Ef(Λ) and f(EΛ). If f is twice continuously
differentiable and concave, then f ′′ ≤ 0, so that we can take K1, K2 ≤ 0. Theorem 2 then gives upper and
lower bounds on the difference between predicted service f(EΛ) and (long-run average) actual service
Ef(Λ). In particular, long-run performance is at most

f(EΛ) +
K2

2
Var(Λ),

and if K2 < 0 then this is strictly less than the predicted level of service f(EΛ).
If f is convex, then the predicted service level f(EΛ) falls below the long-run average service level

Ef(Λ), so that resource decisions made based on the deterministic approach may be viewed as conserva-
tive. If f is twice continuously differentiable and convex, then f ′′ ≥ 0, so that we may take K1,K2 ≥ 0
in Theorem 2, and then we obtain bounds on how conservative we have been. In particular, the long-run
performance is at least

f(EΛ) +
K1

2
Var(Λ),
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and if K1 > 0 then this is strictly greater than the predicted level of service f(EΛ).
If f is both nonconcave and nonconvex over the range of Λ, then nothing can be easily asserted about

the relative magnitudes of f(EΛ) and Ef(Λ). Therefore, it is of some interest to ask, for some well-used
formulae, whether the function is concave, convex or neither, and this is the subject of the next section.

4 Some Typical Models

4.1 The M/M/1 Queue

The M/M/1 queueing system assumes that calls arrive according to a Poisson process with rate λ, and
are served in FIFO (first in-first out) order by a single server. The service times are assumed to be
independent of the arrival process, i.i.d., and exponentially distributed with parameter µ. This model is
not typically used in setting staffing levels for call centres because of the assumption of a single server,
but it is relevant in many other applications. Furthermore, it serves as an excellent vehicle for explaining
the key ideas of the previous section.

In the M/M/1 queue, the choice of service capacity relates to the choice of the service rate µ. Service
performance can be measured in several ways.

One approach is to say that service performance is satisfactory when the average time that customers
wait in the queue before reaching service is below some threshold. It is well-known (see p. 251 of Wolff
1989 for example), that if Wq denotes the steady-state waiting time in the queue before reaching service
and λ < µ, then

P (Wq ≤ w) = 1− λ

µ
exp(−(µ− λ)w). (4)

Hence, the expected waiting time in the queue is easily calculated to be

wq(λ) = EWq =
λ

µ(µ− λ)
.

Now, wq is increasing in λ. In our general discussion in the previous section, we assumed that the
merit function f was decreasing in λ, so set

f(λ) = −wq(λ) =
λ

µ(λ− µ)
.

Now, f ′(λ) = −(µ−λ)−2, so that f is indeed decreasing in λ < µ. Furthermore, f ′′(λ) = −2(µ−λ)−3

which is negative for λ < µ, so that f is concave in λ. Hence, it immediately follows from Theorem 1
that if λ is random, then one will overestimate service performance for a given µ > λ if the randomness
of λ is ignored.

For example, if the service rate µ = 3, and the arrival rate Λ is either 1 with probability 1/2 or λ0 < 3
with probability 1/2, then the predicted expected waiting time in the queue will be

wq1(λ0) =
1 + λ0

3(5− λ0)
,

while the true expected waiting time in the queue will be

wq2(λ0) =
1
12

+
λ0

6(3− λ0)
.

Observe that wq2(λ0)−wq1(λ0) > 0 for all 0 < λ0 < 3 with λ0 6= 1, and as λ0 → 3, the difference between
these predictions gets arbitrarily large.

This example clearly shows that it is quite possible for the difference between predictions of service
level to be significant.

A second choice of merit function might be the steady-state probability that the customer waiting
time in the queue is less than or equal to w say. In this case, the merit function f is given by (4). Again,
by direct calculation of the derivatives, one can show that f is decreasing and concave in λ < µ, so that
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Theorem 1 shows that if the arrival rate is random, then service performance will be overestimated for a
given µ > λ if the randomness in λ is ignored.

Further results on convexity of performance measures associated with M/G/1 queues can be found
in Rolski (1981), (1986). See Tu and Kumin (1983) and Weber (1983) for a proof that each customer’s
waiting time in a GI/G/1 queue is a convex function of the service rate. This result suggests that the
expected steady-state waiting time, when it exists, should be convex in the arrival rate, agreeing with
the result above that the negative of the expected steady-state waiting time is concave.

4.2 The M/M/c Queue

This is the same as the M/M/1 model except that there are now c > 1 servers. Again, it is well known
(see p. 256 of Wolff 1989) that if Wq is the steady-state waiting time in the queue (excluding service)
and λ < cµ, then

P (Wq ≤ w) = 1− P (Wq > 0) exp(−(cµ− λ)w), (5)

where

P (Wq > 0) = 1− p0

c−1∑

j=0

λj

µjj!
,

and

p0 =


 (λ/µ)c

(1− λ
cµ )c!

+
c−1∑

j=0

λj

µjj!



−1

.

Now, the expected waiting time in the queue before reaching service is, from (5),

wq(λ) = EWq =
P (Wq > 0)

cµ− λ
. (6)

Straightforward algebra shows that

P (Wq > 0) =
λc

c!µc∑c−1
j=0

λj

µjj! (1− j
c )

.

It is then easy to see (by dividing both numerator and denominator by λc) that P (Wq > 0) is increasing
in λ.

Hence, since (cµ − λ)−1 is increasing in λ, it follows from (6) that wq is increasing in λ. So if,
as in the M/M/1 case, the merit function f is the negative of (6), then f is decreasing in the arrival
rate λ. Furthermore, the product of two non-negative convex functions that either both increase, or
both decrease, is also convex, (cµ − λ)−1 has these properties, and Lee and Cohen (1983) showed that
P (Wq > 0) is increasing and convex in λ (for fixed µ). (See also Grassman 1983). Hence, the merit
function f = −wq is concave as a function of λ.

As a second example, suppose that the merit function is given by (5) for a fixed value of w. This
is the performance measure most commonly used in practice, namely, the proportion of customers who
wait less than some prespecified time w. Then, as above, we can show that f is decreasing in λ, and since
P (Wq > 0) is convex in λ, f is concave in λ. We state these results as a proposition.

Proposition 3 The expected steady-state waiting time in the queue EWq is increasing and convex, and
for any fixed w ≥ 0, P (Wq ≤ w) is decreasing and concave as a function of the arrival rate λ for
0 < λ < cµ.

The above discussion establishes that whether one is considering the expected steady-state waiting
time in the queue or its distribution, the appropriate merit function is concave as a function of the arrival
rate. Hence, from Theorem 1, it follows that if one assumes that the arrival rate is deterministic, when
in fact it is not, then estimates of service performance will be overstated. As in the M/M/1 case, the
error can be seen to be arbitrarily large.
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We remark that other authors have considered convexity issues related to multiserver queues. In
particular, Rolfe (1971) (Dyer and Proll 1977) examined convexity of M/D/c (M/M/c) queues with
respect to the number of servers. Weber (1983) gives an example demonstrating that the mean customer
waiting time in the queue need not be a convex function of the service rate for the GI/G/2 queue. Harel
and Zipkin (1987) showed that the mean customer sojourn time in the M/M/c queue is jointly convex
in the arrival and service rates.

4.3 The M/G/c/c Queue

Our final example is the M/G/c/c queue. This is a queueing system with c servers, exponentially
distributed interarrival times with mean λ−1, and i.i.d. service times with mean µ−1. Customers that
arrive when all c servers are busy are lost. The well-known Erlang-loss formula yields the steady-state
probability pe that an arriving customer finds an available server, and therefore is not lost. We shall take
pe as our merit function, so that

f(λ) = pe = 1− (λ/µ)c/c!∑c
j=0(λ/µ)j/j!

.

As in the M/M/c case, it is straightforward to show that f is decreasing in λ. We then turn to the
question of curvature of f . Observe that f(λ) = hc(λ/µ), where

hc(x) = 1− xc/c!∑c
j=0 xj/j!

.

Plots of the function hc for c = 1, c = 2 and c = 3 are given in Figure 1 below. Values of c > 3 are
similar to the c = 3 case.

Figure 1: The functions h1, h2 and h3.

Except for the case c = 1, the curves appear to be initially concave, to pass through a point of
inflection, and to then become convex. In fact, this was established in Harel (1990).

So suppose that the arrival rate is random, and equal to Λ. If c = 1, then the assumption that the
arrival rate is deterministic will actually lead to conservative estimates of performance. However, the
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Erlang loss formula is usually of more interest for multiple servers. Observe that for a given c > 1,
if the range of Λ/µ is restricted to the region where hc is concave (convex) then the assumption of a
deterministic arrival rate will lead to optimistic (conservative) service performance estimates. If the
range of Λ/µ includes both concave and convex regions of hc, then nothing can be said about the relative
magnitudes of predicted and actual performance.

It is worth noting that in systems where a high level of service is required, the number of servers
will be chosen so that Λ/µ will be restricted to low values (relative to the number of servers). In this
case, we can expect that service performance will be overestimated when the arrival rate is assumed to
be deterministic, because of the initial concavity of the functions hc. (See Harel 1990 for results relating
to the exact location of the points of inflection of the functions hc.)

5 Setting Staffing Levels in the Presence of a Random Arrival
Rate

In the previous sections we looked at the potential impact of a random arrival rate on predictions of
performance. In this section we consider the practical issues of how one detects, models, and accounts
for a random arrival rate in setting staffing levels. We only assume that one can compute performance
f(λ) conditional on the arrival rate Λ taking the deterministic value λ. We are therefore not restricting
attention to the models considered in the previous section. We are interested in computing the long-run
average performance Ef(Λ).

In the case where the randomness in Λ is due to uncertainty in arrival rate forecasts, the distribution
of Λ reflects our uncertainty in the value of the “true” arrival rate. In this case, we may assume that the
distribution of Λ is known. However, when the “randomness” in Λ is due to a random or nonstationary
arrival rate, we need to infer the appropriate distribution for Λ from the data.

Assuming that one can infer the distribution of Λ, then the calculation or approximation of Ef(Λ) is
straightforward. Therefore the interesting questions here are how to detect and model a random arrival
rate.

We assume that we have as data the number of arrivals (calls) Ak in each of n periods (k = 1, . . . , n).
The arrivals in period k are assumed to be generated by a Poisson process with rate Λk, where Λ1, . . . , Λn

are i.i.d. This model subsumes the nonrandom constant arrival rate case, in which case Λk = λ0 for all
k, for some λ0.

If the arrival rate is non-random and fixed, then the Ak’s will be i.i.d. Poisson random variables.
One may apply standard tests to assess whether the Ak’s are consistent with a Poisson distribution; see
Section 6.6, p. 347 of Law and Kelton (2000) for instance.

If a test gives no reason to reject such a hypothesis, then one may quite reasonably view the data as
consisting of Poisson distributed random variables with mean λ0. An estimate of the arrival rate λ0 is
given by the sample mean Ān. The central limit theorem establishes that Ān is approximately normally
distributed with mean λ0 and variance λ0/n. We can interpret this result as saying that the value of
λ0 is uncertain, and the uncertainty in its true value is well-represented by a (truncated at 0) normal
distribution with mean Ān and variance Ān/n. The question of whether the estimation error (on the
order of

√
(Ān/n)) needs to be explicitly modeled depends on the performance function f . A conservative

approach is to compute Ef(Λ) where Λ assumes the truncated normal distribution given above. One
can then compare the answer to the value f(Ān) that corresponds to the standard approach of assuming
that Ān gives the true deterministic arrival rate. If the answers are, for all practical purposes, the same,
then we can ignore the estimation error, i.e., we don’t explicitly model a random arrival rate. This is
the approach most commonly followed at present. If not, then we would use Ef(Λ) as our estimate of
performance.

If a test rejects the Poisson hypothesis, it does not necessarily mean that a random arrival rate is
present. As mentioned earlier, there could be seasonality in the data, so that the arrival rate is varying
with time in a deterministic fashion. However, if we are to use the same resource levels for all of the
periods under consideration, then it is immaterial whether the variation in arrival rate is random in
origin, or deterministic. In either case, we need to set resource levels to cope with periods of differing
arrival rates.
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Freedman (1962) looked at the problem of estimating the distribution of Λ in a context very similar
to ours. Unfortunately, his method only applies in the situation where one has many observations of the
number of arrivals for each realization of the random variable Λ. We have but one observation Ak for
each independent realization Λk of Λ, so that his method cannot be used.

We will consider a simple parametric approach to estimating the distribution of Λ. In particular,
suppose that Λ has distribution function Fθ, where θ is a finite set of parameters for the distribution. For
example, in the situation considered by Thompson (1999) where Λ is assumed to be normally distributed,
θ might consist of the mean and variance of the distribution.

With this framework, one could follow the standard maximum likelihood approach to estimating θ.
However, the likelihood function takes on an imposing form, so that this approach would require some
form of numerical optimization. We instead consider a method of moments approach that is very easy to
implement.

It is easily shown that the kth factorial moment EAk of a Poisson random variable A with mean λ is
given by

EAk = EA(A− 1)(A− 2)...(A− k + 1) = λk.

Thus, EA
k
1 = EE(Ak

1 |Λ1) = EΛk
1 . One can then fit p parameters by equating the first p sample

factorial moments of A1, A2, ..., An with the first p central moments EΛ1, EΛ2
1, ..., EΛp

1. This approach is
similar to that discussed in Section 3 of Whitt (1999).

For example, suppose we assume, as Thompson (1999) did, that the arrival rate Λ is normally dis-
tributed with mean γ and variance σ2. It is then possible that Λ takes on negative values, or values
greater than the service rate, so we take the usual approach of fitting the parameters of this distribution
ignoring such a possibility, and then use the truncated distribution in practice.

In this case, EΛ = γ, and EΛ2 = σ2 + γ2. We may estimate γ by

γ̂ =
1
n

n∑

k=1

Ak,

and σ2 by

σ̂2 =
1
n

n∑

k=1

Ak(Ak − 1)− γ̂2.

At this point we have an estimate for the distribution of Λ and can now compute, or approximate,
Ef(Λ) as required. One can then increase staffing levels until this performance measure reaches a satis-
factory level.

6 Conclusions

In this paper we have examined two issues.
The first relates to setting staffing levels in call centres with customers of different priority levels.

We have explained how to use previously derived results for a priority queueing model to set staffing
levels. One approach is to numerically invert the (known) LSTs of waiting time distributions. We did not
go into details for this approach, because the required calculations are beyond the computing facilities
typically available to call centre managers. We offered alternatives, based on well-known inequalities,
that are easily computed within a spreadsheet environment. The alternatives give bounds on the results
we require, and perform very well on the PCC problem.

The second issue involves the implications of a random arrival rate. A random arrival rate can be
used to capture uncertainties in arrival rate forecasts, to capture nonstationary effects in the data, or
indeed, to capture the case where the arrival process is a conditional Poisson process where the arrival
rate is in fact random.

Our results indicate that it is important to explicitly model the random arrival rate if the underlying
performance measure is highly nonlinear over the range of the random arrival rate. We looked at several
performance measures related to delay systems, and showed that the presence of a random arrival rate
will lead to overpredictions of service performance. In the case of loss systems, it is likely that the same
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is true, although the reverse is possible in heavily loaded systems. Hence, if one ignores a random arrival
rate, one will typically underestimate the number of staff required on hand to achieve a given performance
level.

Of course, the main concern from a practical point of view is the degree of this effect. We supplied
a practical method for detecting and modeling a random arrival rate, and described how to compute
performance in this setting. The approach is very general, and in particular does not rely on the use of
the very specific models considered in Section 4, nor does it rely on any convexity assumptions.

One can use this method in a simple “pilot study” to compare performance assuming a deterministic
arrival rate, to that assuming a random arrival rate. We took exactly this approach in the PCC problem.
We found that there were only a few hours in the week when the recommended number of call takers
increased, and in such cases the change was only one extra call taker. The number of call-takers on
duty at any given time in the PCC is typically on the order of 7 or 8. This effect may therefore be
considered to be somewhat “second-order” for the PCC application, and we contented ourselves with
using a conservative estimate of the call-taker service rate to help mitigate the random arrival rate effect.
That is, the random arrival rate effect was not a primary consideration for the PCC problem.

Of course, this does not preclude the possibility that the random arrival rate effect might be impor-
tant in other settings. In particular, these considerations will be important when there is considerable
uncertainty in arrival rate forecasts to reasonably heavily loaded systems, and this is certainly a common
situation in practice.
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