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TWO KINDS OF THE REVERSE HARDY-TYPE
INTEGRAL INEQUALITIES WITH THE EQUIVALENT
FORMS RELATED TO THE EXTENDED RIEMANN
ZETA FUNCTION

Michael Th. Rassias*, Bicheng Yang and Andrei Raigorodskii

Applying techniques of real analysis and weight functions, we study some
equivalent conditions of two kinds of the reverse Hardy-type integral inequal-
ities with a particular nonhomogeneous kernel. The constant factors are
related to the Riemann zeta function and are proved to be best possible. In
the form of applications, we deduce a few equivalent conditions of two kinds
of the reverse Hardy-type integral inequalities with a particular homogeneous
kernel. We also consider some corollaries as particular cases.

1. INTRODUCTION

In 1925, by introducing one pair of conjugate exponents (p,q), Hardy [1]
proved the following extension of Hilbert’s integral inequality:
For p > 17% + % =1, f(z),9(y) >0,

0< / fP(z)dr < 0o and 0< / 99(y)dy < oo,
0 0

it holds

(1.0.1) /OC>O /000 dedy < S.m(ﬂm (/000 fp(x)dx); (/OOO gq(y)dy>}z ,
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where, the constant factor
0

sin(r/p)
is the best possible.
Inequalities such as (1.0.1), as well as Hilbert’s integral inequality (for p = ¢ = 2
in (1.0.1), cf. [2]) are known for their importance in mathematical analysis and
its applications (cf. [3], [4]). In 1934, Hardy et al. proved an extension of (1.0.1)
with the kernel kq(z,y), where ki(x,y) is a nonnegative homogeneous function of
degree —1 (cf. [3], Theorem 319). Additionally, the following Hilbert-type integral
inequality with a nonhomogeneous kernel is proved:
Ifp>1,2+1=1nhu) >0,

P(o) = /OOO h(u)u® tdu € Ry,

then

1

(1.0.2) / N / " ha) f@)g(y)dudy

< o)/ xp-sz’(x)dx)é ([ owan)"

where the constant factor (25(%) is the best possible (cf. [3], Theorem 350).

In 1998, by introducing an independent parameter A > 0, Yang proved an extension
of (1.0.1) for p = g = 2 with the kernel ﬁ (cf. [5], [6])- In 2004, by introducing
another pair of conjugate exponents (r,s) (r > 1, % + % = 1), Yang [7] proved an
extension of (1.0.1) with the kernel —+— (XA > 0). In 2005, yet another extension of

z)\er/\
(1.0.1) as well as of the result of [5] was given in [8], with the kernel A > 0).

(af-s-ly)* (
Several authors (cf. [9]-[17]) have proved some further extensions.

In 2009, Yang gave the following extension of (1.0.1) (cf. [18], [20]):

If A\ + X2 =X € R:=(—00,00), kx(z,y) is a nonnegative homogeneous function
of degree —\, satisfying

ka(uz, uy) = u= ka2, y) (u,z,y > 0),
k(A1) = / Ex(u, Du~du € Ry := (0, 00),
0

then for p > 1,%—1—%: 1, we have

(1.0.3) / h / " (@, y) £ (2)g(y)dady

< kW) ( / N a:”“*l“fp(m)dx) ’ ( / N yq“h“gq(y)dy)q ,
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where the constant factor k(A1) is the best possible; for 0 < p < 1, % + % =1, we

obtain the reverse of (1.0.3). The following extension of (1.0.2) was also proved:
Forp>17%+%:1, we have

(1.0.4) / N / " hew) f@)g(y)drdy

< ¢(0) (/0 xp(l“)lfp(x)dx); (/OOO yq“")lg"(y)dy>é ,

where the constant factor ¢(c) is the best possible; for 0 < p < 1, ]% + % =1, we
obtain the reverse of (1.0.4) (cf. [19]).

In [20], some inequalities equivalent to (1.0.3) and (1.0.4) are considered. In 2013,
Yang [19] studied also the equivalency of (1.0.3) and (1.0.4). In 2017, Hong [21]
proved an equivalent condition between (1.0.3) and some parameters.

Remark 1.1. (¢f. [19]) If h(xzy) = 0, for xy > 1, then

é(0) = / h(w)u®'du = 61(0) € Ry,

and the reverse of (1.0.4) reduces to the following reverse Hardy-type integral in-
equality with the nonhomogeneous kernel:

w5 [ ( / h<xy>f<a:>dx> dy
> (o) ( I xpﬂ—”—lfP(x)dx); ( I yq“—”)—lg%y)dy)‘l’ ,

where the constant factor ¢1(o) is the best possible.
If h(zy) = 0, for xy < 1, then

o) = | By du = 6a(0) € R,

and the reverse of (1.0.4) reduces to the following other kind of the reverse Hardy-
type integral inequality with nonhomogeneous kernel:

(1.0.6) / o) ( / h h(wy)f(x)dx> dy

> (o) ( /0 = pti-a)-1 fp(x)dx> ’ !

b > (1-0)—1 ¢
( / y? gq(y)dy) ,
0

where the constant factor ¢o(o) is the best possible.
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In this paper, using techniques of real analysis and weight functions, we obtain a
few equivalent conditions of (1.0.5)((1.0.6)) with the particular kernel

[ In2y|”
[(@y)* =1

The constant factors are related to the extended Riemann zeta function and are
the best possible. In the form of applications we obtain some equivalent conditions
of two kinds of the reverse Hardy-type integral inequalities with the particular
homogeneous kernel

(B,A>0).

|Inz/y|?

FEy—Y (B,A>0).

We also consider some corollaries as particular cases.

2. AN EXAMPLE AND TWO LEMMAS

Example 1. Setting h(u) = [Inul” (u > 0), then we obtain

= 1]

| Inzy|”

M) = T 1]

(z,y>0),

and for B,o, A > 0,

1 —1 B 1 0o
kg\l)(o') ::/0 (Il’u)uﬂ—ldu:/(; (_lnu)ﬁzuk)\-‘ra'—ldu

1—wu?
1 k=0
= ZZ’;O/ (— Inw)PurrA o1y,
0

Setting v = (kA + o)(—Inu) in the above integral, we get

0.7 K0 = S L [T e
(2.0.7) A (0) 2 (k)\JrJ)ﬁH/O vee “dv
rB+1
= ()\,3+1 )C(ﬁ_’_lv%) €R+7

where -
T'(n) ::/ v e dv (n > 0)
0

is the gamma function and

— 1
¢(s,a) := E - (Res >1,a>0)
= (k+a)

is the extended Riemann zeta function (((s,1) = ((s) is the Riemann zeta function)

(cf. [24]).
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For A\ > max{0, 0}, setting v = =, we obtain
3] 1
9 (In u)ﬁ o (—Inw)? o
k’f\)(a) ::/1 71U 1dU:/O ﬁ'dk 1du

Aﬁiﬂ’cw +1,25%) € Ry

In the sequel, we shall always assume that
1 1
O<p<l(g< 0)7];4—5 =1,01 € R, and B, \, My, M5 > 0.

Lemma 2.2. If o > 0 and for any nonnegative measurable functions f(x) and g(y)
in (0,00) the following inequality

o0 y nxy|?
(2.0.8) /0 9(y) [ /0 chly)f’_'”ﬂx)dz] dy

1 00 :
> M [/ xpﬂff“fp(x)dx]p{/ yq“‘fl“g%y)dy}
0 0

holds true, then we have
o1 =0 and M; < kg\l)(o).

Proof. If 01 < 0, n € N, we define the functions

Folz) = J;U+ﬁ—1,0<:17§1 (y) = 0,01<y<1
e 0,z >1 > Iy YTy >1

and derive that

1 l

— = p(1—o)—1 ¢p ? ~ q(1—01)—1
I [/ . fn<x>dx} [/ i <>dy}
1 % 00 ) %
() ([ )

Setting u = zy, for 0 < p < 1, we obtain

1
> v [y’
I :=/ gn(y /7fnxd:c dy
A ”[o gy — 17"
o 1
v (—ln:ry)ﬂ o+-L—1 o1 — -+ —1
= = x? T dx TTan T
/1 V 1= (o) ’ ’
—lnu 1
(o1—0) 771d U+T71d
/1 / 1—ur ! Y

1
) /(—lnu> gy < (@)
0

= 1
ooty 1—ur o—o

n
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and then by (2.0.8), it follows that

(1)

g — 01

By (2.0.9), for n — oo, in view of kg\l)(a) < 00,0 —o1 >0 and M; > 0, we find
that

o0 > M Z 00,
g — 01
which is a contradiction.
If 1 > o, then for
n > ! (n € N)
~ lgl(o1 —0) ’

we define the following two functions

~ 0,0<z<1 ~ a1tz =1 <1
— ’ 1 — Yy a U<y <
fn(x) . { JIU_PT”‘_I,JC Z 1 ’ gn(y) . { 07y >1 )

and derive that

1
q

o= (e pwas) [ [0 gma)
0

¢S] 1 1 H
= </ :z:"ltldz> (/ yvltldy) =n.
1 0

Setting v = xy, in view of o1 + qin > 0 (q < 0), we obtain
1
~ R = |lnayl? _
b= [ R@ | [T s | do
0 o |@yr—1]

o[ r= (— Inzy)?
_ y) o1+t -1 o—-L 1
= /1 [/0 71 — (a:y))‘ Yy Tan T N dy | 277 T de

o0 1
:/ x(”*al)*%*ldx/ Muoﬁ-ﬁ—ldu
1 0

1—ur

1 (1)
< / (I ot < 510,
ai=otn Jo 1—u o1 —0

and therefore by Fubini’s theorem (cf. [22]) and (2.0.8), we find

ki (o) [ v |Inzyl® ~
(2.0.10) e Il—/o gn(y) [/0 |(xy)k_1|fn(x)dx1 dy

M1<71 = Mln.

V

Vv
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By (2.0.10), for n — oo, we obtain that

(o)

01— 0

oo > > 00,

which is a contradiction.
Hence, we conclude that o1 = 0.
For o1 = o, we get that Iy > M;J; and thus

1 1
—1 B -1 B
k&”(o—)z/o (nu)u"_ldu>/0 (ﬂu”ﬁ*ldule.

This completes the proof of the lemma. O

Lemma 2.3. If 0 < A\ and for any nonnegative measurable functions f(z) and
g(y) in (0,00) the following inequality

o0 * |lnaxyl?
(2.0.11) /O 9(y) Vl KQy)Ay_llf(x)dx] dy

o 1 1
> M, U :vp““’)‘lf”(w)dw] [/ y? 170l (y)dy
0

0

holds true, then we have
_ (2)
or =0 and My < k(o).

Proof. If o1 > 0, n € N, we define two functions ﬁ(x) and g, (y) as in Lemma 2.2
and derive that

1

J = [ / xpﬂ-”—%(x)dwr [ / yq“—“ﬂ-laﬂy)dy]" —n.
0 0

Setting u = xy, we obtain

~ e * |lnayl® ~
7 ;:/ \ / ey F e ) d
1 o]
_ (lnmy)ﬂ o—-L -1 o1+ —1
_/O [/; 7@3}))‘—1% dz|y dy

1 o (2)
:/ y(crl*a’)%*%fldy/ (hlu)iuo’fpinfldu < k)\ (U)
0 1

'LL>‘— 0'1—0"

and thus by (2.0.11), it follows that

(2.0.12)
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By (2.0.12), for n — oo, we find

JAC)
o0 > kim Z 00,
g1 — 0
which is a contradiction.
If 01 < o, then for
> L (e
n>——(n ,
lg|(o —o1)

we set two functions f,(z) and ¢, (y) as in Lemma 2.2 and find

1

le[/ zPM“fﬁ(x)dxH/ yq“m“gzw)dy]q:n.
0

0
. o . . 1 .
Setting v = zy, in view of o1 — o S o, we obtain

Y e * |Inzy|?
b= [ V |(xy)k—1g"(y)dy] o

1 [e%s}
_ (In zy)” o1—2-—1 ot —1
AT e R
1 0 8 (2)
:/ J:(Jf‘”H%*lda:/ (lnu)lu”ﬁ%ﬂ*lduﬁik)‘ (U)a
0 1

’LL>‘— o — 01

and then by Fubini’s theorem (cf. [22]) and (2.0.11), it follows that

k(o) /°° /°° | Inay|®

b S I, = n A (2)da| d
e 2= | 9 () A |(ch)>‘—1|f( )da | dy
M2J1 :MQTL.

(2.0.13)

Y

Y

By (2.0.13), for n — oo, we obtain that

kY (0)

O — 01

(0.¢]

Y

o0 > )

which is a contradiction.
Hence, we conclude the fact that o1 = 0.
For o1 = o, we get I > MyJ; and therefore it follows that

(2.0.14) kg2>(a>:/1 S;l_t)lualduzfl E;i)lua—ﬁ—l > M.

This completes the proof of the lemma.
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3. FIRST KIND OF THE REVERSE HARDY-TYPE
INEQUALITIES

Theorem 3.4. If 0 > 0, then the following conditions are equivalent:

(i) For any f(x) > 0, satisfying
0< / 2PA=) =1 P () dz < oo,
0

we have the following reverse Hardy-type integral inequality of the first kind with
the nonhomogeneous kernel:

1
P

X poq— % Inzy|”? b
J = {f() yP ! [fo (lzy)xyuf(x)dx] dy}
1
> M; UOOO zp(lf")*lfp(x)dx] P
(ii) For any g(y) > 0, satisfying
0< / Y7 g (y)dy < oo,
0

we have the following reverse Hardy-type integral inequality of the first kind with
the nonhomogeneous kernel:

*° * |Inayl® !
(3.0.15) {/0 2171 VO K;y)ﬂ”g(y)dy] dz}

1
> M U yq(l‘”)lgq(y)dy}
0

Q=

(iii) For any f(x),g(y) > 0, satisfying
0< / aPA= =1 P () < o0,
0

and -
0< / 1= =1 g4 (y)dy < oo,
0

we have the following inequality:

. > v |1na:y|5
1= e [ / |(xy)k_1f(m)dx] dy

> M, [/ xp(la)lfp(a?)dx} ’ [/ y?(1 =o)L gd(y)dy
0 0

aq
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(iv) It holds
o1 =0, M; < k&l)(o).

If 01 = o, then the constant
My = k(o)
in (3.0.15), (3.0.15) and (3.0.16) is the best possible.

Proof. For (i) = (4ii):
By the reverse Holder inequality (cf. [23]), we have

/OOO [y‘”; /Oé Mf(w)dw] (y%’“g(y)) dy

~ '
J [/ yq““")‘lgq(y)dy]
0

q
Then by (3.0.15), we deduce (3.0.16).
For (iii) = (iv): By Lemma 2.2, we have 01 = 0, M7 < kf\l)(a).
For (iv) = (i): Setting u = xy, we obtain the following weight function:

(3.0.16) I

Y

v |Inazy|? o1
w1 (o, = y"/ ————x% dx
o) o TP 1]

(= nu B 1
:/0 uu”_ldu:k:g\)(a)(y>0).

1—u?

By the reverse weighted Holder inequality and (3.0.17), for y € (0, 00), we have
1 p
v |lnayl?
I )
</ @y 1]
v |lnayl® [yle-/e ploe=1)/a b
- / X { (@-1)/ f(x)} { @1/ ]dx
o [@yr—1] [z 1 y P
1 1 p—1
v |laylf oyt /5 [lnayl® 27!
> P(x)d d
> [ e @ || s

o—1

1
n B
_ g(1—o)—17p=1 [V [Inzy| Y P(2)d
[wl(o, y)y ] /0 |(xy)>‘ _ 1| x(a—l)p/qf (1') xX

o—1

1 1 e 5 |lnazyl?
= (k) ()P~ ty~pott [yl v (2 da.

If (3.0.17) takes the form of equality for some y € (0,00), then (cf. [23]) it
follows that there exist constants A and B, such that they are not both zero, and

o—1 o—1

(@) = B

w(e=Dp/d Jo—afp ¢ R
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Let us assume that A # 0 (otherwise B = A = 0). Then, it follows that

. _»n B .
Lp(1=0o) 1fp($) = yq(l )A—m ae.inRy,

which contradicts the fact that

0< / gPA=) =L P () da < o0 .
0

Hence, (3.0.17) takes the form of strict inequality.
For o1 = o, by Fubini’s theorem (cf. [22]) and the above result, we obtain

that
e [ ][ eyl oy ’
J > (kj)\l (g))q {/0 [/0 |(xy)/\ — 1| x(ofl)p/q fp(l‘)d.'l,‘ dy
1 o0 | B o—1 ,
= (kgl)(o))q {/0 [/0 (L;)fy_' 1 x(gy1)(p1)dy] fp(:n)dx}
= Wt [Tttt o
0
= k&l)(a) [/00 xp(l_”)_lfp(x)dx} ’
0
Since

0< M < kM (0)(< 00),

(3.0.15) follows.

Therefore, the conditions (i), (iii) and (iv) are equivalent.
Since the conditions (i) and (iii) are equivalent, by Fubini’s theorem we similarly

obtain that )
> = |Inxyl?
I:/ flz / ———————g(y)dy | dz,
: “<o g — 1Y)

and therefore it follows that the conditions (ii) and (iii) are also equivalent. Hence,
the conditions (i), (ii), (iii) and (iv) are equivalent.
For the case when o1 = o, if there exists a constant M; > sz\l) (o), such that (3.0.15)
is satisfied, then by Lemma 2.2 we obtain that M; < kf\l)(a). Hence, the constant
factor My = sz\l)(a) in (3.0.15) is the best possible.

The constant factor M; = sz\l)(o) in (3.0.15) is still the best possible. Other-

wise, by (3.0.16) (for o1 = o), it would follow that the constant factor M; = kg\l) (o)
in (3.0.16) is not the best possible. Similarly, we can prove that the constant factor
M, = kf\l)(o—) in (3.0.15) is the best possible.

This completes the proof of the theorem O
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Remark 3.5. For 01 =0 = A > 0, the constant

My = k() = Lfﬁff)cw +1)

in (4.0.30), (4.0.31) and (4.0.32) is the best possible.

In particular, for o = o7 = % (> 0) in Theorem 3.4, we have:

Corollary 3.6. The following conditions are equivalent:

(i) For any f(x) > 0, satisfying
0< / P2 fP(z)dx < oo,
0

the following inequality holds true:

(3.0.17) [/OOO (/0i mjf(x)dm>pdyl : > M, (/OOO mp—QfP(x)dx>:) .

(ii) For any g(y) > 0, satisfying

0< / g% (y)dy < oo,
0

the following inequality holds true:

(3.0.18) VOOO -2 </0 mg(y)dyydx] % > M </OOO gq(y)dy>

(iii) For any f(x),g(y) > 0, satisfying

1
q

0< / 2P72 fP(x)dx < oo,
0

and
o0
0< / 9(y)dy < oo,
0

the following inequality holds true:

e v |lnayl?
(30.19) | st ( / (Llwy_'Hf(x)dx> dy

> M (/Ooo prf”(x)dwy (/OOO g"(y)dy);-
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(iv) We have
1
My < k().

The constant

o, 1, T(B+1) 1
My = ky (5) = wf(ﬁ-# 1,5)
n (3.0.17), (3.0.18) and (3.0.19) is the best possible.
Setting
1 1 1

in Theorem 3.4, and then replacing Y by y, we obtain the corollary below:
Corollary 3.7. If o > 0, then the following conditions are equivalent:
(i) For any f(x) > 0, satisfying
0< / 2PA=) =1 P () da < o0,
0

the following inequality holds true:

(3.0.20) [/Oo e (/Oy mf(x)dx>p dy] 1

1

> M [ PA=0) =1 fp (g )dx}p
(ii) For any G(y) > 0, satisfying

0< /O Y1) =IGY(y)dy < oo,

the following reverse Hardy-type integral inequality holds true:

oo ([T ([ heycwn)'s]

1

> M, {/ yq(1+al)1gq(y)dy] !
0
(iii) For any f(z),G(y) > 0, satistying
0< / 2PA=) =1 P () da < o0,
0

and -
0< / yq(1+al)*1gq(y)dy < 00,
0
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the following inequality holds true:

(3.0.22) /OOO G(y) (/Oy Mﬂx)dm) dy

> M, [/ J:”(l_")_lfp(x)dx} ! [/ yq(1+01)_1GQ(y>dy
0 0

1
q

(iv) We have
o1 = O',Ml S kg\l)(a)

If o, = o, then the constant M; = k{"” (o) in (3.0.20), (3.0.21) and (3.0.22)
is the best possible.
For

9(y) =y Gly) and p=\—o

in Corollary 3.7, we have

Theorem 3.8. If 0 > 0, then the following conditions are equivalent:
(i) For any f(x) > 0, satisfying

o0
0< / 2PA=) =1 fP(3)d < oo,
0

the following reverse Hardy-type inequality of the first kind with a homogeneous
kernel holds true:

(3.0.23) UO"" it (/Oy Mf(ﬂf)dx)pdyr

> M {/Oo xp(l_”)_lfp(x)dx] v
0

P

(ii) For any g(y) > 0, satisfying

0< / y? 1= gd(y)dy < oo,
0

the following reverse Hardy-type inequality of the first kind with a homogeneous
kernel holds true:

(302 [/0"" ! (/Ow Mg(y)dy>q dm] '

> M [/ yq““)lgq(y)dy}
0

p
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(iii) For any f(z),g(y) > 0, satisfying
0< / 2PA=) 1P () dx < oo,
0

and -
0< / y? =119 (y)dy < oo,
0

the following inequality holds true:

oz [ ot ([ A fwyas ) dy
> M, UOOO xp(l")lfp(x)dx} ’

(iv) We have

]

pto=X M <k ().

1

[/ y? g (y)dy|
0

If p+0 = A, then the constant My = kf\l)(a) in (3.0.23), (3.0.24) and (3.0.25)

is the best possible.
In particular, for

in Theorem 3.8, we obtain the corollary below:
Corollary 3.9. The following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0< / 2P~2 fP(x)dx < oo,
0

we have the following inequality:

(if) For any g(y) > 0, satisfying

0< / Y g (y)dy < o0,
0

we have the following inequality:

e} x z|B q % e e}
a2 [y dy | d M 241
(3.0.27) T g(y)dy | dz| > DM ¥y g
0 o lz—yl 0

(y)dy>

(3.0.26) l /0 T ( /Oy ||;n ylyB' f(x)dx>p dy] ’ > M; ( /0 -2 fp(x)dx> ;

=
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(iii) For any f(z),g(y) > 0, satisfying
oo
0< / 2P~2 fP(x)dx < oo,
0
and
(oo}
0< / Y29 (y)dy < oo,
0

we have the following inequality:

(3.028) I = /Ooog(y)(/ony(:c)dz>dy

> M, (/OOO w”‘2fp(w)dw)p (/OOC yq‘ng(y)dy) '

(iv) We have My < ki (1).

The constant
1
(=

My = V() = T(8+ 1)¢(8 + 1 }9)

in (3.0.26), (3.0.27) and (3.0.28) is the best possible.

4. SECOND KIND OF THE REVERSE HARDY-TYPE
INEQUALITIES

Similarly to as we worked previously, we obtain the following weight function:

[e.°]

| Inzy|”

wa(0,y) :=?JU/i 7|(my)>‘—1|

_ /Oo (W) o1y, — E2 (o) (y > 0).

2 Yz

(4.0.29)

ur —1
In view of Lemma 2.3 and following the same method, we have:

Theorem 4.10. If 0 < A, then the following conditions are equivalent:

(i) For any f(z) > 0, satisfying

0< / 2PA=) =1 P () dzx < oo,
0

the following reverse Hardy-type inequality of the second kind with a nonhomoge-
neous kernel holds true:

o) i1 ) |1D$y|ﬁ p %
fo </ |<xy>A—1|f(”>d”> dy]

> M, [/OO xp(lcr)lfp(x)dx:| ! .
0

(4.0.30)
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(ii) For any g(y) > 0, satisfying

0< / y?1 =o)L ga(y)dy < oo,
0

the following reverse Hardy-type integral inequality of the second kind with a non-
homogeneous kernel holds true:

o) o0 nxr B ! %
(4.0.31) [/0 2301 (/1 (Ey))\y_'”g(y)dy) dz]

1
> M, U yq(l‘“)lgq(y)dy}
0

q

(iii) For any f(z),g(y) > 0, satisfying
(oo}
0< / 2PA=) =1 fP(2)da < oo,
0
and -
0< / y? 1Tl (y)dy < oo,
0

the following inequality holds true:

o0 < |lnazy|?
(4.0.32) /0 9(y) ( 1 |(|mly)hy_|1|f(x)dx> dy

> My [/ xp(l_")_lfp(x)dx] ’ {/ y? =)= ga (y)dy
0 0

1
q

(iv) We have
o1 =o0,M; < kg\g)(a).

If 01 = o, then the constant My = k{* (0) in (4.0.30), (4.0.31) and (4.0.32)
is the best possible.

Remark 4.11. For o1 =0 =0 < A, the constant

M, = kP 0) = W0 s 1)

in (4.0.30), (4.0.31) and (4.0.32) is the best possible.
In particular, for ¢ = o1 = % in Theorem 4.10, we have

Corollary 4.12. If A > %, then the following conditions are equivalent:
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(i) For any f(z) > 0, satisfying

0< / 2P72 fP(x)dx < oo,
0

we have the following inequality:

(4.0.33) ng (/oo Wf@)@)p dy] % > M, (/OOO xp_zf”(x)dx>;

(ii) For any g(y) > 0, satisfying

0< / 9% (y)dy < oo,
0

we have the following inequality:

(4.0.34) l/ooo 2172 (/Oo mg(y)dy> q da:] % > M, UOOO gq(y)dy] ' .

(iii) For any f(z),g(y) > 0, satisfying
0< / 2P72 fP(x)dx < oo,
0

and -
0< / g (y)dy < oo,
0

we have the following inequality:

[e'e] oo nx B
(4.0.35) /0 9(y) < A Mf@)@) dy

> M, (/Ooo xp‘Qf”(x)dxy (/Ooo g"(y)dy) "

(iv) We have

1
M, < kP ().
2 =M (p)
The constant
@ _T(B+1) pA—1
My =K (C) = =B+ 1,7
in (4.0.33), (4.0.34) and (4.0.35) is the best possible.
Setting
1 1.1
y=v G(Y) = 9(?)W

in Theorem 4.10, and then replacing Y by y, we obtain the corollary below:
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Corollary 4.13. If o0 < A, then the following conditions are equivalent:
(i) For any f(x) > 0, satisfying
o0
0< / 2PA=) =1 P () da < oo,
0
we have the following inequality:

(4.0.36) Uooo e </y°° mf(x)dxy dy] 1

> M, [/000 xp(l_”)_lfp(x)dx] ’
(ii) For any G(y) > 0, satisfying
0< /OOO y TG (y)dy < oo,
we have the following reverse Hardy-type integral inequality:

1

o0 q
> M, [/ yq(1+‘71)_1Gq(y)dy]
0
(iii) For any f(z),G(y) > 0, satisfying
0< / 2PA= =1 P () da < o0,
0

and -
0 < / yq(1+al)*1Gq(y)dy < 00,
0

we have the following inequality:

(4.0.38) /0 T 6w ( /y h m f(a:)da:) dy

1

Q=

> M, U xp<1ff>1fp(x)d4 [ / y?UHo)=1Ga(y)dy
0 0

(iv) We have
o1 =o0,My < kg\Q)(a).

If o1 = o, then the constant My = k§\2) (o) in (4.0.36), (4.0.37) and (4.0.38)
is the best possible.

For g(y) = ¥*G(y) and p = X\ — oy in Corollary 4.13, we obtain the theorem
below:
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Theorem 4.14. If 0 < A, then the following conditions are equivalent:

(i) For any f(x) > 0, satisfying
0< / aP1=) =1 P () dx < oo,
0

the following reverse Hardy-type integral inequality of the second kind with a ho-
mogeneous kernel holds true:

(4.0.39) [/Om yPr! (/yoo Mf(x)dm)p dy] '

> M, |:/<>0 xp(la)lfp(x)dx:| g
0

|=

(ii) For any g(y) > 0, satisfying

0< / y?1=m=Lgd(y)dy < oo,
0

the following reverse Hardy-type inequality of the second kind with a homogeneous
kernel holds true:

e [ o ([ o) ]

, i
> M, [/ y"“‘”"lgq(y)dy}
0

14

(iii) For any f(x),g(y) > 0, satisfying
0< / 2PA= =1 P () da < o0,
0

and
o0
0< / y? =11 g4 (y)dy < oo,
0

we have the following inequality:

aoay  [Taw( / N Wf(x)dx) dy

|z — Y|

> M, {/ xp(l")lfp(z)dx} ’ [/ y? ==L ga(y)dy '
0 0

(iv) We have
p4o=x M <k (o).
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If 1+ o = A, then the constant M, = k(o) = k(" (1) in (4.0.39), (4.0.40)
and (4.0.41) is the best possible.

In particular, for A = 1,0 = %,,u =
corollary below:

=

in Theorem 4.14, we deduce the

Corollary 4.15. The following conditions are equivalent:
(i) For any f(z) > 0, satisfying
(o)
0< / fP(z)dzx < o0,
0

we have the following inequality:

we ([ m’ﬂx)dmy@r ([ fpmdz)?’ |

(ii) For any g(y) > 0, satisfying

0< / g% (y)dy < oo,
0

we have the following inequality:

a7 M9<y)dy>qdmf ot ([ )

(iii) For any f(z),g(y) > 0, satisfying

0< /Oo]”’(ar;)da;<oo7
0

and -
0< / g% (y)dy < oo,
0

we have the following inequality:,

(4.0.44) [ ot ( / N Wf(:v)dx) dy

|z — y

> M (/OOO fp(x)dx); (/OOO g"(y)dy>;-

1
M, < kf)(g).

(iv) We have
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in

The constant
My =k = !
2 = ky (6)_P(5+1)C(ﬂ+1’];)

(4.0.42), (4.0.43) and (4.0.44) is the best possible.
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