Two Laplacians for the distance matrix of a graph

Mustapha Aouchiche* and Pierre Hansen

GERAD and HEC Montreal, Canada

Cana DAM 2013, Memorial University, June 10-13

PLAN

- Adjacency related matrices
- Oistance Matrix
- Oistance Laplacian matrix
- Oistance signless Laplacian matrix

1. Adjacency related matrices

Adjacency matrix

- For a graph G=(V,E) on n vertices, the adjacency matrix A=A(G) is the 0-1 $n\times n$ -matrix indexed by the vertices of G and defined by $a_{i,j}=1$ if and only if $ij\in E$
- The (adjacency) spectrum $(\lambda_1, \lambda_2, \dots, \lambda_n)$ of G, with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$, is the A's spectrum

A-spectrum: (3,1,0,0,-2,-2)

1. Adjacency related matrices

Laplacian matrix

- The Laplacian of G is defined by L = L(G) = Deg A, where Deg is the diagonal matrix whose diagonal entries are the degrees in G, and A the adjacency matrix of G
- The Laplacian spectrum $(\mu_1, \mu_2, \dots, \mu_n)$ of G, with $\mu_1 \geq \mu_2 \geq \dots \geq \mu_n = 0$, is the L's spectrum

L-spectrum: (5,5,3,3,2,0)

1. Adjacency related matrices

Signless Laplacian matrix

- The signless Laplacian of G is defined by Q = Q(G) = Deg + A
- The Laplacian spectrum (q_1, q_2, \ldots, q_n) of G, with $q_1 \geq q_2 \geq \cdots \geq q_n$, is the Q's spectrum

$$Q = \left[\begin{array}{ccccccc} 3 & 0 & 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 & 1 & 1 \\ 1 & 1 & 0 & 3 & 0 & 1 \\ 1 & 1 & 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 1 & 0 & 3 \end{array} \right]$$

Q-spectrum : (6, 4, 3, 3, 1, 1)

2. Distance matrix

Definition

- In a connected graph G the distance $d(i,j) = d_G(i,j)$ is the length of a shortest path between i and j
- The distance matrix $\mathcal{D} = \mathcal{D}(G)$ of a connected graph G is the $n \times n$ -matrix indexed by the vertices of G and where $\mathcal{D}_{i,j} = d(i,j)$
- The distance spectrum or \mathcal{D} -spectrum is denoted by $(\partial_1, \partial_2, \dots, \partial_n)$ with $\partial_1 \geq \partial_2 \geq \dots \geq \partial_n$

$$\mathcal{D} = \left[\begin{array}{ccccccccc} 0 & 2 & 1 & 1 & 1 & 2 \\ 2 & 0 & 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 & 2 & 1 \\ 1 & 1 & 1 & 2 & 0 & 2 \\ 2 & 1 & 1 & 1 & 2 & 0 \end{array} \right]$$

 \mathcal{D} -spectrum : (7,0,0,-2,-2,-3)

Definition

- The transmission of a vertex i is the sum of all the distances from i to all other vertices $t_i = \sum_{i \in V} d(i,j)$.
- The distance Laplacian matrix of G is defined by $\mathcal{D}^L = Tr \mathcal{D}$, where Tr is the diagonal matrix whose diagonal entries are the transmissions in G
- The distance Laplacian spectrum or \mathcal{D}^L -spectrum is denoted by $(\partial_1^L, \partial_2^L, \dots, \partial_n^L)$ with $\partial_1^L \geq \partial_2^L \geq \dots \geq \partial_n^L = 0$

$$\mathcal{D}^{L} = \begin{bmatrix} 7 & -2 & -1 & -1 & -1 & -2 \\ -2 & 7 & -2 & -1 & -1 & -1 \\ -1 & -2 & 7 & -2 & -1 & -1 \\ -1 & -1 & -2 & 7 & -2 & -1 \\ -1 & -1 & -1 & -2 & 7 & -2 \\ -2 & -1 & -1 & -1 & -2 & 7 \end{bmatrix}$$

 $\mathcal{D}^L\text{-spectrum}: \big(10,9,9,7,7,0\big)$

Examples of distance Laplacian spectra

- ullet The complete graph $K_n:\left(n^{(n-1)},0
 ight)$ (also the Laplacian spectrum)
- ullet The complement of an edge $K_n-e:\left(n+2,n^{(n-2)},0
 ight)$
- ullet The star $S_n:\left(2n-1^{(n-2)},n,0
 ight)$
- ullet The complete bipartite graph $K_{a,b}:\left(2n-a^{(b-1)},2n-b^{(a-1)},n,0
 ight)$
- ullet The complete split graph $SK_{n,lpha}:ig(n+lpha^{lpha-1},n^{n-lpha},0ig)$

Properties

- For any connected graph $\partial_n^L = 0$ (with multiplicity m(0) = 1)
- $m(\partial_1^L) \le n-1$, equality holds only for K_n
- Among trees $\partial_1^L \geq 2n-1$, equality holds only for S_n
- For L-spectra:

$$\mu_1(G) \ge \mu_1(G-e) \ge \mu_2(G) \ge \mu_2(G-e) \ge \cdots \ge \mu_n(G) = \mu_n(G-e) = 0$$

There is no similar result for \mathcal{D}^L -spectra

- The \mathcal{D}^L -spectra of P_6 and C_6 are (21.3929, 15, 12.8532, 11, 9.7539, 0) and (13, 13, 10, 9, 9, 0), respectively
- If e is an edge in G such that G-e is connected, then $\partial_i^L(G-e) \geq \partial_i^L(G)$, for $i=1,2,\ldots,n$
- $\partial_i^L(G) \geq \partial_i^L(K_n) = n$, for $i = 1, 2, \ldots n-1$

Transmission regular graphs

A connected graph G is k-transmission regular if $t_i=k$, for $i=1,2,\cdots,n$ If G is k-transmission regular with \mathcal{D} -spectrum $(\partial_1,\partial_2,\ldots,\partial_n)$, then $(k-\partial_n,\ldots k-\partial_1)$ is the \mathcal{D}^L -spectrum of G Moreover, the eigenspaces are the same

A 7-transmission regular regular

$$\mathcal{D}\text{-spectrum}: (7,0,0,-2,-2,-3)$$

$$\mathcal{D}^{\textit{L}}\text{-spectrum}: (10,9,9,7,7,0)$$

Graphs of diameter 2

Let G be a graph of diameter D=2, $(\mu_1,\mu_2,\ldots,\mu_n=0)$ its L-spectrum and $(\partial_1,\partial_2,\ldots,\partial_n=0)$ its \mathcal{D}^L -spectrum. Then $\partial_i=2n-\mu_{n-i}$, for $i=1,2,\ldots,n-1$. Moreover, the L-eigenspaces and \mathcal{D} -eigenspaces coincide

A 7-transmission regular regular

L-spectrum: (5,5,3,3,2,0)

 \mathcal{D}^L -spectrum : (10, 9, 9, 7, 7, 0)

Similarities with the algebraic connectivity

For the Laplacian L [Fiedler, 1973]:

- ullet $\mu_{n-1}=0$ if and only if G is disconnected
- The multiplicity of 0 in the L-spectrum of G equals the number of connected components of G
- ullet μ_{n-1} is called algebraic connectivity

For the distance Laplacian \mathcal{D}^L :

- n is a \mathcal{D}^L -eigenvalue of G if and only if the complement \overline{G} is disconnected
- The multiplicity of n in the \mathcal{D}^L -spectrum of G is 1 less than the number of connected components of \overline{G}

Similarities with the algebraic connectivity

Corollaries:

- $\partial_1(G) \geq n$ with equality if and only if $G \cong K_n$
- If G is bipartite and n is a distance Laplacian eigenvalue of G, then G is complete bipartite
- The star S_n is the only tree for which n is a distance Laplacian eigenvalue
- If the maximum degree $\Delta=n-1$, then n is a \mathcal{D}^L -eigenvalue with multiplicity at least n_{Δ} (number of vertices of degree Δ)

Definition

- The transmission of a vertex i is the sum of all the distances from i to all other vertices $t_i = \sum_{i \in V} d(i,j)$.
- The distance Laplacian matrix of G is defined by $\mathcal{D}^Q = Tr + \mathcal{D}$, where Tr is the diagonal matrix whose diagonal entries are the transmissions in G
- The distance Laplacian spectrum or \mathcal{D}^Q -spectrum is denoted by $(\partial_1^Q, \partial_2^Q, \dots, \partial_n^Q)$ with $\partial_1^Q \geq \partial_2^Q \geq \dots \geq \partial_n^Q$

$$\mathcal{D}^{Q} = \begin{bmatrix} 7 & 2 & 1 & 1 & 1 & 2 \\ 2 & 7 & 2 & 1 & 1 & 1 \\ 1 & 2 & 7 & 2 & 1 & 1 \\ 1 & 1 & 2 & 7 & 2 & 1 \\ 1 & 1 & 1 & 2 & 7 & 2 \\ 2 & 1 & 1 & 1 & 2 & 7 \end{bmatrix}$$

 $\mathcal{D}^{\textit{Q}}$ -spectrum : (14, 7, 7, 5, 5, 4)

Examples of distance signless Laplacian spectra

- For $K_n: (2n-2, n-2^{(n-1)})$ (also the signless Laplacian spectrum)
- For $K_n e : \left(\frac{3n-2\pm\sqrt{(n-2)^2+16}}{2}, n-2^{(n-2)}\right)$
- For $S_n: \left(\frac{5n-8\pm\sqrt{9n^2-32n+32}}{2}, 2n-5^{(n-2)}\right)$
- For $K_{a,b}$: $\left(\frac{5n-8\pm\sqrt{9(a-b)^2+4ab}}{2},2n-a-4^{(b-1)},2n-b-4^{(a-1)}\right)$

Properties

• For Q-spectra :

$$q_1(G) \geq q_1(G-e) \geq q_2(G) \geq q_2(G-e) \geq \cdots \geq q_n(G) \geq q_n(G-e)$$

There is no similar result for \mathcal{D}^Q -spectra

- The \mathcal{D}^Q -spectra of P_6 and C_6 are (25.0838, 12.1755, 11.1743, 8.6727, 7.7418, 5.5118) and (18, 9, 9, 8, 5, 5), respectively
- If e is an edge in G such that G e is connected, then $\partial_i^Q(G e) \ge \partial_i^Q(G)$, for i = 1, 2, ..., n
- $\partial_1^{\mathbf{Q}}(G) \geq \partial_1^{\mathbf{Q}}(K_n) = 2n 2$ with equality if and only if $G \cong K_n$
- $\partial_i^{\mathbf{Q}}(G) \geq \partial_i^{\mathbf{Q}}(K_n) = n-2$, for $i = 2, 3, \dots, n$
- $\partial_2^{Q}(G) \geq n-2$ with equality if and only if $G \cong K_n$

Transmission regular graphs

- $2 Tr_{min} \leq 2 \overline{Tr} \leq \partial_1^{\mathcal{Q}}(G) \leq 2 Tr_{max}$ with equalities if and only if G is a transmission regular graph
- If G is k-transmission regular with \mathcal{D} -spectrum $(\partial_1, \partial_2, \ldots, \partial_n)$, then $(k + \partial_1, k + \partial_2, \ldots, k + \partial_n)$ is the \mathcal{D}^Q -spectrum of G Moreover, the eigenspaces are the same

A 7-transmission regular regular

$$\mathcal{D}\text{-spectrum}: (7,0,0,-2,-2,-3)$$

$$\mathcal{D}^L$$
-spectrum : (14, 7, 7, 5, 5, 4)

Bipartite components

For the signless Laplacian:

- ullet 0 is a Q-eigenvalue of G if and only if G contains a bipartite component or an isolated vertex
- The multiplicity of 0 is equal to the number of bipartite components and isolated vertices

For the distance signless Laplacian:

- If n-2 is a \mathcal{D}^Q -eigenvalue of G with multiplicity m, then \overline{G} contains at least m components, each of which is bipartite or an isolated vertex
- ullet There exist graphs with a bipartite complement for which n-2 is not a \mathcal{D}^Q -eigenvalue

The Petersen graph and its spectra

A-spectrum	3(1)	1(5)	$-2^{(4)}$
L-spectrum	5 ⁽⁴⁾	2 ⁽⁵⁾	0(1)
Q-spectrum	2 ⁽¹⁾	4 ⁽⁵⁾	1(4)
D-spectrum	15 ⁽¹⁾	$0^{(4)}$	$-3^{(5)}$
\mathcal{D}^L –spectrum	18 ⁽⁵⁾	15(4)	$0^{(1)}$
\mathcal{D}^Q –spectrum	30 ⁽¹⁾	$15^{(4)}$	12 ⁽⁵⁾