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Abstract—The vision of the upcoming 6G technologies that have 

fast data rate, low latency, and ultra-dense network, draws great 

attentions to the Internet of Vehicles (IoV) and Vehicle-to-

Everything (V2X) communication for intelligent transportation 

systems. There is an urgent need for distributed machine learning 

techniques that can take advantages of massive interconnected 

networks with explosive amount of heterogeneous data generated 

at the network edge. In this study, a two-layer federated learning 

model is proposed to take advantages of the distributed end-edge-

cloud architecture typical in 6G environment, and to achieve a 

more efficient and more accurate learning while ensuring data 

privacy protection and reducing communication overheads. A 

novel multi-layer heterogeneous model selection and aggregation 

scheme is designed as a part of the federated learning process to 

better utilize the local and global contexts of individual vehicles 

and road side units (RSUs) in 6G supported vehicular networks. 

This context-aware distributed learning mechanism is then 

developed and applied to address intelligent object detection, 

which is one of the most critical challenges in modern intelligent 

transportation systems with autonomous vehicles. Evaluation 

results showed that the proposed method, which demonstrates a 

higher learning accuracy with better precision, recall and F1 score, 

outperforms other state-of-the-art methods under 6G network 

configuration by achieving faster convergence, and scales better 

with larger numbers of RSUs involved in the learning process. 

Index Terms—Federated learning, End-edge-cloud computing, 

Internet of vehicles, Heterogeneous data, 6G technology 

I. INTRODUCTION

EAMLESS and ubiquitous communication infrastructure 

has been a key enabler of modern intelligent services. While 
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some existing 5G technologies are able to provide a maximum 

data rate of up to 20 GB per second, such performance may still 

not meet the requirement of vehicular network applications of 

less than 1 ms latency [1, 2], especially in end-edge-cloud 

environments [3]. One of the main objectives and vision of 

beyond 5G (B5G) or 6G networks is to support future 

intelligent applications and services, such as autonomous 

vehicles, with ultra-low latency and high reliability [4]. Those 

applications are expected to be composed of large number of 

end user equipment (i.e., large scale, high density networks) 

that generates large quantities of heterogeneous and potentially 

sensitive data in real-time [5]. It is of critical importance to 

leverage the communication capabilities offered by 6G 

networks and the distributed data generated by user equipment 

in offering intelligent services.  

The emergence of 6G technology brings unique advantages 

to vehicular network applications. The large-scale and mobile 

ad-hoc nature, with high data volume, stringent reliability and 

security requirement, makes vehicular networks a perfect use 

case for 6G technology [6]. A typical high-density vehicular 

network consists of end (e.g., vehicles), edge (e.g., road side 

units (RSUs)), and cloud components which constantly 

communicate and exchange information with one another, 

providing intelligent and adaptive services [7, 8]. Many smart 

applications and services can rise from vehicular networks [9]. 

For example, based on driver assistance (or autonomous 

driving) with local information sharing and dissemination, road 

side information, such as temporary traffic sign, adaptive speed 

signs, parking information, or petrol station information, can be 

recognized, searched, and shared with drivers in a city. Such 

services may enhance safer driving behavior (automatic and 

adaptive cruise control), more efficient traffic management 

(intelligent intersection control), and more intelligent route 

planning and navigation.  

Considering a vehicular network application scenario such as 

local information sharing and dissemination, visual or lidar data 

can be generated from individual vehicles, where local training 

and model generation can be performed to achieve object 

detection and sign recognition. With small quantity of data (or 

low data quality depending on the camera resolution) and 

varying computational power of individual vehicles, local 

training is usually limited by its accuracy. In addition, video 

data may contain sensitive information. Uploading such data to 
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a central location for centralized training and model generation, 

not only waste communication bandwidth, but also may leak 

potentially sensitive information coming from one’s camera 

[10]. Such practice is also very likely to be prevented by data 

protection regulations such as GDPR (General Data Protection 

Regulation). In this scenario, the challenges are threefold: 1) 

intelligent applications and services such as navigation and 

object avoidance need higher learning accuracy that requires 

efficient information sharing among multiple vehicles; 2) 

information shared across multiple vehicles should preserve 

data privacy; 3) learning latency needs to satisfy the application 

requirement.  

In this study, we propose a two-layer federated learning 

model based on convolutional neural network (TFL-CNN), 

which makes use of the local and global contexts of individual 

vehicles and RSUs to perform hierarchical and heterogeneous 

model selection and aggregation at the edge and cloud level. 

According to the aforementioned application scenario, 

individual vehicles with onboard camera can collect real-time 

data, which allows, for example, object detection or sign 

recognition. With the limited data, locally trained model is 

expected to be less accurate unless data from multiple vehicles 

are aggregated at a higher level for developing a global model. 

Benefit from federated learning, individual vehicles will 

perform training locally and share the trained parameters 

instead of raw data with the connected RSUs. Therefore, data 

privacy is protected for individual users. Depending on the local 

context information between an RSU and individual vehicles, 

for example distance between an RSU and vehicle, the quality 

of the corresponding model parameters can be estimated for the 

purpose of local model selection and aggregation. Once the 

local model is aggregated, multiple RSUs will upload the 

aggregated parameters to the cloud where the global model 

selection and aggregation will happen. Different to the RSU 

layer, the cloud infers the model quality based on the location 

of a specific RSU (i.e., whether it is at a busy junction with large 

amount of data) and its computational power (i.e., whether it is 

capable of processing a large quantity of data), which are 

known during system setup time. The cloud layer will perform 

a global model aggregation based on the selected RSU models. 

The multi-layer heterogeneous model selection and aggregation 

enable achieving more superior learning accuracy, and at the 

same time reducing the learning latency. Specifically, the 

contributions of this paper are summarized as follows. 

i) A two-layer federated learning architecture is newly
designed, targeting 6G supported vehicular networks
with end-edge-cloud components, which preserves data
privacy (i.e., no sharing of raw data) while achieving
higher learning accuracy.

ii) A novel multi-layer heterogeneous model selection and
aggregation scheme is developed to make use of the
local (RSU) and global (cloud) context information,
based on 6G supported vehicular networks.

iii) A context-aware learning mechanism is developed for
intelligent object detection, targeting lower learning
latency and better training efficiency in 6G supported
Internet of Vehicles (IoV) environments.

The rest of this article is organized as follows. Section II 

addresses an overview of related works. In Section III, we 

present the fundamental framework of the two-layer federated 

learning in 6G support vehicular networks. The detailed CNN-

based federated learning model, heterogeneous model selection 

and aggregation scheme, and context-aware learning 

mechanism for object detection, are introduced in Section IV. 

Experiment and evaluation results are discussed in Section V, 

followed by the conclusions and future research perspectives in 

Section VI. 

II. RELATED WORK

The emergence of advanced embedded, communication, and 

sensory technologies brought forward the possibility of 

intelligent vehicular network applications such as autonomous 

vehicles, cooperative driving, and intelligent traffic 

management. The safety-critical and data-rich nature makes 

vehicular network applications hot research topics. In this 

section, targeted vehicular network applications are 

summarized and introduced, along with the state-of-the-art 

distributed artificial intelligence (AI) approaches developed for 

these applications. 

A. Vehicular Network Applications

With the proliferation of advanced technologies, one of the

main goals for intelligent vehicular applications is to provide 

driver assistance and to enable safer driving behavior [11]. For 

example, displaying warning signs on user dashboard which 

proactively provide surrounding information beyond driver’s 
visual sight could offer enormous help to avoid dangerous 

driving or accidents caused by unknown conditions [12, 13]. 

Other techniques based on peer-to-peer communications are 

also developed targeting collision avoidance and cooperative 

driving to enhance safety [14-16]. In addition to vehicle-to-

vehicle (V2V) communication, similar applications using 

vehicle-to-infrastructure (V2I) communication (e.g., RSU or 

traffic signs), are also available to support intelligent 

applications such as intersection management and adaptive 

cruise control [6, 17, 18]. The wide use of communication 

networks for sharing user and traffic information also brings the 

research attention on information integrity, security and privacy 

[19, 20]. Alghamdi et al. [21] investigated the large intelligent 

surfaces technologies for 6G wireless platforms. They 

discussed their working principles and performance analysis 

frameworks  to demonstrate their impact and positions in 6G 

enabled wireless network applications from the technical 

aspects. Envisaging 6G as a massively connected complex 

network, which might give feedback to users’ service calls 
based on the rapid learning of network states in end-edge-cloud 

structures, Nawaz et al. [22] reviewed the emerging computing 

paradigms including machine learning, quantum computing, 

etc., for 6G based communication networks, and introduced 

their applications with some case studies in B5G networks.  To 

figure out a roadmap for the future vision of intelligent services 

supported by 6G networks, Bariah et al. [23] compared enabling 

technologies of 5G and 6G, and summarized 6G empowered 

network services with their potential applications in terms of 
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their main challenges and open research issues. Yuan et al. [24] 

presented estimation framework for interest variables in 

intelligent vehicular networks, in which the factor graph was 

employed with consensus algorithms to realize estimations in 

each vehicle and facilitate local processing and 

communications at RSUs. 

B. Federated Learning with Vehicular Networks

Vehicular Internet of Things (IoT) or IoV are well-known for
their 3V characteristics, i.e., data volume, variety, and velocity. 
Typically, a vehicle can generate up to 30 TB of data each day, 
and the vision of 6G supported vehicular networks are likely to 
promote these characteristics [25]. It is of critical importance 
for applications to make use of these distributed data (i.e., per 
vehicle) wisely and efficiently. Tang et al. [26] surveyed and 
classified several machine learning techniques applied in 
vehicular networks for networking, communication, and 
security issues, to meet requirements and challenges in next-
generation (6G) networks. Traditional centralized AI 
approaches, such as deep neural networks, require distributed 
data to be transferred and located at a central location (i.e., RSU 
or cloud) to enable model training and generation. Such 
approaches have several disadvantages such as high network 
bandwidth usage, high learning latency, and potential threat of 
leaking sensitive user information. In contrast, federated 
learning, as a distributed AI approach, allows local models to 
be trained on individual vehicles and then aggregated in the 
cloud (or RSU) to enhance learning accuracy, communication 
efficiency and privacy preservation [27]. With these benefits, 
federated learning has been considered as a promising approach 
and recently applied to various different IoV applications, 
which might be developed targeting the challenge of object 
detection in vehicular network applications. Du et al. [28] 
discussed the advances when applying federated learning in 
vehicular IoT systems, and pointed out several technical 
challenges and the necessity in integrating vehicular IoT with 
federated learning framework. Ye et al. [29] proposed an 
aggregation approach with a selective model to pursue the 
better model accuracy and aggregation efficiency for 3D object 
detection in vehicular edge computing. They employed a two-
dimension contract theory and built a distributed framework to 
improve the interaction between the server and vehicular clients. 
To achieving data integrity and privacy purposes, Lu et al. [30] 
introduced an intelligent architecture with a federated learning 
mechanism, in which a two-phase mitigating scheme was used 
to improve the smart data transformation and collaborative data 
leakage detection. Brik et al. [31] focused on federated deep 
learning applications in unmanned aerial vehicle related 
wireless networks. Following a series of use cases of federated 
learning strategies in 5G or B5G network environments, they 
summarized the key challenges with open issues for the future 
research direction of application of federated learning in 
vehicular networks. He et al. [32] designed a federated edge 
learning system, in which a so-called importance-aware joint 
data selection and resource allocation algorithm was developed 
to improve the learning speed, and further solve the learning 
efficiency maximization problem in mobile computing. Yu et al. 
[33] utilized the content caching scheme for vehicular
application development in edge networks. They applied the
federated learning technique to build a global model to predict

the content popularity while protecting the privacy of training 
data in local vehicles.  

III. TWO-LAYER FEDERATED LEARNING FOR 6G SUPPORTED 

VEHICULAR NETWORKS 

A. Basic Model Architecture

In this study, we aim to explore typical object detection

applications in 6G supported vehicular network scenarios, such 

as traffic sign recognition, object avoidance, and pedestrian 

detection. The proposed framework architecture of the two-

layer federated learning in 6G supported vehicular networks is 

illustrated in Fig. 1. It should be noticed that one of the main 

characteristics of 6G is the use of THz communication 

frequency range, which leads to the short-range communication 

(e.g., tens of meters coverage) and ultra-high-density network 

[34, 35]. Specifically, 6G will be designed to support large-

scale mMTC (massive Machine Type Communication) via 

enabling technologies such as NOMA (Non-Orthogonal 

Multiple Access) [36] and cell-free (or cell-less) 

communication architecture [37]. With these enabling 

technologies, individual vehicles will connect to the entire 6G 

supported vehicular network as a whole without the burden 

differentiating individual cell connection (or in this case the 

RSUs as relaying nodes). These technologies will also greatly 

reduce the overhead of handover. In addition, the ultra-low 

latency characteristic of 6G (1ms, end-to-end) will allow 

individual vehicles to complete their learning cycle (i.e., 

reaching the preconfigured error rate via one physical RSU). 

Therefore, every individual learning cycle will be considered as 

a static snapshot of the vehicular network at a specific time 

instance. 

Fig. 1. Two-Layer Federated Learning Framework in 6G Supported 

Vehicular Networks

As shown in Fig. 1, a typical 6G supported vehicular network 

is composed of one central cloud server (i.e., a macro base 

station (MBS)), a few RSUs, and a large number of vehicles. A 

two-layer federated learning framework incorporating end-

edge-cloud computing scheme for real-time object detection is 

investigated in this urban vehicular network, which is 

introduced in detail as follows. 

  In the top layer, the central cloud server offers capabilities 

of high-performance computing and higher-level knowledge 

sharing, which enable it to conduct a global caching and 

aggregation computing task. In the middle layer, each RSU has 

Central Cloud Server
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RSU RSU

Vehicles Vehicles

Secure Aggregation
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Parameters
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limited caching and computing capabilities, and is responsible 

for supervising all the interconnected vehicles in its coverage. 

Empowered by the 6G technologies, RSUs are the middle 

brokers to collect and aggregate not only learning parameters 

but also contextual information, such as vehicle locations and 

navigation direction, from all the connected vehicles within the 

coverage to facilitate parameter aggregation. RSUs then 

communicate with the central cloud server to upload aggregated 

model parameters and its own contextual information [37]. In 

return, the updated model parameters will be dispatched from 

the central cloud server to RSUs and then to individual vehicles. 

In the bottom layer, each vehicle generates raw data 

including both the captured photos/videos by built-in camera 

and the contextual information (e.g., GPS locality data, driving 

information, etc.). The computation capability of individual 

vehicle is able to support a relatively light computing task (e.g., 

training a learning model for object detection or road sign 

recognition). All the vehicles share a unified deep learning 

model. Moreover, in a 6G supported vehicular network, more 

vehicles will be connected to an RSU and share the same 

network resource. It is critical to ensure privacy protection and 

efficient knowledge sharing within the high-speed, high-

density 6G network. The proposed two-layer federated learning 

framework only requires transmission of model parameters, 

which ensures both data privacy and efficient knowledge 

sharing. 

Datasets generated by individual vehicles (i.e., data owners) 

share identical features with different samples. For example, 

two vehicles in different regions acquire their own piece of data 

respectively, which can be represented by a common set of 

features. The intersection of samples collected from different 

vehicles (e.g., captured photos of road signs, cars, pedestrians) 

may be very small since two vehicles in different regions can 

seldom capture photos of an identical object. However, the 

purpose of the learning model and targeted intelligent services 

(e.g., for various applications of object detection) in these 

vehicles are likely to be very similar. Therefore, the basic model 

and the feature space of these datasets can be consolidated to a 

unique framework. 

B. Problem Definition

Assuming a typical vehicular network is composed of 𝑛
vehicles, 𝑚 RSUs and a central cloud server. Those vehicles are 

a set of data owners 𝑉 = {𝑣𝑖}𝑖=1𝑛 , which generate real-time

photos or videos as raw data by themselves and can train a deep 

learning model from their respective data 𝐷 = {𝑑𝑖}𝑖=1𝑛 . Each

local dataset 𝑑𝑖 consists of raw data 𝑥𝑖 and the corresponding

label 𝑦𝑖  as 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖) . Conventional supervised learning

process is to consolidate all the data together from the vehicles 𝐷𝑡𝑜𝑡𝑎𝑙 = 𝑑1 ∪ 𝑑2 ∪ … ∪ 𝑑𝑛  in a central cloud server. For the

purpose of data privacy protection and network traffic 

alleviation, a horizontal federated learning framework is 

proposed for real-time object detection across vehicles. 

Empowered by 6G technologies, any individual data owner 𝑣𝑖
in this framework can keep its own data 𝑑𝑖 and train the object

detection model locally rather than transmitting data 𝑑𝑖 to an

RSU and other owners. In addition, a set of RSUs is denoted as 𝑅 = {𝑟𝑖}𝑖=1𝑚  and the central cloud server is denoted as 𝐶𝑆. 

Accordingly, a global deep learning model 𝑀 = ℎ(𝑥, 𝜔) is 

trained on the distributed dataset 𝐷𝑡𝑜𝑡𝑎𝑙 across the 6G supported

vehicular network. The goal of the proposed framework is to 

recognize the objects or road signs during the real-time 

autonomous driving scenario based on samples in 𝐷𝑡𝑜𝑡𝑎𝑙. As a

typical horizontal federated learning framework, we assume 

data owners are secure against a curious RSUs, which means an 

RSU cannot compromise the privacy of data owners [38]. To 

achieve this, parameters computed via local training by 𝑣𝑖 need

to be encrypted and then sent to the corresponding RSU which 

conducts secure aggregation without exposing privacy 

information about any data owners. 

IV. INTEGRATED LEARNING MECHANISM FOR INTELLIGENT 

OBJECT DETECTION IN END-EDGE-CLOUD ENVIRONMENTS

A. CNN Based Two-Layer Federated Learning

Considering the aforementioned object detection 

applications in a 6G supported vehicular network, a horizontal 

TFL-CNN is designed to tackle these applications, while 

ensuring data privacy and communication efficiency. The 

detailed structure with the concrete workflow of our model is 

illustrated in Fig. 2. 

Assuming 𝑥𝑖  is the input samples of a data owner 𝑣𝑖 , the

CNN model, which is introduced to perform an object detection 

task (e.g., traffic sign recognition, pedestrian detection, or 

object avoidance), can be represented as the hypothesis ℎ(𝑥𝑖 , 𝜔), and trained locally by the data owner 𝑣𝑖.ℎ(𝑥𝑖 , 𝜔) = FC(Pool(Conv(𝑥𝑖 , 𝜔𝐶𝑜𝑛𝑣), 𝜔𝑃𝑜𝑜𝑙), 𝜔𝐹𝐶)      (1)

where Conv(∗), Pool(∗), and FC(∗) stand for the convolution 

layer, pooling layer, and the fully connected layer respectively. 𝜔∗ is the parameter of the corresponding layer in the model.

The result of ℎ(𝑥𝑖 , 𝜔) is predicted by a SoftMax classifier as

follows. 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = SoftMax(ℎ(𝑥𝑖 , 𝜔))                   (2)

Furthermore, to achieve the goal of the proposed model, we 

define the cost function as follows.  𝐽𝑖(𝜔) = − 1𝑘 [∑ ∑ {𝑦𝑖 = 𝑝}𝑙𝑝=1 log ( 𝑒𝜔𝑝𝑇𝑥𝑖∑ 𝑒𝜔𝑞𝑇𝑥𝑖𝑘𝑞=1𝑘𝑞=1 )]  (3) 

where we assume there are 𝑘 samples for data owner 𝑣𝑖.
In each iteration, the local parameters acquired by individual 

data owners will be encrypted and uploaded to the 

corresponding RSUs. It should be noticed that only encrypted 

parameters are uploaded instead of raw data, which ensures data 

privacy protection and greatly reduces the communication 

overhead required during the learning process.  

Besides, the vehicular contextual information, such as 

location and navigation information, can be directly acquired 

by RSUs via 6G technologies [37] to conduct the proposed 

weighted aggregation in RSU. Similarly, the aggregated 

parameters and the corresponding RSU contextual information 

will be encrypted and sent to the central cloud server for global 

aggregation. 
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Fig. 2. Architecture of TFL-CNN 

B. Multi-Layer heterogeneous Selection and Aggregation

Scheme

To enhance the efficiency and the accuracy of the global 

federated learning process, both the vehicular and RSU 

contextual information are taken into account in the aggregation 

process. 

The local parameters gained by data owner 𝑣𝑖 at iteration 𝑡 ∈𝑇  is 𝜔𝑖(𝑡) .  The total parameter 𝜔𝑗𝑅𝑆𝑈(𝑡)  by an RSU 𝑟𝑗  is

aggregated by Eq. (4) as follows. 𝜔𝑗𝑅𝑆𝑈(𝑡) = 1𝐽 ∑ 𝛿𝑖 ∗ 𝜔𝑖(𝑡)𝐽𝑖=1   (4) 

where 𝐽 is the total number of the vehicles supervised by an 

RSU 𝑟𝑗  in a specific region. 𝛿𝑖  is the weighted coefficient of

vehicle 𝑣𝑖, which is applied to measure how the local training

result can be influenced by its locality and driving contextual 

information.  

For simplicity, a distance-based measurement between an 

RSU 𝑟𝑗  and vehicle 𝑣𝑖  is defined to represent the locality

attribute of 𝑣𝑖  since the amount and quality of data from a

vehicle near an RSU may be more valuable to the object 

detection. The distance is calculated by the longitude and 

latitude as follows. 𝑑𝑖𝑠( 𝑣𝑖 , 𝑟𝑗) = √(𝑙𝑎𝑡𝑖 − 𝑙𝑎𝑡𝑗)2 + (𝑙𝑜𝑡𝑖 − 𝑙𝑜𝑡𝑗)2           (5)

In addition, the quality of captured raw data by vehicles may 

be influenced by the direction and velocity of the moving 

vehicles. Thus, the driving attribute can be simplified based on 

Eq. (6). 𝑑𝑟𝑣( 𝑣𝑖) = 𝜃𝑖90 ∗ log(𝑣𝑙𝑐𝑖)  (6) 

where 𝜃𝑖 ∈ [0,90] represents the direction angle of the moving

vehicle, and 𝑣𝑙𝑐𝑖 is the instant velocity when capturing the raw

data. 

According to Eq. (5) and Eq. (6), the weighted coefficient 𝛿𝑖

can be computed by the vehicular contextual information as 

follows.      𝛿𝑖 = 𝑑𝑖𝑠( 𝑣𝑖,𝑟𝑗)∑ 𝑑𝑖𝑠( 𝑣𝑖,𝑟𝑗)𝐽𝑗=1 + 𝑑𝑟𝑣(𝑣𝑖)   (7) 

Once the local models are aggregated by individual RSUs, 

multiple RSUs will upload their aggregated parameters to the 

central cloud server 𝐶𝑆 where the global model selection and 

aggregation will happen. Different to the RSU layer, the cloud 

infers the model quality based on the computational power of a 

specific RSU, and whether it is at a busy junction with large 

amount of data, which are determined at system setup time and 

in real-time respectively. The throughput measurement for an 

RSU 𝑟𝑗  is defined by the number of received local training

results from the uploading data owners. The computational 

power can be measured by its hardware configuration (e.g., 

CPU/GPU configuration) for simplicity. Thus, we can deduce 

the weighted coefficient 𝜉𝑗  for an RSU 𝑟𝑗 as follows.𝜉𝑗 = 𝐽𝑛 ∗ log (P(𝑟𝑗)P(𝐶𝑆))  (8) 

where P(∗) represent the computational power for the RSU or 

cloud server. Each vehicle will generate one set of parameters, 

thus 𝐽 indicates the received number of sets of uploading local 

parameters by 𝑟𝑗 . 𝑛  stands for the whole vehicular network

capacity. 

C. TFL-CNN Based Intelligent Object Detection Algorithm

According to the discussions above, different aggregation

strategies have been developed for the edge and cloud 

respectively. Based on the applied horizontal federated learning 

framework, we can share an identical global model and update 

the training parameters within the whole 6G supported 

vehicular network. Assuming there are total 𝑇  iterations 

required during the global learning process, we define a 

gradient descent calculation for parameters in each iteration as 
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…
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CachingData Owner

Global Aggregation

Weighted 
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Information
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follows. 𝜔(𝑡 + 1) = 𝜔(𝑡) + ∇(𝜔)                        (9) 

where 𝜔 indicates the aggregated parameter in the global model. ∇(𝜔) stands for the gradient descent calculated by the central 

cloud server 𝐶𝑆.  

The concrete algorithm based on the two-layer federated 

learning for object detection is illustrated in Fig. 3.  

Input: A set of raw data provided by data owners  𝐷 = {𝑑𝑖}𝑖=1𝑛
Participated data owners  𝑉 = {𝑣𝑖}𝑖=1𝑛
Participated RSUs 𝑅 = {𝑟𝑗}𝑗=1𝑚

Output: A trained global object detection model 𝑀 

1:  Initialize model parameter 𝜔, maximum iterations 𝑇 

2:  for 𝑡 = 1 to 𝑇 do  

3: for each RSU 𝑟𝑗 ∈ 𝑅 do

4: for each data owner 𝑣𝑖 ∈ 𝑉 do

5: if 𝑣𝑖 supervised by 𝑟𝑗 do
6: Conduct local training on dataset 𝑑𝑖
7: Calculate the contextual information for 𝑣𝑖 by Eq.

(5), Eq. (6) 

8: Submit the local training parameter 𝜔𝑖(𝑡) to 𝑟𝑗
9:  end for 

10: Aggregate the parameters in 𝑟𝑗  by Eq. (4)-(7)

11:  Upload the parameters to server 𝐶𝑆 

12:  end for 

13:  Calculate the global parameters 𝜔(𝑡 + 1) for model 𝑀 by 

Eq. (9) 

14:  if ∇(𝜔) reach the convergency threshold goto 17 

15:  Broadcast 𝜔(𝑡 + 1) to the network 

16:  end for 

17:  return 𝑀 

Fig. 3. Intelligent Object Detection Based on TFL-CNN 

As described in the algorithm, the training process via the 
TFL-CNN is divided into two steps: aggregation in RSUs and 
aggregation in the cloud server. Both the vehicular contextual 
information and RSU contextual information are considered in 
these aggregations. The global model will be trained and 
distributed without exposing any private data to the network. It 
is noted that the proposed TFL-CNN is designed following the 
consideration of 6G supported vehicular network architecture 
(as exemplified in Fig. 1), and the high-density and low-latency 
communication characteristics envisioned by 6G technologies 
as well. Thus, it ensures data privacy and efficient 
communication during the whole learning process, which may 
tackle the key challenges faced by emerging 6G technologies 
[34, 35]. 

V. EXPERIMENT AND ANALYSIS

In particular, traffic sign recognition is used as a case study 
in the end-edge-cloud computing scenario, to evaluate the 
proposed TFL-CNN in 6G supported vehicular networks. 
Experiments are conducted and discussed to demonstrate the 
usefulness and effectiveness of the proposed method comparing 
with several baseline methods. 

A. Dataset

To investigate the effectiveness of the proposed TFL-CNN
in 6G supported vehicular networks, a traffic sign image dataset 

named BelgiumTSC is considered. It includes more than 7,000 
images and provides a total of 11,219 bounding boxes, which 
correspond to more than 2,000 traffic sign images [39]. Both 
the labeled class and 3D location view were recorded for each 
sign. Although the videos and images are captured at less than 
50 meters in at least one view, issues such as within-class 
variability, between-class similarity, and bad standardization 
may affect the performance of conventional methods. It needs 
be noticed that the traffic sign recognition task has the locality 
characteristic (i.e., 50 meters) similar to the 6G RSU coverage, 
where the task is initiated and needs to be completed within a 
short time period. In the following subsections, this is analyzed 
to give indications that why 6G is necessary for future 
intelligent network applications.  

To effectively evaluate the detection performance for 6G 
supported vehicular networks, data pre-processing is necessary 
to refine the training and testing data to fit the 6G environment, 
which consists of three main steps in our experiment:  

(1) Remove the badly formatted and missing features records.
(2) Enlarge the size of dataset to 10 times bigger than the

original size to simulate the 6G supported IoV environment. 
(3) Split the whole enlarged dataset into 500 shards, and

assign these shards to 25 RSUs for federated learning scenarios. 

B. Experiment Design and Evaluation Metrics

We adopt several widely used and classical machine learning
methods in this field as the baseline methods, including 
classical methods: Random Forest (RF) and CNN, and one 
state-of-the-art method: RegionNet [40], which is capable of 
achieving both clear detection boundary and multi-scale 
contextual robustness for traffic sign detection, to conduct the 
comparison evaluation. Furthermore, we refer to the existing 
6G wireless communication requirements [35], to simulate the 
comparison between 6G and 5G network. The parameter 
configurations set for our experiments are listed in Table 1. It 
can be observed that the E2E (End-to-End) latency of 6G 
supported network is 10 times smaller than 5G. We investigate 
the time consumption of all the methods by varying the E2E 
latency from 0.5ms to 5ms. 

TABLE 1. PARAMETER CONFIGURATION OF 5G AND 6G  

Issue 5G 6G 

Per device peak data rate 10Gbps 1Tbps 

E2E latency 10ms 1ms 

Maximum spectral efficiency 30bps/Hz 100bps/Hz 

Mobility support Up to 500km/hr Up to 1000km/hr 

Maximum frequency 90GHz 10THz 

Evaluation indicators used in performance comparisons are 
introduced and defined as follows. 

1) True positive (TP): A target traffic sign has been predicted to
a correct type. 

2) True negative (TN): A non-target traffic sign has been
predicted to a correct type. 

3) False positive (FP): A target traffic sign has been predicted
to a wrong type. 
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4) False negative (FN): A non-target traffic sign has been
predicted to a wrong type. 

Following the above definition, three widely used metrics: 
Precision, Recall, and F1 score, can be calculated as follows. 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃+𝐹𝑃   (10) 

   𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃+𝐹𝑁   (11) 𝐹1 =  2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙   (12) 
Precision indicates the model’s ability to distinguish traffic 

signs. The higher the precision value is, the better the model’s 
ability to distinguish the similar traffic signs will be. Recall reflects 
the ratio of the model to tackle the intra-class similarity issue. The 
higher the recall value is, the better the model’s ability to detect the 

traffic signs with intra-class similarity will be. F1 score describes 
the balance between Precision and Recall. The higher the F1 score 
is, the more robust performance of the model can achieve.  

C. Detection Performance Evaluation

We first evaluate the learning efficiency of the proposed
method. The training process of the TFL-CNN is investigated
by observing how the gradient shifts and loss declines during the
aggregation process. The learning rate is set to 0.005 and the
maximum iteration is set to 1000. Three different potential E2E
latencies (i.e., 0.5ms, 1ms, and 5ms) of 6G supported networks
are studied. The aggregated error rates for each method across a
total of 25 RSUs during the training process are illustrated in Fig.
4.

(a) 0.5ms E2E Latency (b) 1ms E2E Latency (c) 5ms E2E Latency

Fig. 4. Error Rate Observation Under 5G/6G Configuration in Federated Learning Process 

(a) 0.5ms E2E Latency (b) 1ms E2E Latency (c) 5ms E2E Latency

Fig. 5. Total Convergence Time(s) Under 5G/6G Configuration to Meet the Threshold of Error Rate 

As shown in Fig. 4, our proposed TFL-CNN outperforms all the 
other three methods in achieving faster convergence to reach a 
reasonable error rate at 0.1. Furthermore, it can be clearly observed 
that with lower latency, all the methods can accomplish faster 
convergence in terms of error rate for the traffic sign recognition 
task in 6G. Whereas in 5G, the four methods could not converge to 
a reasonable error rate within the similar period of time. For 
vehicular networks or IoV applications, where real time response 
is a critical factor, 5G is obviously not sufficient. In addition, it is 
noticed that with higher latency (i.e., from 0.5 ms to 5 ms), these 
methods may take longer time to reach convergence. This result 
can be viewed as a good indication of the performance of the 
proposed method under the expected 6G configuration.  

We then analyze the impact of different numbers of RSUs 
involved in the training process. As shown in Fig. 5, generally, all 
the four methods can reach the preconfigured threshold of error 
rate within a much shorter time period in 6G. However, when the 
number of RSUs increases, a significant increase in convergence 
time can be observed in 5G configuration. This clearly indicates 
that 5G configuration is still not sufficient to support large-scale 
IoV applications. It is obvious that the convergence time in all 
methods are increasing relatively linearly as the number of 
involved RSU increases, and the proposed TFL-CNN outperforms 
all the other methods with a faster convergence. Besides, it is 
interesting to note that the RF method requires less training data 
and could converge slightly faster. However, its scalability is not 
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very good compared with our TFL-CNN, especially when dealing 
with larger number of RSUs in the possible future 6G environment. 

We go further to investigate the four methods in traffic sign 
recognition using the enlarged dataset based on metrics Precision, 
Recall, and F1 score. Particularly, to demonstrate the strength of 
the proposed federated learning method in the end-edge-cloud 
computing scenario, one shard of dataset is used for CNN and RF, 
and the whole dataset is used for RegionNet and our TFL-CNN, so 
as to simulate a realistic distributed learning in a 6G supported 
vehicular network. The results are listed and compared in Table 2. 

TABLE 2. COMPARISONS ON TRAFFIC SIGN RECOGNITION PERFORMANCE  

Methods Precision Recall F1 score 

CNN 0.889 0.821 0.854 

RegionNet 0.899 0.910 0.904 

RF 0.746 0.852 0.795 

TFL-CNN 0.906 0.968 0.936 

Based on Table 2, obviously, the proposed TFL-CNN achieves 
the best results in F1 score at 0.936. This indicates that the 
proposed method can result in higher accuracy in the traffic sign 
recognition scenario compared with other baseline methods. 

Finally, we evaluate the performances of all the methods in 
terms of detection accuracy using the whole dataset (500 shards). 
The ROC (Receiver Operating Characteristic) curve is utilized to 
demonstrate the evaluation performance, the results of which are 
illustrated in Fig. 6. 

Fig. 6. Performance Evaluation Based on ROC 

As shown in Fig. 6, all the curves appeared in the upper left 
corner above the diagonal line, which indicates that all the methods 
can predict the traffic sign correctly to a certain extent. This can 
exemplify that the modern machine learning schemes are practical 
to facilitate autonomous driving. Apart from RF, the other three 
learning methods achieve a relatively good result (nearly 1.0) when 
FPR and TPR increase to 1.0 at the right upper corner in the figure. 
According to the ROC curves, the TFL-CNN achieves the best 
result at average 0.96. This indicates that the proposed two-layer 
federated learning model can perform efficient training with higher 
accuracy, so as to recognize the traffic sign effectively, comparing 
with the baseline methods in the 6G supported vehicular network 
scenario. The proposed TFL-CNN can efficiently identify the 
features of traffic signs and optimize the local training parameters 

in terms of the contextual information calculated from both the 
vehicles and RSUs based on the distributed dataset. It is noticed 
that the RegionNet method shows a result of ROC at 0.95 
compared with the proposed TFL-CNN, which can be explained 
as the federated learning scheme can benefit a lot when addressing 
problems with distributed big dataset in a 6G supported IoV 
environment. 

VI. CONCLUSION

In this paper, we proposed a two-layer federated learning model 

for intelligent object detection, which could achieve more efficient 

and more accurate learning result in 6G supported IoV 

environments. 

In particular, a two-layer federated learning framework was 

designed and built to enhance the typical end-edge-cloud 

computing architecture in 6G supported vehicular networks. An 

integrated TFL-CNN was constructed to train using the local data 

and only share the parameters. Both the local and global contexts 

of individual vehicles and RSUs were taken into account in a multi-

layer heterogeneous model selection and aggregation scheme, 

which could effectively improve the training efficiency. A context-

aware learning mechanism was then developed and applied in the 

intelligent object detection. Experiment and evaluation results 

demonstrated the outstanding performance of our proposed 

method in faster convergence and better learning accuracy for 6G 

supported IoV applications, comparing with other similar methods. 

In the future studies, we will go further to study the federated 

learning architecture with more deep learning techniques, and 

conduct more evaluations to improve the algorithm with better 

accuracy and efficiency in different practical scenarios. 
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