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Abstract
Epilepsy is a chronic nervous disorder, which disturbs the normal daily routine of an epileptic patient due to sudden seizure
onset. In this era of smart healthcare, automated seizure prediction techniques could assist the patients, their family, and
medical personnel to control and manage these seizures. This paper proposes a spectral feature-based two-layer LSTM
network model for automatic prediction of epileptic seizures using long-term multichannel EEG signals. This model makes
use of spectral power and mean spectrum amplitude features of delta, theta, alpha, beta, and gamma bands of 23-channel EEG
spectrum for this task. Initially, the proposed single-layer and two-layer LSTMmodels have been evaluated for EEG segments
having durations in the range of 5–50 s for 24 epileptic subjects, out of which EEG segments of 30 s duration are found to be
useful for accurate seizure prediction using two-layer LSTMmodel. Afterwards, to validate the performance of this classifier,
the spectral features of 30 s duration EEG segments are fed to random forest, decision tree, k-nearest neighbour, support
vector machine, and naive Bayes classifiers, which are empowered with grid search-based parameter estimation. Finally,
the iterative simulation results and comparison with recently published existing techniques firmly reveal that the proposed
two-layer LSTM model with EEG spectral features is an effective technique for accurately predicting seizures in real time
with an average classification accuracy of 98.14%, average sensitivity of 98.51%, and average specificity of 97.78%, thereby
enabling the epileptic patients to have a better quality of life.
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Introduction

Epilepsy is a commonly occurring chronic nervous disorder
characterized by the occurrence of spontaneous and sud-
den seizures [1]. This neurological disorder affects the lives
of all age groups from infants to old age persons, cover-
ing approximately 50 million people around the world [2].
This count is getting worse in developing countries like
India. As per statistical figures of Indian Epilepsy Centre,
New Delhi, approximately 10 million Indian population is
suffering from this disorder and this number is increasing
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day-by-day with the annual addition of 0.5–1 million new
epileptic patients [3]. This fatal disorder may result in vital
medical symptoms like abnormal behaviour, muscle cramps,
strange sensations, and loss of consciousness, etc., which
could lead to major injuries, brain damage or deaths of its
patients in road accidents or during working in hazardous
work environments [1]. Despite occurring at low frequency,
these uncontrolled seizures critically influence the normal
quality of life of epileptic patients. In general, more than
99.95% times, epileptic patients are not suffering from any
seizure and should be entitled to live normal life, which could
also reduce the socioeconomic burden on patients and their
families [4]. This idea could be achievedbypredicting epilep-
tic seizures well before their actual onset. It would help in
saving the lives of patients by sending timely alerts, thereby
enabling them to take precautionary measures.

Epileptic seizures cause a rapid upsurge in electrical dis-
turbances in the patient’s brain, which can be measured
using the electroencephalogram (EEG) technique [5]. Usu-
ally, EEG signal recordings are examined by neurologists
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to determine different stages of epilepsy like ictal (on-going
seizures), preictal (just before seizure onset), post-ictal (after
seizure onset period), and interictal (in-between seizures) [6].
However, this process is arduous and time-consuming, which
leads to the need for an automatic epileptic seizure prediction
system [7,8].

Nowadays, Internet of things (IoT) technologies have
started playing a key role in providing solutions to various
health-related problems with the help of machine learning
algorithms being deployed at cloud-based servers. These
healthcare solutions may include elderly care [9], remote
healthcare [10], fitness programs [11], detection and prog-
nosis of neurological and mental disorders like Alzheimer,
epilepsy, autism spectrum disorder and schizophrenia, etc.
[12–17]. Deep learning [18] is another paradigm in this
regard, which is capable of handling the large volume of sig-
nal data generated by wearable IoT sensing devices like EEG
headsets for epilepsy [19]. The algorithms based on deep
learning techniques overcome the limitations of traditional
machine learning algorithms by offering less processing
time and capability of handling big data of multichannel
biomedical signals [20]. Consequently, these techniques play
a promising role in providing real-time solutions in health-
care sector.

To provide a smart solution to the patients with epilepsy,
the present paper proposes a spectral feature-based two-layer
long short-term memory (LSTM) model [21] for automated
prediction of epileptic seizures. This approach makes use
of long-term CHB-MIT [22] EEG database of 24 cases of
epilepsy, collected at Children’s Hospital, Boston. First of
all, the raw 23 channel EEG signals being recorded from
the patient’s scalp are pre-processed, filtered, and segmented
into short-duration segments in the range of 5–50s. Then,
these segments are converted into frequency domain using
Fast Fourier transform (FFT), and are separated into five fre-
quency bands for accurate interpretation of functional and
behavioural features of a complex structure of the brain dur-
ing epileptic seizures [23]. The given frequency bands of 23
channel EEG signals are characterized by extracting two dis-
tinct features—spectral power andmean spectrumamplitude.
Initially, this work proposes single-layer LSTM (1L-LSTM)
and two-layer LSTM (2L-LSTM) models for seizure predic-
tion, which utilizes spectral features of various sub-bands
of given EEG segments. This analysis of 1L-LSTM and 2L-
LSTM for different duration values of EEG segments reveals
the effectiveness of 30 s duration EEG segments for seizure
prediction using 2L-LSTM. Furthermore, to ensure the effec-
tiveness of the proposed 2L-LSTM model, its performance
has been compared with that of decision tree, random forest,
k-nearest neighbour (kNN), support vector machine (SVM),
naive Bayes, and 1L-LSTM classifiers for EEG segments of
30 s. These traditional machine learning classifiers make use
of grid-search technique for estimating hyperparameters to

improve their performance. The overall analysis of simula-
tion results of given classifiers and comparison with existing
methods confirm the utility of the proposed spectral features
based two-layer LSTM model (2L-LSTM) for accurate and
real-time seizure prediction in epileptic patients.

This paper has been divided into different sections. Sec-
tion 1 gives the introduction of the problem of epileptic
seizures, the use of modern technologies to predict seizures,
and the proposed model for automatic prediction of seizures.
The related work done by various researchers in the field of
automatic prediction of seizures has beendiscussed inSect. 2.
In addition, the methodology implemented for seizure pre-
diction using the proposed approach has been explained
step-by-step in Sect. 3. Moreover, Sect. 4 provides analysis
and discussion of the results obtained after the implementa-
tion of the proposedmodel. Finally, the conclusions aremade
in Sect. 5.

Related work

This section discusses research work done by various
researchers during recent years in the field of automatic
prediction of epileptic seizures. The publications, in which
CHB-MIT EEG database has been employed for seizure pre-
diction using traditional machine learning and deep learning
techniques, are given the key focus.

A traditional machine learning-based approach presented
byUsman et. al. [24] discusses the empirical mode decompo-
sition method for extraction of time- and frequency-domain
features from 2s duration EEG segments. These features
include features of power spectral density such as spectral
centroid, variational coefficient, spectral skew, and combined
feature set consisting of four statistical moments and three
frequency moments of intrinsic mode functions. It provides
classification results using SVM for prediction of epileptic
seizureswith a sensitivity of 92.23%.A similar approach [25]
makes use of graph theory, and time-domain and frequency-
domain features of 5 s duration EEG segments to train SVM
algorithm for the classification of preictal and interictal EEG
stages in epileptic patients. This approach provides satisfac-
tory results of seizure prediction with a sensitivity of 87.75%
and specificity of 87.75%.

In an effort to employ unsupervised learning techniques
for automatic epileptic seizure prediction, Kitano et al. [26]
have presented a self-organisingmap (SOM) algorithm along
with a polling-based decision process for EEG segments of
4 s, which are pre-processed using wavelet transform. This
method has obtained classification resultswith an accuracy of
91%, sensitivity of 98%, and specificity of 88%. In addition to
this approach, an extreme learningmachine (ELM) approach
[27] has been employed for prediction of seizures, which
takes into account bag-of-wave feature extraction technique,
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and achieves classification of seizure stages with sensitivity
of 88.24%.

Furthermore, some researchers have started harnessing the
power of deep learning algorithms for prediction of epileptic
seizures. In this regard, Truong et al. [28] have proposed
a convolutional neural network (CNN)-based generalized
epileptic seizure prediction approach with short-time Fourier
transform-based pre-processing of 30s duration EEG seg-
ments and have achieved the results of seizure predictionwith
a sensitivity of 81.2%. A similar approach presented by Hu
et al. [29] makes use of CNN for feature extraction from the
mean amplitude spectrum of 19 frequency bands taken from
15-channel EEG segments of 2 s, which classifies seizure
stages using SVM classifier with a sensitivity of 86.25%. A
bidirectional long-term memory network (LSTM) model is
another deep learning-based seizure prediction system [30],
in which a two-dimensional stacked convolutional autoen-
coder has been employed for spatial feature extraction. This
model provides seizure prediction results with sensitivity of
94.6%.

In the same concern, Duan et al. [31] present an idea of
using bi-direction gated recurrent unit (Bi-GRU), which is
also a type of recurrent neural network, to predict seizure
states effectively. This model employs CNN algorithm for
extracting features from correlation coefficients among elec-
trodes for eight distinct sub-bands of multi-time scale EEG
segments having segment duration of 1 s, 2 s, and 3s. It
provides classification results with an accuracy of 94.8%,
sensitivity of 91.7%, and specificity of 97.7%. In addition,
Usman et al. [32] make use of a CNN model for extrac-
tion of features from EEG segments of 29 s duration, which
are decomposed using empirical mode decomposition. It per-
forms classification using a single-layer LSTM classifier and
provides classification results with a sensitivity of 93% and
specificity of 92.5%.Similarly, Zhang et al. [33] also employs
a CNN model fed with synchronization features such as
Pearson correlation coefficients to predict epileptic seizures.
These features are obtained fromEEG segments of 8 s, which
provides classification results with an accuracy of 89/98%.

The comprehensive review of existing seizure prediction
techniques reveal thatmost of these techniques are dependent
upon complex feature extraction and pre-processingmethods
and classification using traditional machine learning as well
as deep learning techniques. Also, some of these existing
techniques show relatively poor classification performance
with low values of accuracy, sensitivity, or specificity. Hence,
there exists an extreme requirement of providing accurate
seizure prediction,which could be achieved by applying deep
learning-based models fed with simple spectral domain fea-
tures. Therefore, the present work utilizes an LSTM-based
approach in the field of epileptic seizure prediction, which
makes use of spectral power and mean spectrum amplitude
features of five frequency bands taken from 23-channel EEG

segments of shorter durations. This model tends to predict
seizure stages more accurately for its effective utilization in
real-time scenarios.

Materials andmethods

This section discusses the procedure adopted for the imple-
mentation of automatic epileptic seizure prediction. This
procedure primarily involves two phases: pre-processing and
classification. The pre-processing phase consists of filtering
and segmentation of rawmultichannel EEG signals followed
by transformation into frequency domain using Fast Fourier
transform (FFT), frequency band separation, and feature
extraction. The extracted features are used for training and
testing of the proposed LSTM models as well as other well-
known models in classification phase. The whole process is
depicted in Fig. 1. The dataset applied and various imple-
mentation steps are discussed in the following subsections.

Dataset

The proposed model takes into account long-term CHB-
MIT EEG dataset [22] of 24 cases taken from subjects with
intractable seizures. This dataset has been collected at Chil-
dren’sHospital, Boston, and is openly available at onlineweb
portal PhysioNet [34]. As per information provided on this
portal, out of 24 EEG recordings, the recordings of the first
23 cases are taken from 22 subjects having 5 males with an
age group of 3–22 years and 17 females with an age group
of 1.5–19 years. These EEG signals are collected from the
patient’s scalp usingEEGelectrodes positionedwith an inter-
national 10–20 system of electrode placement [35] and are
sampled at a sampling rate of 256 samples per second having
16-bit resolution. Most of the samples contain 23 channels
with some exceptions of 24 or 26 channels.

The present research work considers 23 channels of EEG
signals for all 24 cases. The long sequence of EEG samples
contains seizure intervals, which are mentioned in the anno-
tation files of the dataset. These seizure intervals are termed
as ictal stages. The signals after the ictal stage are termed as
post-ictal stage. The proposed model assumes an interven-
tion period (IP) of 5 min just before the seizure onset, which
could be used for the generation and transmission of alert
messages to epileptic patients, their family members, and
hospitals. In this work, a preictal period of 30 min has been
considered before IP [36]. The interictal stages are assumed
at least 4 h before and/or after the ictal stage. A multichannel
EEG signal labelled with different seizure stages is shown in
Fig. 2.

The given dataset after time-domain segmentation into
different seizure class labels produces an unbalanced dataset
having a large number of interictal classes followed by pre-
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Fig. 1 Automatic epileptic
seizure prediction: a procedural
overview

ictal and post-ictal classes, and very few classes for ictal
stage. Since the prediction of epileptic seizures is primarily
dependent upon detection of preictal stage among interic-
tal or normal EEG samples. Therefore, a balanced dataset
consisting of an equal number of interictal and preictal class
labels only has been taken into consideration in the present
work.

Band-pass filtering

The scalp EEG signals sensed from epileptic patients are
required to be free fromdifferent kinds of artefacts and noises
before its processing for seizure prediction [37], which leads
to the need for precise filtering. Therefore, given multichan-
nel EEG signals are filtered usingButterworth bandpass filter
[38] with a lower cut-off frequency of 0.1 Hz and higher cut-
off frequency of 127 Hz. This method is a widely popular
filtering technique for the analysis of biomedical signals due
to its flat and ripple-free frequency response in passband [39].

EEG segmentation

The variation in statistical features of EEG signals over a
time interval makes them non-stationary in nature [13]. The
solution to this problem is to divide a long sequence of EEG
signals into short-duration segments, which are assumed to
be pseudo-stationary having similar statistical time and fre-
quency features [40]. The present work also employs this
approach by dividing EEG signals of different seizure inter-
vals into shorter duration segments, such as 5 s, 10 s, 15 s,
20 s, 25 s, 30 s, 35 s, 40 s, 45 s, and 50s duration segments
without any over-lapping. Although, the EEG signals pro-
vided in CHB-MIT dataset have time durations ranging from
several minutes to hours, yet the present work takes into
account amaximumEEG segment duration of 50s only. This
is because of the reason that a further increase in segment

duration results in the generation of few EEG samples only,
whichwould not be adequate for appropriate training, testing,
and validation of the proposed classifiers. Moreover, these
shorter duration segments are also advantageous in terms of
the requirement of low computational power for processing,
lower transmission bandwidth, and lesser storage require-
ment on local or cloud-based storage.

Fast Fourier transform

The transformation of time-domain EEG signals into fre-
quency domain emphasizes the epileptic spikes in spectral
domain [41], which are useful for accurate and speedy pre-
diction of epileptic seizures. Therefore, keeping in view the
significance of time-frequency transformation for EEG sig-
nals, the present work makes use of fast Fourier transform
algorithm (FFT) for converting multichannel time-domain
EEG signals into frequency domain.

Frequency band separation

The EEG signals can be subdivided into different sub-bands
in spectral domain, which include delta (δ), theta (θ ), alpha
(α), beta (β), and gamma (γ ) bands [42]. Epileptic seizures
prompt dynamic variations in the characteristics of these sub-
bands, which further describes the changes in functional and
behavioural characteristics of the complex structure of an
epileptic patient’s brain [43]. These changing characteris-
tics tend to provide descriptors for prediction of epileptic
seizures. Therefore, the present work takes into account five
spectral bands of EEG signals for the task of seizure predic-
tion having frequency range for delta (0.1–4 Hz), theta (4–8
Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma bands
(> 30 Hz) [44].
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Fig. 2 An illustration of
multichannel EEG signal with
different seizure stages

Feature extraction

The feature extraction is an important step for extracting dis-
tinct features from different frequency bands of EEG signal.
These features characterize different epileptic stages and act
as descriptors for the prediction of epileptic seizures. The
present work takes into account two features for different
EEG bands, which include spectral power and mean spec-
trum amplitude [45,46].

For a N -point signal x(n) with discrete Fourier transform
X p(k) of its particular frequency band, the spectral power in
μV 2/Hz can be expressed by Eq. 1

P = 1

N

N−1∑

k=0

∣∣∣X p(k)X
∗
p(k)

∣∣∣ , (1)

where X∗
p(k) is the complex conjugate of X p(k).

Similarly, themean spectrum amplitude (μV /Hz) in spectral
domain for a signal x(n) can be expressed by Eq. 2.

S(k) = 1

N

N−1∑

k=0

∣∣X p(k)
∣∣ . (2)

Spectral power andmean spectrum amplitude for different
frequency bands of an EEG signal are shown in Fig. 3. This
figure depicts the variation of both features for interictal and
preictal stages of an epileptic patient.

Classification using LSTM network

Long short-termmemorynetworks (LSTM)are a special type
of recurrent neural networks (RNN), which are capable of
learning long term dependencies in given data sequences by
memorizing the information for longer period, thus avoid-
ing the vanishing gradient problem of RNN [47]. LSTM

networks are initially introduced by Hochreiter and Schmid-
huber [21]. These networks are widely used in various
classification problems of times series data, speech, audio,
text data and biomedical signals, etc. [48,49].

The architecture of LSTM is defined by a basic LSTM
cell (Fig. 4), which comprises three gates for controlling the
flow of information from one cell state to other. These gates
include forget gate, input gate, and output gate [21,50]. All
three gates make use of sigmoid activation σ for providing a
decision to control the flow of information. The forget gate
decides whether a piece of information in the given data sam-
ple should be retained or forgotten. It considers current input
signal xt and previous output sequence yt−1 in the cell state
Ct−1 to provide output ft between 0 and 1, where 0 repre-
sents completely forgetting the information, and 1 is meant
for completely retaining the information. The input gate pro-
vides a decision about information being stored in the current
cell state Ct by multiplying its output it with the output C̃t

of tanh activation layer. Similarly, the output gate decides
the flow of fraction of information yt in Ct at the output of
LSTM cell by combining its output ot with the output of
another tanh activation layer. Mathematically, the operation
of three gates of an LSTM cell to provide output yt in cell
stateCt has been expressed by the following equations: [50].

ft = σ(W f .[yt−1, xt ] + b f ) (3)

it = σ(Wi .[yt−1, xt ] + bi ) (4)

C̃t = tanh(WC .[yt−1, xt ] + bC ) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo.[yt−1, xt ] + bo) (7)

yt = 0t ∗ tanhCt , (8)
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Fig. 3 Spectral power and mean spectrum amplitude for different seizure stages

Fig. 4 LSTM cell

where, W and b are the weight matrices and bias factors for
different gates of LSTM cell.

In this work, single-layer LSTM (1L-LSTM) and two-
layer LSTM (2L-LSTM)models are taken into consideration
for the task of seizure prediction. The architectural view
of the single-layer LSTM model (1L-LSTM) and two-layer
LSTM model (2L-LSTM) employed in this work for auto-
mated epileptic seizure prediction have been visualized in
Figs. 5, 6. 1L-LSTM architecture consists of a single LSTM
layer having 50 LSTM units, a dropout layer with proba-
bility p = 0.25, and a dense output layer having ‘sigmoid’
activation function. Similarly, 2L-LSTM architecture is an
upgraded version of 1L-LSTM consisting of two LSTM lay-
ers with 128 and 64 LSTM units, respectively, followed by
a dropout layer (p = 0.25), a dense fully connected layer
having 16 neurons and a dense output layer with ‘sigmoid’
activation for binary classification of interictal and preictal
stages of seizures. The input layer in both models is pre-
sented by an input vector of (10 × 23), where a total of ten
features have been extracted from five frequency bands of 23
channel EEG signal. These models utilize a batch size of 32
input instances for training using ‘rmsprop’ optimizer and a

loss function of binary cross-entropy. To achieve optimum
accuracy, 1L-LSTM and 2L-LSTM models are trained for
100 and 200 epochs, respectively.

Apart from using the above-mentioned LSTMmodels, the
present work also considers decision tree (DT), random for-
est (RF), k-nearest neighbour (kNN), support vectormachine
(SVM), and naive Bayes (NB) classifiers for prediction of
seizure activities. These classifiers are empowered with grid
search-based parameter estimation [51] for hyper-tuning of
different parameters. The input feature map for these classi-
fiers has been modified by concatenating spectral features of
different EEG channels.

Results and discussion

This section discusses the simulation results of the proposed
LSTMmodels for automatic prediction of epileptic seizures.
Theproposed approach for seizure predictionhas been imple-
mented on a laptop having a configuration of Intel i7 8th
generation processor, 16 GB RAM, Nvidia GEFORCEGTX
1060 graphics processing unit (GPU) of 6 GB and Windows
10 operating system using Python programming language.

In this work, EEG signals are segmented into various
short-duration segments with duration in the range of 5–50
s. Then, spectral power and mean spectrum amplitude fea-
tures are extracted from five frequency bands of each EEG
segment, leading to a total of 10 features from each of 23
channels of these segments. Thus, this pre-processing pro-
vides an input feature map of 10 × 23 for a single EEG
segment. In the process of training and testing of the pro-
posed LSTM models, the given datasets for each subject are
divided into two subsets, consisting of 90% instances for
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Fig. 5 Single-layer LSTM
(1L-LSTM) model for epileptic
seizure prediction

Fig. 6 Two-layer LSTM (2L-LSTM) model for epileptic seizure prediction

training and 10% instances for testing purposes. The train-
ing datasets further include 10% instances for validation of
the trained classifiers.

The present work makes use of different performance
measures like classification accuracy, sensitivity, specificity,
and F1 score [12,52] to analyze the performance of given
classifiers. It involves the performance evaluation of the
proposed LSTM classifiers for EEG segments of different
duration to visualize the impact of EEG segment duration
on their classification accuracy for effective classification of
interictal and preictal seizure stages. This work takes into
account a tenfold validation approach for seizure stage classi-
fication in each of 24 epileptic patients to ensure the statistical
viability of the proposed classification models. Also, the
effectiveness of the proposed models has been analyzed by
taking the average values of results obtained from 24 patients
for EEG segments of different durations.

Table 1 shows the classification performance of 1L-LSTM
for 24 epileptic patients in terms of average values of given

performance measures for various EEG segment durations.
It is evident from this table that the given single-layer LSTM
model provides maximum classification accuracy of 97.34%
with a least standard deviation of ±2.77%, maximum value
of specificity of 98.25% with a minimum standard devia-
tion of ±2.86%, and maximum average F1 score of 97.2%
with standard deviation of ± 3.1% in case of input EEG
segments of 50 s duration. Moreover, it provides maximum
values of average sensitivity of 97.13% ± 5.13% for EEG
segment duration of 45 s. Similarly, for EEG segment dura-
tion of 30 s, 1L-LSTMmodel provides average classification
accuracy of 96.22% ± 3.83%, average sensitivity of 96.02%
± 5.57%, average specificity of 96.5% ± 4.81%, and aver-
age F1 score of 95.95% ± 4.34%. Thus, it is obvious from
this discussion that the proposedLSTMarchitecture provides
an accurate classification of seizure stages for EEG segment
of 50 s duration. However, there exists a marginal variation
in values of given performance measures for different EEG
segment durations.
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Table 1 Performance of single-layer LSTM model (1L-LSTM) for EEG segments of different durations

EEG segment duration Avg. classification accuracy (%) Avg. sensitivity (%) Avg. specificity (%) Avg. F1 score (%)

5s 94.8 ± 5.58 95.1 ± 5.36 94.5 ± 6.21 94.9 ± 5.47

10s 96.1 ± 4.58 96.6 ± 4.5 95.7 ± 4.96 96 ± 4.53

15s 96 ± 4.21 96.3 ± 5.69 95.6 ± 6.89 96.1 ± 4.08

20s 95.1 ± 4.58 95.4 ± 7.16 94.8 ± 5.94 94.08 ± 5.06

25s 95.7 ± 4.39 96.1 ± 5.1 95.4 ± 5.45 95.9 ± 4.4

30s 96.22 ± 3.83 96.02 ± 5.57 96.5 ± 4.81 95.95 ± 4.34

35s 94.54 ± 5.83 95.23 ± 7.74 93.3 ± 8.88 94.64 ± 6.26

40s 96.3 ± 3.79 96.1 ± 5.04 96.4 ± 4.28 96.3 ± 4.0

45s 96.1 ± 4.84 97.13 ± 5.13 95.5 ± 6.41 96.2 ± 4.69

50s 97.34 ± 2.77 96.44 ± 5.1 98.25 ± 2.86 97.2 ± 3.1

Bold values signify the major findings of the given classifier in terms of maximum values of Avg. classification accuracy (%), Avg. sensitivity (%),
Avg. specificity (%), Avg. F1 score (%)

Table 2 Performance of two-layer LSTM model (2L-LSTM) for EEG segments of different durations

EEG segment duration Avg. classification accuracy (%) Avg. sensitivity (%) Avg. specificity (%) Avg. F1 score (%)

5s 95.15 ± 5.0 95.1 ± 5.4 95.2 ± 5.2 95.1 ± 5.1

10s 95.15 ± 4.8 96.3 ± 4.85 93.84 ± 6.7 95.4 ± 4.55

15s 95.5 ± 4.83 95.32 ± 5.76 95.66 ± 5.05 95.5 ± 4.8

20s 96.31 ± 4.11 96.83 ± 4.9 96 ± 4.9 96.13 ± 4.53

25s 97.22 ± 4.0 97.3 ± 5.0 96.94 ± 6.5 97.17 ± 4.21

30s 98.14 ± 2.5 98.51 ± 2.55 97.78 ± 3.37 98.23 ± 2.3

35s 97.04 ± 3.9 97.22 ± 4.9 97.06 ± 4.87 97.11 ± 3.92

40s 97.3 ± 3.3 96.21 ± 5.67 98.13 ± 3.66 97.04 ± 3.86

45s 97.11 ± 3.6 98.32 ± 3.3 96.06 ± 5.5 97.01 ± 3.85

50s 97.45 ± 2.5 97.6 ± 3.5 97.5 ± 3.6 97.26 ± 2.8

Bold values signify the major findings of the given classifier in terms of maximum values of Avg. classification accuracy (%), Avg. sensitivity (%),
Avg. specificity (%), Avg. F1 score (%)

Afterwards, another LSTM model, i.e., two-layer LSTM
model (2L-LSTM), has been taken into consideration using
the spectral featuremaps of different durationEEGsegments.
Table 2 depicts the performance analysis of 2L-LSTMmodel
for EEG segments of different durations in terms of average
values of various performance measures obtained from the
classification results of 24 epileptic patients. As shown in
this table, 2L-LSTM classifier provides maximum average
classification of 98.14% with standard deviation of ± 2.5%,
average sensitivity of 98.51% ± 2.55%, average specificity
of 97.78% ± 3.37%, and average F1 score of 98.23% ±
2.3% for 24 epileptic patients in case of EEG segment dura-
tion of 30 s. Moreover, this classifier gives average accuracy
of 97.45% ± 2.5%, average sensitivity of 97.6% ± 3.5%,
average specificity of 97.5% ± 3.6%, and average F1 score
of 97.26% ± 2.8% for EEG segments of 50 s duration. Fur-
thermore, the classification performance of 1L-LSTM and
2L-LSTM models has been compared for EEG segments of

different durations in terms of average classification accuracy
of 24 patients, which is visible in Fig. 7. From this figure, it
is evident that 2L-LSTM model achieves maximum average
classification accuracy of 98.14% for segment duration of
30s for 24 epileptic patients.

In addition, the performance of the proposed 2L-LSTM
model has also been compared with 1L-LSTM, decision tree
(DT), random forest (RF), kNN, SVM, and naive Bayes (NB)
classifiers for EEG segment duration of 30s. This perfor-
mance analysis is illustrated in Fig. 8 for average values
of performance measures obtained from 24 patients with
epileptic seizures. This figure clearly demonstrates that the
modified architecture of LSTM, i.e., 2L-LSTM, surpasses
all other classifiers with a maximum classification accuracy
of 98.14%, sensitivity of 98.51%, specificity of 97.78%,
and F1 score of 98.23%. On the other hand, random for-
est, 1L-LSTM, SVM, decision tree, kNN, and naive Bayes
classifiers have attained classification accuracies of 97.3%,
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Fig. 7 Performance analysis of 1L-LSTM and 2L-LSTM classifiers for different EEG segment durations

Fig. 8 Performance analysis of given classifiers for EEG segments of 30s duration

96.2%, 96.06%, 93.08%, 92.56%, and 80.09%, respectively.
Thus, it has been proved from this analysis that the proposed
two-layer LSTM model provides highly accurate results for
the prediction of epileptic seizures as compared to other clas-
sifiers for spectral features of 30 s duration EEG segments.

Moreover, Table 3 depicts the performance of the pro-
posed two-layer LSTM model for seizure prediction in case
of 24 individual patients or subjects by employing 30s dura-
tion segments. This table shows the range of classification
accuracy for 93.02% for subject ID 4–100% for 14 differ-
ent subjects. The results of sensitivity range from 92% for
subject ID 4–100% for 17 different subjects. Similarly, speci-
ficity values range from 91.66% for subject ID 10–100% for
16 different subjects out of 24 subjects, and the F1 score
ranges from 93.88% for subject ID 4–100% for 14 different
subjects.

To ensure the stability of the proposed LSTM models for
prediction of epileptic seizures, the performance of these

models has also been illustrated in terms of loss and accuracy
curveswith respect to epochs used during the training process
(refer to Fig. 9). As shown in Fig. 9a, c, loss curves for 1L-
LSTMand2L-LSTMdecrease exponentiallywith increasing
epochs and converge to the least value of loss for training and
validation datasets. Similarly, Fig. 9b, d illustrates an expo-
nential rise in classification accuracy with respect to epochs,
which attain a flat response with an increase in the num-
ber of epochs for same datasets. However, it is also evident
from these curves that 2L-LSTM exhibits more stable char-
acteristics with low variations in accuracy and loss curves
than those in 1L-LSTM model. Thus, this analysis assures
the stable performance of 2L-LSTM model over 1L-LSTM
model for accurate seizure prediction.

Furthermore, the results of the proposed model for pre-
diction of epileptic seizures are also compared with other
techniques discussed in recently published research papers,
as shown in Table 4. This table shows the performance of
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Table 3 Performance evaluation
of 2L-LSTM model for
prediction of epileptic seizures
of 24 subjects

Subject ID Classification accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

1 100 100 100 100

2 100 100 100 100

3 100 100 100 100

4 93.02 92 94.44 93.88

5 100 100 100 100

6 94.62 95.75 93.48 94.74

7 97.22 93.75 100 96.77

8 100 100 100 100

9 100 100 100 100

10 94.94 97.67 91.66 95.46

11 100 100 100 100

12 100 100 100 100

13 100 100 100 100

14 97.3 94.87 100 97.37

15 100 100 100 100

16 95.35 100 91.67 95

17 100 100 100 100

18 95.92 100 91.67 96.15

19 100 100 100 100

20 100 100 100 100

21 95.24 96.15 93.75 96.15

22 93.55 94.11 92.86 94.12

23 98.31 100 97.3 97.78

24 100 100 100 100

Average 98.14 98.51 97.78 98.23

Bold values signify themajor findings of the given classifier in terms ofmaximum values of Avg. classification
accuracy (%), Avg. sensitivity (%), Avg. specificity (%), Avg. F1 score (%)

existing seizure prediction techniques in terms of various
performance measures, and also provides a brief overview
of signal processing and feature extraction methods, EEG
segment duration, and classifiers employed for the desired
task. As shown in this table, some researchers have made
use of traditional machine learning algorithms in associa-
tion with complex feature extraction techniques to obtain
seizure stage classification. These algorithms include SVM
[24,25,29], ELM [27], and self-organisingmaps (SOM) [26].
Similarly, some of the researchers have employed deep learn-
ing techniques for feature extraction and classification tasks.
In this regard, Truong et al. [28] made use of a six-layer CNN
model for seizure prediction using 30s duration EEG seg-
ments, which were transformed using STFT. This model was
made of three convolution layers, a flatten layer and two fully
connected layers. In addition, Abdelhameed and Bayoumi
[30] took into account 2D convolutional autoencoder model
for feature extraction from 4s duration EEG segments. This
model was comprised of four convolution layers and three
upsampling layers. It used Bi-LSTM classifier consisting of

a single LSTM layer, for seizure classification. Similarly, Hu
et al. [29] employed another CNN architecture for feature
extraction from EEG segments of 2 s duration, which was
made of two pairs of convolution and max-pooling layers,
followed by two fully connected layers. The classification
was accomplished from the extracted features using SVM.
Moreover, Usman et al. [32] also presented a CNN-based
feature extraction technique from decomposed EEG seg-
ments of 29 s duration using empirical mode decomposition.
The proposed CNN architecture contained three groups of
convolution and max-pooling layers, optimized using batch
normalization and ‘leakyRelu’ techniques and a flatten layer.
This technique performed classification using a single-layer
LSTMmodel consisting of 256LSTMunits. In the same con-
cern, Zhang et al. [33] employed a CNNmodel consisting of
three convolution layers, one fully connected layer, and an
output layer of size 2 having ’Relu‘ activation. This model
used synchronization features obtained from EEG segments
of 8 s for seizure prediction.
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Fig. 9 Performance evaluation of 1L-LSTM and 2L-LSTM models in terms of accuracy and loss curves with respect to epochs

Table 4 Performance comparison of the proposed model with other models given in the recent literature

Authors, year Pre-processing technology EEG segment duration Prediction technique Results

Usman et al. [24] Empirical mode decomposition-based
time- and frequency-domain features

1 s SVM Sensitivity=92.23%

Truong et al. [28] Short-time Fourier transform 30s CNN Sensitivity=81.2%

Tsiouris et al. [25] Graph theory, time-domain and
frequency-domain features

5 s SVM Sensitivity=87.75%,
Specificity=87.75%

Abdelhameed and
Bayoumi [30]

2D convolutional autoencoder for
learning spatial features

4 s Bi-LSTM (1
LSTM layer)

Sensitivity=94.6%

Cui et al. [27] Bag-of-waves feature extraction 300ms ELM Sensitivity=88.24%

Kitano et al. [26] Wavelet Transform 4s SOM Accuracy=91%,
Sensitivity=98%,
Specificity=88%

Hu et al. [29] CNN-based Mean amplitude
spectrum features

2 s SVM Sensitivity=86.25%
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Table 4 continued

Authors, year Pre-processing technology EEG segment duration Prediction technique Results

Duan et al. [31] CNN-based spectral sub-band features
related to correlation coefficients of
electrodes for EEG segments

1 s, 2 s and 3s Bi-GRU Accuracy=94.8%,
Sensitivity=91.7%,
Specificity=97.7%

Usman et al. [32] CNN and empirical mode
decomposition-based features

29s LSTM Sensitivity=93%,
Specificity=92.5%

Zhang et al. [33] Pearson correlation coefficient based
synchronization measurement

8 s CNN Accuracy=89.98%

Proposed model Spectral power and mean spectrum
amplitude of five frequency bands
δ , θ , α , β and γ

30s Two-layer
LSTM

Accuracy=98.14%,
Sensitivity=98.51%,
Specificity=97.78%

Bold values highlight the main outcome of the present work

After the thorough analysis of the existing techniques
mentioned in Table 4, it is quite apparent that the pro-
posed two-layer LSTM model provides better classification
results for epileptic seizure prediction among given tech-
niques for EEG segments of 30 s duration in terms of various
performance measures. The overall analysis of simulation
results and their comparative study with the latest techniques
published in the recent literature evidently portrays the use-
fulness of the proposed two-layer LSTM architecture for
accurate and real-time prediction of epileptic seizures using
spectral power and mean spectrum amplitude features of
short-duration EEG segments.

Conclusion

The present paper proposes a two-layer LSTMmodel, which
takes into account spectral features of multichannel EEG
signal segments for seizure prediction in epileptic patients.
The spectral features, including spectral power and mean
spectrum amplitude, are extracted from delta, theta, alpha,
beta, and gamma sub-bands of EEG segments having dif-
ferent duration. Initially, the performance of the proposed
single-layer and two-layer LSTM models has been analyzed
for input EEG segments of different duration values in the
range of 5–50s. This analysis shows that the given models
perform optimally for EEG segments of different durations
and a maximum accuracy has been achieved by a two-layer
LSTMmodel at a segment duration of 30s. Then, the results
of the proposed two-layer LSTM model are validated by
comparing its performance with that of random forest, deci-
sion tree, SVM, kNN, Naive Bayes, and single-layer LSTM
classifiers fed with spectral features of 30 s duration EEG
segments. Also, the performance of the proposed two-layer
LSTMmodel has been evaluated through its comparisonwith
other state-of-the-art techniques mentioned in the recent lit-
erature. To conclude, it is obvious that the proposed two-layer

LSTM network model with spectral features inputs of 30 s
duration multichannel EEG segments is a suitable technique
for accurate and real-time prediction of epileptic seizures.
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