
 Open access Book Chapter DOI:10.1007/BFB0022052

Two-Layer Transaction Management for Workflow Management Applications
— Source link

Paul Grefen, Jochem Vonk, E.M. Boertjes, Peter M. G. Apers

Institutions: University of Twente

Published on: 01 Sep 1997 - Database and Expert Systems Applications

Topics: Distributed transaction, Transaction processing, Transaction processing system, Transaction data and
Online transaction processing

Related papers:

 Advanced transaction models in workflow contexts

 Database transaction models for advanced applications

 Cross-Organizational Transaction Support for E-Services in Virtual Enterprises

Global transaction support for workflow management systems: from formal specification to practical
implementation

 Supporting Business Transactions via Partial Backward Recovery In Workflow Management Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/two-layer-transaction-management-for-workflow-management-
32b8jtma0t

https://typeset.io/
https://www.doi.org/10.1007/BFB0022052
https://typeset.io/papers/two-layer-transaction-management-for-workflow-management-32b8jtma0t
https://typeset.io/authors/paul-grefen-1wni78q873
https://typeset.io/authors/jochem-vonk-29p8gjtked
https://typeset.io/authors/e-m-boertjes-zcdnuxl4ds
https://typeset.io/authors/peter-m-g-apers-1bcg1vvsjp
https://typeset.io/institutions/university-of-twente-2jhelcx1
https://typeset.io/conferences/database-and-expert-systems-applications-3czb1le9
https://typeset.io/topics/distributed-transaction-jstt331z
https://typeset.io/topics/transaction-processing-2tax8qkm
https://typeset.io/topics/transaction-processing-system-266jzxwz
https://typeset.io/topics/transaction-data-1t9a39ej
https://typeset.io/topics/online-transaction-processing-25dvtei7
https://typeset.io/papers/advanced-transaction-models-in-workflow-contexts-rolzoueumu
https://typeset.io/papers/database-transaction-models-for-advanced-applications-9f2zlzmey1
https://typeset.io/papers/cross-organizational-transaction-support-for-e-services-in-4rr20lc6ru
https://typeset.io/papers/global-transaction-support-for-workflow-management-systems-44m23vvp5l
https://typeset.io/papers/supporting-business-transactions-via-partial-backward-d10s4bnpno
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/two-layer-transaction-management-for-workflow-management-32b8jtma0t
https://twitter.com/intent/tweet?text=Two-Layer%20Transaction%20Management%20for%20Workflow%20Management%20Applications&url=https://typeset.io/papers/two-layer-transaction-management-for-workflow-management-32b8jtma0t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/two-layer-transaction-management-for-workflow-management-32b8jtma0t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/two-layer-transaction-management-for-workflow-management-32b8jtma0t
https://typeset.io/papers/two-layer-transaction-management-for-workflow-management-32b8jtma0t

Two-Layer Transaction Management for Workflow

Management Applications t

Paul Grefen, Jochem Vonk, Erik Boertjes, Peter Apers
Center for Telematics and Information Technology

University of Twente
{ grefen,vonk,boertjes,apers } @ cs.utwente.nl

Abstract

Workflow management applications require advanced transaction management that is not of-

fered by traditional database systems. For this reason, a number of extended transaction mod-

els has been proposed in thepast. None of these models seems completely adequate, though,

because workflow management requires different transactional semantics on different process

levels. In the WIDE ESPRIT project, a two-layer transaction management approach has been

adopted to cope with this problem. The approach consists of a transaction model built from an

orthogonal combination of two existing models and a transaction management architecture

with two independent transaction managers. This architecture is integrated into the next gen-

eration of the commercial FORO distributed workflow management systen~

1. Introduction

Workflow management applications require transaction management functionality

that goes beyond the traditional simple transaction model provided by current data-

base management systems. In particular, support for long running activities with re-

laxed notions of isolation and atomicity and complex process structures is required.

As indicated by the large number of proposed transaction models, no single model

can effectively cope with the broad set of requirements imposed by complex

workflow management applications. On a high level of granularity in these applica-

tions, a relaxed notion of transactionality is required to allow cooperativeness be-

tween multiple workflow tasks. On a lower level of granularity, stricter transactional

notions are required to model business transactions that may involve complex process

structures and multiple actors but require atomicity and isolation semantics.

In the WIDE ESPRIT project, the approach has been taken therefore to use a

combination of modified existing transaction models, instead of inventing yet another

new model. The result is an orthogonal two-layer transaction model that supports

both high-level and low-level workflow semantics. The two-layer model is supported

by two independent transaction manager modules, each of which manages one layer

of the model. These modules are implemented on top of a commercial DBMS. The

resulting transaction management architecture is integrated into the next generation of

the F O R t workflow management system (WFMS) with specific attention to distribu-

tion aspects and platform independence.

* The work presented in this paper is supported by the European Commission in the WIDE project (ES-
PRIT No. 20280). Partners in WIDE are Sema Group sae and Hospital General de Manresa in Spain,
Politecnico di Milano in Italy, ING Bank and University of Twente in the Netherlands.

431

This paper is organized as follows. In Section 2, we first give an overview of re-

lated work. In Section 3, we present the process model underlying the workflow

model constructed in the WIDE project. Section 4 discusses the transaction model

dealing with the requirements following from the process model. The functional de-

sign of the software architecture supporting the transaction model is next presented in

Section 5, the implementation in the context of the FORO WFMS in Section 6. We

conclude the paper with a short discussion and outlook on future work.

2. Related work

In the past decade, numerous extended transaction models have been proposed for

long running transactions [E192]. Examples are nested transactions [Da91], sagas

[Ga87], and contracts [Re95]. General frameworks have been constructed, like ACTA

[Ch94], that provide a conceptual framework for extended transaction models. Vari-

ous extended transaction models have been proposed for use in workflow manage-

ment contexts [Lo93]. In WIDE, we do not aim at the specification of yet another

transaction model, but at the combined use of concepts from existing models. In con-

trast to many other proposals, we aim at an industry-strength implementation of ex-

tended transaction support.

In the Exotica project [A196], advanced transaction models are emulated by means

of the Flowmark WFMS, thereby trying to remove the need for advanced transaction

support. In WIDE, we aim at advanced transaction support that is orthogonal to

workflow management functionality. Although the basic ideas are quite different

between Exotica and WIDE, some aspects are common. This will be made clearer in

the sequel of this paper.

In WIDE, we provide extended transaction management on top of a commercial

DBMS platform. In [Ba95], the reflective transaction framework is presented that

provides extended transaction support using transaction adapters. There are a number

of important differences to our work. The reflective framework provides flexible

transaction semantics through reflection, whereas we provide flexibility through a

two-layer model with multiple levels in each layer. Further, the reflective framework

uses a transaction monitor with an open architecture (Transarc's Encina), where we

use a closed database platform (Oracle). Finally, the reflective framework aims at a

prototype realization, where we aim at integration into a commercial product.

3. T h e W I D E w o r k f l o w management process model

In the WIDE project, an extended workflow model and language are developed with

advanced process primitives like multitasks, various join operators, exceptions, etc.

[C96a]. Important for this paper is the fact that a multi-level process model is used

(see [Gr97] for an ER-diagram of the model) that allows for hierarchical decomposi-

tion of workflow processes with flexible transactional semantics.

The top level of a process hierarchy is formed by a complete workflow process.

The bottom level consists of individual tasks, i.e. process parts that are not further

decomposed in the workflow specification. Usually, an individual task is performed

by a single actor in a short period of time. In the process hierarchy, the higher levels

are long-running processes with cooperative characteristics and therefore require re-

432

boo, trip

send ackn.

cance ccom
cancel transp. ~ .ii

prepare docs.

l

t

I

I

t

send docs.

Figure 1: Example business process

laxed transactional semantics. The

lower levels are relatively short-

living processes requiring strict

transactional semantics. The sepa-

ration between the higher and lower

levels is formed by the notion of

business transaction in the

workflow application. Process lev-

els representing business transac-

tions and their subprocesses have

strict transactional semantics; their

superprocesses have relaxed se-

mantics.

In the WIDE model, the process

levels above business transactions

are represented by non-atomic su-

pertasks. These supertasks do not

behave strictly atomically, as this

would imply the undoing of large

amounts of work in case of an error.

Also, they are not executed in strict

isolation, as strict isolation would

prevent the sharing of information

as required in a workflow manage-

ment environment. A rollback

mechanism at this level is required though, to be able to undo a workflow to a certain

point in case of errors. Rollback should offer application-oriented semantics, i.e. it

should return a workflow to a state that is identical to a previous state from a business

point of view, not necessarily from a database point of view.

The process levels associated with business transactions and below are repre-

sented by atomic supertasks and tasks. These supertasks should ideally be executed in

strict atomicity and isolation. A rollback mechanism should offer complete undo to

the pre-supertask state in case of critical errors. Besides normal atomic supertasks,

non-critical supertasks need to be supported. Non-critical supertasks allow the defi-

nition of process parts that cannot cause critical errors and hence do not require roll-

back functionality.

The semantics of the two process layers are completely orthogonal: atomic super-

tasks are black-box "steps" in non-atomic supertasks. This means that changes can be

made to one layer without affecting the other layer. There can be an arbitrary number

of process levels in each of the two layers and each level can contain arbitrarily com-

plex process structures. Consequently, application designers have a high level of free-

dom in structuring applications.

An example travel agency workflow process is shown in Figure 1 in a slightly

adapted WIDE graphical workflow notation. In the figure, all boxes represent super-

tasks. Solid shadowed boxes represent business transactions, dotted boxes supertasks

433

select c--~

select select book send
accom, transp, trip ackn.

Figure 2: Example local transactions

above or below the level of business transactions. The 0 symbol represents an or-split,

the O symbol an and-split or and-join, and the 0) symbol an or-join.

4. A two-layer transaction model

In the WIDE project, the two-layer workflow process model described in the previous

section is mapped onto a two-layer transaction model. In this transaction model, the

upper layer is formed by global transactions providing the relaxed transactional se-

mantics of process layers above business transactions and the lower level by local

transactions providing the strict transactional semantics of business transactions. Be-

low, we first discuss the local transaction layer, then the global transaction layer.

4.1 Local transactions

The local transaction layer of the WIDE model is used to support business transaction

semantics in workflow processing. Business transactions require strict ACID transac-

tion properties. They differ from traditional 'flat' ACID transactions, as supported by

most commercial DBMSs, from the fact that they have a hierarchic structure consist-

ing of subtransactions and basic actions. For this reason, we have chosen a nested

transaction model for the local transaction layer in WIDE, partly based on nested

transaction models (see e.g. [Da91]). The WIDE model provides flexible commit-

dependency between subtransactions and their parents.

An example local transaction is the subprocess 'sales' from the example

workflow, as depicted in Figure 2. This local transaction models selling a trip by se-

lecting accommodation and transport details for a customer and providing the price

tag for this selection. The local transaction consists of two subtransactions 'select trip'

and 'calc costs'. The first subtransaction consists of two basic tasks; the second is a

basic task by itself. Note that the control flow as shown in Figure 1 is not relevant for

the local transaction concept, only the process hierarchy is taken into account.

In a local transaction, we can have critical and non-critical subtransactions. A

critical subtransaction determines the success of its parent transaction: if the subtrans-

action aborts, its parent cannot commit. The success of a non-critical subtransaction

does not affect the success of its parent. Figure 2 shows local transaction 'book' from

the example workflow. In this transaction, subtransaction 'book trip' is critical, 'send

ackn.' is noncritical, i.e., a failure in sending a booking acknowledgment does not

abort the entire booking transaction, whereas a failure in the booking itself does.

Local WIDE transactions also provide a notion of intra-transaction concurrency

control, used to obtain a mechanism for regulating data access between concurrent

subtransactions of a local transaction. Intra-transaction concurrency control is per-

434

sales ~cancel salest

O~

book ~ book

J prepare prepare t
payment

send send~

Figure 3: Global specification (left) and execution (right) graphs

formed on the granularity level of workflow data objects as defined in the WIDE in-

formation model [C96a], e.g. a workflow document or a folder containing multiple

documents.

4.2 Global transactions

The global transaction layer of the WIDE transaction model requires relaxed notions

of isolation and atomicity to cater for the needs of workflow processes above the

business transaction level. Rollback on the global transaction layer should have appli-

cation-specified semantics instead of the database-oriented semantics of the local

transaction model. In this relaxed transactional context, local transactions must be

black-box steps with respect to transactional semantics. For these reasons, we have

chosen a global transaction model that is heavily based on the saga transaction model

[Ga87], extended with a flexible mechanism for partial rollback.

A WIDE global transaction consists of a rooted directed graph of global transac-

tion steps (local transactions). The graph is rooted as it can have only one starting

step. It can have an arbitrary number of ending steps, and it can contain cycles. The

graph represents the possible execution orders of the steps in the workflow process.

The global transaction of the example workflow is shown in Figure 3. It is easily ob-

tained by projecting the process structure in Figure 1 onto the business transaction

structure.

Individual steps in the global transaction model conform to the ACID properties.

Isolation in the global transaction, however, is relaxed with respect to the ACID

model by making intermediate results in between steps visible to the context of the

global transaction (i.e. steps commit their results to the shared database).

As we can have or-splits and cycles in a global transaction specification, the speci-

fication graph and the execution graph of a global transaction are different in general:

paths that are not executed in an or-split are not in the execution graph and cycles are

replaced by the instantiation of the iteration, Figure 3 shows an execution graph of the

example specification graph. In this execution, the 'cancel' local transaction has not

been executed and the 'invoice-payment' iteration has been executed twice. To reason

about the dynamic properties of a global transaction in execution, the execution graph

is considered, not the specification graph.

435

sales q

book ~ ~ invoice

prepare c-invoice c-payment c-invoice

payment payment (D ,~c-~

Figure 4: Partial execution graph (left) and compensating specification graph (right)

As in the saga model [Ga87], relaxed atomicity is obtained by using a compensa-

tion mechanism to provide rollback functionality. Rollback of global transactions is

performed by executing compensating steps (local transactions) for the steps in the

global transaction that have been committed (running, not-yet-committed steps can

simply be aborted as they are atomic local transactions). Compensating steps are ap-

plication-dependent and have to be specified by the application designer.

Complete rollback of a global transaction is often not desirable, as this may imply

throwing away the results of a long workflow process. For this reason, we have intro-

duced the notion of savepoints in global transactions. A savepoint is a step in a global

transaction that is a safe place to begin forward recovery from. Unlike savepoints in

the saga model [Ga87], global transaction savepoints do not require making check-

points. Like the functionality of compensating steps, placement of savepoints in a

global transaction is fully application-dependent.

An example of an execution requiting global rollback is shown in Figure 4. Here

we see a partial execution of the specification graph in Figure 3. The grayed steps

have been committed, two steps are being executed. Local transaction 'book' has

been specified to be a savepoint. Now assume that running local transaction 'pay-

ment' raises an error that requires global rollback. Then all running local transactions

are aborted (using the local transaction mechanism). Next, the execution graph needs

to be compensated from the point where the error occurred until a savepoint is en-

countered (to the start of the graph if none is found). This means that compensation is

performed by executing the dynamically constructed global transaction depicted in

Figure 4. In this figure, the prefix 'c' for a local transaction indicates its compensating

counterpart. Note that a very simple example is chosen for reasons of brevity. In gen-

eral, compensating global transactions can have a complex structure.

5. A two-level transaction manager

The two-level transaction model outlined in the previous section is supported by a

transaction manager architecture that is realized on top of the transaction service of a

commercial DBMS. To provide portability, a high level of independence is required

with respect to specific DBMSs, This implies making as few assumptions as possible

about the transaction service of the underlying DBMS. To provide modularity in its

construction and flexibility in its use, the overall transaction management architecture

consists of independent global and local transaction management subarchitectures.

436

These two architectures are discussed on a functional level below. Their implementa-

tion in the context of the FORO WFMS is described in the next section.

5.1 Local transaction support

Local transaction support extends the basic 'fiat' model of the underlying DBMS to

the WIDE nested transaction model. As such, local transaction support can be seen as

a transaction adapter as described in [Ba95]. A main difference between our situation

and the situation described in [Ba95] is the fact that we deal with a closed DBMS

architecture instead of a relatively open TP monitor architecture.

To be able to use the DBMS transaction management facilities in an effective and

efficient way, each WIDE local transaction is mapped to a single DBMS transaction.

A major issue in this mapping is the fact that possibly parallel subtransactions have to

be mapped to a single sequential DBMS transaction. This results in database opera-

tions of multiple subtransactions being executed in an interleaved fashion.

Local transaction support handles abort of critical and non-critical subtransac-

tions. If abort of a critical subtransaction leads to abort of the complete local transac-

tion, this is easily performed by aborting the transaction on the DBMS level. If abort

is limited to a subtransaction because a non-critical subtransaction is involved, partial

rollback on the DBMS level is performed using the DBMS savepoint mechanism

(distinguish these low-level DBMS savepoints from global transaction savepoints as

discussed in Section 4.2). Interleaving of subtransactions as mentioned above compli-

cates this situation, as it may lead to either the abortion of other subtransactions or the

impossibility to abort a subtransaction.

Local transaction support provides simple mechanisms for intra-transaction isola-

tion to allow the specification of parallel subtransactions operating on the same

workflow data. The granularity of concurrency control is that of workflow objects,

the scope is one local transaction.

5.2 Global transaction support

Global transaction support provides global transaction functionality as described in

Section 4.2. Its main task is the construction of compensating global transactions

when a global abort is requested, i.e. the construction of specification graphs con-

raining compensating local transactions. Global transaction support uses local trans-

actions in a black-box fashion, i.e. it sees global transaction steps the contents of

which are completely irrelevant at the global transaction level. This ensures full inde-

pendence from the underlying DBMS.

Global transaction support in WIDE bears some resemblance to the way sagas are

supported in the Exotica project [A196]. The main difference is the fact that Exotica is

static (compile-time) in the construction of compensating structures, while WIDE is

dynamic (enactment-time). WIDE allows cycles in process graphs, which requires

analysis of the execution graph instead of the specification graph, implying dynamic

compensation analysis. The introduction of global savepoints in the WIDE model

provides additional flexibility in handling global aborts.

437

6. Implementat ion in the F O R O a r c h i t e c t u r e

In the WIDE project, the conceptual transaction management architecture outlined in

the previous section is implemented on top of the Oracle DBMS and coupled to the

FORO WFMS [Ce97] and an active rule management architecture [C96b]. The over-

all architecture is designed to be completely orthogonal with respect to transaction

management, active rule management, workflow management, and data management.

Distribution in the WIDE architecture is obtained through the use of a CORBA-

compliant distributed object model [OM95], a client/server data management archi-

tecture, and a hierarchically distributed workflow server architecture [Ce97]. Inde-

pendence from the underlying DBMS is obtained through an object/relation mapper,

which maps object-oriented operations into relational primitives for the DBMS. The

integration of extended transaction management with workflow and data management

is shown in Figure 5. This figure clearly shows the independent subarchitectures.

6.1 Local transaction support

Local transaction management in WIDE is performed at a functional and a physical

level to ensure maximum independence from the underlying DBMS. The functional

level consists of a Local Transaction Manager (LTM) module and Local Transaction

(LT) objects (see Figure 5). Each LT object is responsible for the functional manage-

ment of a single local transaction. It manages the nested transaction structure and

maps this to an abstract flat transaction model. The object is created dynamically by

the LTM when the transaction starts. The LTM functions as a dispatcher of workflow

events to the appropriate LT objects and of local transaction events to the workflow

engine. Its main task is to keep both subarchitectures as independent as possible:

through the use of the LTM, the workflow engine does not need to be aware of the

existence of multiple LT objects. All transactional operations in the functional level

are based on logical transaction identifiers. LTM and LT are fully independent from

the underlying DBMS.

The physical level of local transaction support consists of the Local Transaction

Interface CLTI) module. The LTI maps abstract flat transaction operations to the ac-

tual physical operations provided by the DBMS. Further, it maps logical transaction

identifiers to physical transaction channels used for communication with the DBMS.

With Oracle as database platform, the Oracle Call Interface (OCI) [Mc96] is used for

this purpose [Gr97].

6.2 Global transaction support

The global transaction support (GTS) subarchitecture consists of a Global Transaction

Manager (GTM) module and Global Transaction (GT) objects (see Figure 5). Each

global transaction is managed by a GT object that is dynamically created at the start

of the global transaction. The GT object is signaled by the workflow engine about

events that may change the state of a global transaction, e.g. start and end of a global

transaction step. The fact that a global transaction can have multiple active branches

and iterative constructs implies that the process context of signaled events needs to be

passed to the GT object as well. The main task of the GTM is to construct compen-

sating global transactions as discussed in Section 5.2. The GTM is activated by the

workflow engine when the engine raises a global rollback event. It uses the appropri-

438

global transaction

management

workflow
management

Client

local transaction

management

Global
Trans. Man.

persistent

data
management

Workflow
Engine

ObjJRel.

Local Trans.
Interface

? - - - I

DBMS

Figure 5: Integration in FORO architecture

ate GT object to obtain

information on the current

status of the global trans-

action, most notably the

current execution graph

and the compensating

counterparts of executed

steps. After the compen-

sating global transaction

has been constructed, it is

passed to the GT object,

which makes the informa-

tion persistent.

Because a single GTM

can serve multiple

workflow engines at possi-

bly remote sites, both GTM

and GT objects are imple-

mented as CORBA objects

[OM95]. In this distributed

objects approach, place-

ment and clustering of processes can be handled transparently. The fact that the GTM

routes all data access through the appropriate GT objects enables independent alloca-

tion of GTM processes and DBMS.

7. Conclusions

In designing a transaction model for workflow management, one is confronted with

conflicting requirements. On the one hand, most transaction models are too heavily

database-oriented to be non-restrictive to process requirements [A196]. On the other

hand, reliable data processing as obtained by the use of database-oriented transaction

models is required in business applications. We have addressed this problem with a

process-oriented upper layer providing flexibility towards process management and a

database-oriented lower layer providing reliability towards data management. The

'interface-level' between the two layers can be chosen freely on an application-

dependent basis.

Although the WIDE transaction support is presented in the context of workflow

management, it is certainly not limited to this purpose. The transaction management

architecture can easily be used in other environments where complex process support

is important, The orthogonality of global and local transaction support allows the

modification of one layer without affecting the other layer, or even omission of one

layer if so required.

Most of the transaction support presented in this paper is at the time of writing this

paper being implemented in the WIDE Version 1 system (except for the intra-

transaction local concurrency control). After completion, it will undergo a thorough

functional test at the end user sites in the WIDE consortium. In the WIDE Version 2

439

system, we plan to add support for distributed global transactions, handling of asyn-

chronous global transaction aborts, a persistent local transaction mechanism and intra-

transaction concurrency control for local transactions.

Acknowledgments

All members of the WIDE project are acknowledged for their contributions to the work pre-

sented in this paper. Special thanks go to Stefano Ceri of the Politecnico di Milano and Gabriel

S~inchez of Sema Group at Madrid.

References

[A196] G. Alonso et al.; Advanced Transaction Models in Workflow Contexts; Procs. Int.

Conf. on Data Eng., 1996.

[Ba95] R. Barga, C. Pu; A Practical and Modular Method to Implement Extended Transac-

tion Models; Procs. 21st Int. Conf. on Very Large Data Bases, 1995.

[C96a] F. Casati et al.; WIDE: Workflow Model and Architecture; CT1T TR 96-19; Univ. of

Twente, 1996.

[C96b] F. Casati et al.; Deriving Active Rules for Workflow Enactment; Int. Conf. on Database

and Expert System Appls.; Ztirich, Switzerland, 1996.

[Ce97] S. Ceri, P. Grefen, G. S~chez; WIDE - A Distributed Architecture for Workflow

Management; Procs. 7th Int. Worksh. on Research Issues in Data Eng., 1997.

[Ch94] P.K. Chrysanthis, K. Ramamritham; Synthesis of Extended Transaction Models using

ACTA; ACM Trans. on Database Systems, 19-3, 1994.

[Dagl] U. Dayal, M. Hsu, R. Ladin; A Transactional Model for Long-Running Activities;

Procs. 17th Int. Conf. on Very Large Databases, 199t.

[E192] A.K. Elmagarmid (Ed.); Database Transaction Models for Advanced Applications;

Morgan Kaufmann; USA, 1992.

[Ga87] H. Garcia-Molina, K. Salem; Sagas; Procs. 1987 ACM SIGMOD Int. Conf. on Man-

agement of Data; USA, 1987.

[Gr97] P. Grefen, J. Vonk, E. Boertjes, P. Apers; Two-Layer Transaction Management for

Workflow Management Applications; CTIT TR 97-07; Univ. of Twente, 1997.

[Lo93] D. Lomet (Ed.); Special Issue on Workflow and Extended Transaction Systems; IEEE

Data Eng. Bull., June 1993.

[Mc96] D. McClanahan; Oracle Developer's Guide; Osborne McGraw-Hill, USA, 1996.

[OM95] Object Management Group; The Common Object Request Broker: Architecture and

Specification, Version 2.0; Object Management Group, 1995.

[Re95] A. Reuter, F. Schwenkreis; ConTracts - A Low-Level Mechanism for Building Gen-

eral-Purpose Workflow Management Systems; IEEE Data Eng. Bull., 18-1, 1995.

