
Two-level ACO for Haplotype Inference

under pure parsimony

Stefano Benedettini1, Andrea Roli1, and Luca Di Gaspero2

1 DEIS, Campus of Cesena
Alma Mater Studiorum Università di Bologna

Cesena, Italy
{stefano.benedettini | andrea.roli}@unibo.it

2 DIEGM, University of Udine
Udine, Italy

l.digaspero@uniud.it

Abstract. Haplotype Inference is a challenging problem in bioinformat-
ics that consists in inferring the basic genetic constitution of diploid
organisms on the basis of their genotype. This information enables re-
searchers to perform association studies for the genetic variants involved
in diseases and the individual responses to therapeutic agents.
A notable approach to the problem is to encode it as a combinatorial
problem under certain hypotheses (such as the pure parsimony criterion)
and to solve it using off-the-shelf combinatorial optimization techniques.
At present, the main methods applied to Haplotype Inference are either
simple greedy heuristic or exact methods, which are adequate only for
moderate size instances.
In this paper, we present an iterative constructive approach to Haplotype
Inference based on ACO and we compare it against a state-of-the-art
exact method.

1 Introduction

The role of genetic variation and inheritance in human diseases is extremely
important, though still largely unknown [1]. To this aim, the assessment of a
full Haplotype Map of the human genome has become one of the current high
priority tasks of human genomics [2]. A haplotype is one of the two non iden-
tical copies of a chromosome of a diploid organism, i.e., an organism that has
two copies of each chromosome, one inherited from the father and one from the
mother. The haplotypes information makes it possible to perform association
studies for the genetic variants involved in diseases and the individual responses
to therapeutic agents. Technological limitations make it currently impractical
to directly collect haplotypes by experimental procedures, but it is possible to
collect genotypes, i.e., the conflation of a pair of haplotypes. Moreover, instru-
ments can easily identify only whether the individual is homozygous (i.e., the
alleles are the same) or heterozygous (i.e., the alleles are different) at a given site.
Therefore, haplotypes have to be inferred from genotypes in order to reconstruct

the detailed information and trace the precise structure of DNA variations in a
population. This process is called Haplotype Inference (also known as haplotype
phasing) and the goal is to find a set of haplotype pairs (i.e., a phasing) so that
all the given genotypes are resolved, that is, they can be obtained (or explained)
by combining a pair of haplotypes from the set.

The main methods to tackle the Haplotype Inference are either combinatorial
or statistical. Both, however, being of non-experimental nature, need some ge-
netic model that could provide criteria for evaluating the solution returned with
respect to actual genetic plausibility. In the case of the combinatorial methods,
which are the subject of this work, one common criterion is pure parsimony [3],
i.e., to search for the smallest collection of distinct haplotypes that solves the
Haplotype Inference problem. This criterion is consistent with current observa-
tions in natural populations for which the actual number of haplotypes is vastly
smaller than the total number of possible haplotypes, therefore the solutions
found to this model are considered as good and informative phasings (see [3] for
a discussion on the adequacy of this model).

Current approaches for solving the problem under the pure parsimony hy-
pothesis (HIpp) include simple greedy heuristic [4] and exact methods such as In-
teger Linear Programming [3, 5–7], Semidefinite Programming [8, 9], SAT models
[10, 11] and Pseudo-Boolean Optimization algorithms [12]. At present, complete
approaches, i.e., the ones that guarantee to return an optimal solution, such as
SAT-based ones, are very effective but they seem not to be particularly adequate
very-large size instances. Hence, the need for approximate algorithms, such as
metaheuristics, that trade completeness for efficiency. Moreover, a motivation
for studying and applying approximate algorithms is that the criteria used to
evaluate the solutions provide an approximation of the actual solution quality,
therefore a proof of optimality is not particularly important.

The method we present in this work is a two-level ACO metaheuristic. To
the best of our knowledge, besides [13], the only attempt to employ metaheuris-
tic techniques for HIpp is a recently proposed Genetic Algorithm [14] that is,
however, not applied on real size instances.

The problem is formally stated in Sect. 2, along with the basic related con-
cepts. In Sect. 3 we describe the two-level ACO we devised and in Sect. 4 we show
the results of the experimental analysis in which we first compare the different
variants of the two-level ACO, then we assess its performance by comparing it
against state-of-the-art exact techniques.

2 The Haplotype Inference problem

In the Haplotype Inference problem we deal with genotypes, that is, strings of
length m that correspond to a chromosome with m sites. Each value in the string
belongs to the alphabet {0, 1, 2}. A position in the genotype is associated with a
site of interest on the chromosome and it has value 0 (wild type) or 1 (mutant) if
the corresponding chromosome site is a homozygous site (i.e., it has that state on
both copies) or the value 2 if the chromosome site is heterozygous. A haplotype

is a string of length m that corresponds to only one copy of the chromosome (in
diploid organisms) and whose positions can assume the symbols 0 or 1.

2.1 Genotype resolution

Given a chromosome, we are interested in finding an unordered3 pair of haplo-
types that can explain the chromosome according to the following definition:

Definition 1 (Genotype resolution). Given a chromosome g, we say that
the unordered pair 〈h, k〉 resolves g, and we write 〈h, k〉 ⊲ g (or g = h⊕ k), if the
following conditions hold (for j = 1, . . . , m):

g[j] = 0 ⇒ h[j] = 0 ∧ k[j] = 0 (1a)

g[j] = 1 ⇒ h[j] = 1 ∧ k[j] = 1 (1b)

g[j] = 2 ⇒ (h[j] = 0 ∧ k[j] = 1) ∨ (h[j] = 1 ∧ k[j] = 0) (1c)

If 〈h, k〉 ⊲ g we indicate the fact that the haplotype h (respectively, k) con-
tributes in the resolution of the genotype g writing h E g (resp., k E g). We also
say that h is a resolvent of g. This notation can be extended to set of haplotypes,
writing H = {h1, . . . , hl} E g, with the meaning that hi E g for all i = 1, . . . , l.
The operator ⊕ is defined accordingly.

Conditions (1a) and (1b) require that both haplotypes must have the same
value in all homozygous sites, while condition (1c) states that in heterozygous
sites the haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the
haplotype values at a given site are predetermined in the case of homozygous
sites, whereas there is a freedom to choose between two possibilities at heterozy-
gous places. This means that for a genotype string with l heterozygous sites
there are 2l−1 possible pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then the possible pairs of
haplotypes that resolve it are 〈(0110), (0011)〉 and 〈(0010), (0111)〉.

After these preliminaries we can state the Haplotype Inference problem as
follows:

Definition 2 (Haplotype Inference problem). Given a population of n in-
dividuals, each of them represented by a genotype string gi of length m we are
interested in finding a set φ of n pairs of (not necessarily distinct) haplotypes
φ = {〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 ⊲ gi, i = 1, . . . , n. We call H the set
of haplotypes used in the construction of φ, i.e., H = {h1, . . . , hn, k1, . . . , kn}.

From the mathematical point of view, there are many possibilities for building
the set H , since there is an exponential number of possible haplotypes for each
genotype. Therefore, a criterion should be added to the model for evaluating the
solution quality.

3 In the problem there is no distinction between the maternal and paternal haplotypes.

One natural model of the Haplotype Inference problem is the already men-
tioned pure parsimony approach that consists in searching for a solution that
minimizes the total number of distinct haplotypes used or, in other words, |H |,
the cardinality of the set H . A trivial upper bound for |H | is 2n in the case of all
genotypes resolved by a pair of distinct haplotypes. It has been shown that the
Haplotype Inference problem under the pure parsimony criterion is APX-hard
[6] and therefore NP-hard.

2.2 Compatibility and complementarity

It is possible to define a graph that expresses the compatibility between geno-
types, so as to avoid unnecessary checks in the determination of the resolvents.
In the graph G = (G, E), the set of vertices coincides with the set of the geno-
types. Two genotypes g1, g2 are connected by an edge if they are compatible, i.e.,
one or more common haplotypes can resolve both of them. The formal definition
of this property is as follows.

Definition 3 (Genotypes compatibility). Let g1 and g2 be two genotypes,
g1 and g2 are compatible if, for all j = 1, . . . , m, the following conditions hold:

g1[j] = 0 ⇒ g2[j] ∈ {0, 2} (2a)

g1[j] = 1 ⇒ g2[j] ∈ {1, 2} (2b)

g2[j] = 2 ⇒ g2[j] ∈ {0, 1, 2} (2c)

The same concept can be expressed also between a genotype and a haplotype
as in the following definition.

Definition 4 (Compatibility between genotypes and haplotypes). Let g
be a genotype and h a haplotype, g and h are compatible if, for all j = 1, . . . , m,
the following conditions hold:

g[j] = 0 ⇒ h[j] = 0 (3a)

g[j] = 1 ⇒ h[j] = 1 (3b)

g[j] = 2 ⇒ h[j] ∈ {0, 1} (3c)

We denote this relation with h 7→ g, and we write h[j] 7→ g[j] when the conditions
hold for the single site j. Moreover with an abuse of notation we indicate with
h 7→ {g1, g2, . . . } the set of all genotypes that are compatible with haplotype h.

Notice that the set of genotypes that are compatible with a haplotype can
contain only mutually compatible genotypes (i.e., they form a clique in the com-
patibility graph). As an example of compatibility graph, consider the set of
genotypes in Figure 1a, which corresponds to the compatibility graph in Fig-
ure 1b.

We also point out that disconnected components of the compatibility graph
are necessarily resolved by distinct haplotypes, therefore the optimal set of hap-
lotypes is the union of the optimal sets of each disconnected subgraph. This
property is exploited in a specific preprocessing phase of our algorithm.

g1 : (2210212) g2 : (2112110)
g3 : (1212122) g4 : (1222122)
g5 : (1202201)

(a) A set of 5 genotypes

g1

g2

g3

g4 g5

(b) The corresponding compatibility
graph

Fig. 1: An example of compatibility graph for a set of genotypes.

Another useful property, which is going to be used in our algorithms, is the
following:

Proposition 1 (Haplotype complement). Given a genotype g and a haplo-
type h 7→ g, there exists a unique haplotype k such that h⊕k = g. The haplotype
k is called the complement of h with respect to g and is denoted with k = g ⊖ h.

3 Two-level ACO for the Haplotype Inference Problem

The Haplotype Inference problem definition makes constructive procedures very
promising. Indeed, a constructive procedure can incrementally build a set H of
haplotypes which, taken in pairs, resolve the genotypes. Such a procedure can
start from an empty set and add one or two haplotypes at a time, while it scans
the set of genotypes G. The objective is to build H as small as possible, i.e., to
find a minimal cardinality set of haplotypes that composes the phasing. To this
aim, new haplotypes should be added to H only when necessary, i.e., when no
pair of haplotypes already in H resolves the current genotype g.

The algorithm we propose is an instance of the Ant Colony Optimization
metaheuristic [15] and is composed of two levels: the higher one employs an
ACO for finding a good visiting order of genotypes while the lower level, also
based on ACO, searches for the haplotypes to be added to H . The two levels are
of course coupled, as the order in which genotypes are considered is influenced
by the current set of haplotypes in H and, conversely, a generic step in the
construction of H depends on the previously resolved genotypes.

Before applying the two-level ACO, the problem instance is preprocessed by
a procedure that eliminates replicates among genotypes and identifies discon-
nected parts in the compatibility graph that can then be treated as independent
instances.

In Algorithm 1 we provide the general search scheme that is going to be
detailed in the following.

Algorithm 1 ACO-HI

1: A: set of ants; G: set of genotypes
2: Preprocessing phase
3: while terminating conditions not met do
4: for all a ∈ A do
5: while not all genotypes are resolved do
6: g ← chooseNode(G)
7: resolve genotype g

8: propagate resolvents
9: end while

10: end for
11: pheromoneUpdate()
12: end while

3.1 Preprocessing phase

The instances of the Haplotype Inference problem can be reduced by analyzing
their structure, while preserving the property that a solution to the reduced
instance is a solution to the original one. The first preprocessing step consists
in eliminating duplicated genotypes. Furthermore, the analysis of the structure
of the compatibility graph enables us to identify independent sub-instances. In-
deed, the genotypes belonging to an isolated sub-graph, i.e., a disconnected com-
ponent, identify a sub-instance that can be solved independently. Therefore, a
solution to the original instance can be found by separately solving the sub-
instances composing it. A special case of independent instance is represented by
isolated nodes, i.e., genotypes that are not compatible with any other genotype.
The contribution of such a genotype to the solution of the Haplotype Inference
instance is composed by a pair of haplotypes that, by definition of compatibility,
cannot be used to resolve any other genotype.

3.2 Lower level: genotype resolution

As depicted in Algorithm 1, an ant a builds a solution by considering in turn
each genotype g ∈ G (the order is defined in the higher-level, see Sect. 3.3) and
finding resolvent haplotypes for it. The basic heuristic for this phase consists
in trying to resolve g with haplotypes already in H and add new haplotypes
only if necessary. When a new resolvent has to be added to H , the values of
its heterozigous sites are chosen on the basis of pheromone values.4 For each
(heterozygous) site j on genotype i, we have two pheromone components, τ0

i,j

and τ1
i,j , corresponding to values 0 and 1, respectively. The value assigned to

the haplotype site is chosen with probability pi,j(v) = τv
i,j/(τ0

i,j + τ1
i,j), with

v ∈ {0, 1}.

4 Homozygous sites do not represent choice points as they are directly assigned because
the haplotype we are constructing must resolve g.

Excluding the case in which H already contains a pair of haplotypes resolving
g, the are three different cases to be considered for the resolution of a genotype g
in this step of the algorithm: (i) no resolving candidates in H , (ii) one candidate,
(iii) more than one candidate. In the following, we detail the procedure defined
for these cases:

Case (i): A haplotype h is built by a pheromone guided construction proce-
dure, as previously described. Then, k = g⊖h, the complement of h,
is built and both are added to H . Then, these two new haplotypes
are propagated along the compatibility graph in order to update the
list of resolving candidates for the genotypes.

Case (ii): When one resolving candidate is already available, its complement
w.r.t. g is built and this step completed as in the previous case.

Case (iii): When there are two or more candidates that can resolve g, but no
pair of them can resolve it, we have to choose one among these hap-
lotypes. We implement this operation by iteratively considering each
site and applying the following procedure: if, among the candidates,
the homologous sites have different values (i.e., at least in a pair
there are both values 0 and 1) one of the two is chosen probabilisti-
cally (using pheromone values) and all the candidates with a different
value are discarded. The procedure ends when only one candidate is
left and the final steps of the previous cases are performed again.

The algorithm, named ACO-HI, can be further improved by slightly modi-
fying the procedure implemented for cases (i). In fact, since the new haplotype
added to H must resolve the current genotype g, a heuristic bias toward the
construction of a haplotype that also resolves another genotype compatible with
g can be beneficial. Thus, the genotype g′ that has to be visited after g is de-
termined by the higher level and a haplotype is probabilistically constructed (as
in the original procedure) that not only resolves g, but also g′. Therefore, the
number of sites to be assigned on the basis of the pheromone values is restricted
to the set of sites which are ambiguous in both the genotypes g and g′. In this
way, haplotype construction is still guided by pheromone only, but a simple kind
of heuristic criterion is introduced to avoid building a new haplotype compatible
only with genotype g. A similar procedure is also applied, with slight modifi-
cations, also in case (iii). We will refer to the improved version of ACO-HI as
ACO-HI+.

3.3 Higher level: genotypes visiting order

The order in which genotypes are visited has a strong influence on solution qual-
ity, therefore the higher level of the algorithm tries to learn a good genotype
visiting order. This learning mechanism is primarily guided by pheromone asso-
ciated to the edges of the compatibility graph. In this way, pairs of consecutive

genotypes in the series are learnt. It would be possible to learn larger building
blocks, such as triplets, but we decided to limit the case to pairs because of
efficiency reasons. Formally, every edge (i, j) of the compatibility graph is asso-
ciated to a pheromone value τij and the probability to move from node i to node
j is given by:

p(i, j) =











τij
P

l∈adj(l) τil
, if j ∈ adj(i)

1

|U| , if j ∈ U ∧ adj(i) = ∅

0, otherwise

(4)

where adj(i) is the set of nodes adjacent to i (i.e., the compatible genotypes)
still unresolved and U is the set of currently unvisited genotypes not compatible
with genotype corresponding to i. In such a way, if i has adjacent unresolved
nodes, then one among them is chosen according to pheromone values; otherwise,
the next genotype in the sequence is chosen randomly among the remaining
unresolved genotypes.

3.4 Pheromone update

Our algorithm is implemented according to the Hyper-cube framework [16]. The
objective function of the problem is the cardinality of H , that has to be mini-
mized. Therefore, as a quality function used for the reinforcement, we chose the
function F (H) = 2n − |H |. Pheromone is updated in the two levels with the
same evaporation parameter and quality function. The only difference is that
the solution components of the higer level are edges of the compatibility graph,
while in the lower level they are nodes representing values to assign to haplotype
sites.

4 Experimental analysis

With the aim of understanding the contribution of each algorithmic component,
we compared ACO-HI and its improved version, ACO-HI+, against two ver-
sions of the algorithm with the learning mechanism disabled: ACO-HI-random
that chooses the sequence of genotypes to be visited randomly and ACO-HI+(no
learning) that is a version of ACO-HI+ equipped only with heuristic haplotype
construction (ties are broken randomly) and random sequence of visited geno-
types.

The sets of instances chosen for the experimental analysis are the common
benchmark used in previous works and they are composed of two parts. The first
one, composed of the sets Harrower uniform and Harrower hapmap, is the bench-
mark used in [7]. The second part of the instances, namely Marchini SU1, Mar-
chini SU2, Marchini SU3 and Marchini SU-100kb, were taken from the website
http://www.stats.ox.ac.uk/~marchini/phaseoff.html. The main features
of the instance sets are summarized in Table 1.

We present a comparison of the different versions of ACO in Figure 4, in
which statistics on solution quality are plotted. The boxplots represent statistics

Table 1: A summary of the main features of the benchmarks.

Benchmark set Number of Number of Number of
instances genotypes sites

Harrower uniform 200 10÷100 30÷50
Harrower hapmap 24 5÷68 30÷75
Marchini SU1 100 90 179
Marchini SU2 100 90 171
Marchini SU3 100 90 187
Marchini SU-100kb 29 90 18

Table 2: Cumulative statistics on the running time of algorithm ACO-HI+. The total
running time (in seconds) for solving all the instances of each set is considered.

Benchmark set Min. 1st Q.le Median Mean 3rd Q.le Max.

Harrower uniform 54.00 55.50 65.00 64.30 72.75 75.00
Harrower hapmap 13.00 21.00 27.00 30.40 34.75 59.00
Marchini SU1 1634 1743 1808 1797 1861 1948
Marchini SU2 466.0 516.2 538.0 533.9 546.8 584.0
Marchini SU3 1401 1452 1488 1487 1541 1549
Marchini SU-100kb 148.0 155.0 169.5 165.8 174.8 182.0

over 10 independent runs of the algorithms on all the instances of each set. The
solution value considered for the statistics is the sum of solutions returned on all
the instances of each benchmark.5 Algorithms are stopped after 300 iterations
of the main construction loop; this value of maximum iterations is set in such
a way that the algorithm reaches stagnation. Pheromone evaporation has been
set to 0.1, according to a brute force analysis over a representative sample of the
instances. The algorithms have been implemented in C++ and run on a 1GHz
Intel Core Duo with 2GB of RAM and Linux Ubuntu 7.10 (kernel 2.6.22).

We can observe that, except for the set Marchini SU-100kb, ACO-HI+ is
superior to the other variants and the synergy between its constructive heuristic
and learning mechanism based on pheromone (both for higher and lower levels)
is quite effective. We conjecture that the good performance of ACO-random on
the set Marchini SU-100kb is caused by the structure of the instances; indeed,
most of these instances have a very sparse compatibility graph and this charac-
teristic makes the high level learning component much less effective, maybe even
misleading for the search.

For lack of space, we omit detailed data on running times and we just report
the cumulative statistics on the running time of algorithm ACO-HI+ in Table 2,
in which the running time to the best solution, in seconds, is considered.

5 Detailed results are omitted because of lack of space and are available from the
authors upon request.

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

27
20

27
40

27
60

27
80

28
00

28
20

Harrower Uniform

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

40
9

41
0

41
1

41
2

41
3

Harrower Hapmap

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

12
50

0
13

00
0

13
50

0
14

00
0

14
50

0

Marchini SU1

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

15
50

0
16

00
0

16
50

0
17

00
0

17
50

0
18

00
0

Marchini SU2

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

15
00

0
15

50
0

16
00

0
16

50
0

17
00

0

Marchini SU3

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

11
10

11
20

11
30

11
40

Marchini SU−100kb

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

Fig. 2: Comparison of the main ACO variants w.r.t. solution quality

5 Comparison against the state of the art

Algorithm ACO-HI+ has a very good performance, both in terms of quality and
time. In this section we compare its performance against the state-of-the-art
exact solver, in order to assess its effectiveness. To the best of our knowledge,
the best complete solver for the Haplotype Inference problem is rpoly [12]. We
run the solver on the same benchmark instances and on the same machine. We
allotted rpoly 24 hours of computation for each instance. The instances of the
set Harrower uniform, Harrower hapmap, Marchini SU1 and Marchini SU2 were
completely solved. From Marchini SU3 only 89 over 100 instances were solved
and from Marchini SU-100kb were solved 23 over 29 instances. Overall, most of
the instances could be solved with a runtime higher than 12 hours. In Table 3

Table 3: Solution quality of ACO-HI+ and local search [13] w.r.t. optimal solution
values.

Sum of solution values (Perc. error)
Benchmark set rpoly ACO-HI+ HI-Tabu search [13]

Harrower uniform 2689 2694 (0.186) 3252 (21.0)
Harrower hapmap 321 321 (0.0) 343 (6.854)
Marchini SU1 2453 2483 (1.223) 3456 (40.89)
Marchini SU2 14794 15102 (2.081) 17735 (19.88)
Marchini SU3 2113 2121 (0.379) 2333 (10.41)
Marchini SU-100kb 661 667 (0.009) 755 (14.22)

we provide the comparison between the solutions returned by ACO-HI+ and the
optimal one provided by rpoly (when available) for each benchmark. The solution
values have been summed up over the instances composing the set (for ACO-HI+

we considered the best among the 10 runs) and also the error w.r.t. the sum of
optimal solutions is reported. We can observe that ACO-HI+ achieves a very
good performance in terms of solution quality, as the error w.r.t. the optimum
is rather small. Furthermore, ACO-HI+ also compares quite favourably with the
state-of-the-art local search for HIpp [13] in terms of overall solution quality.6

6 Conclusions and future work

We have presented an adaptive constructive approach for the Haplotype In-
ference problem under the pure parsimony criterion, which relies on a two-level
ACO procedure for determining first the genotype to be resolved and then choos-
ing the haplotypes to resolve it.

The experimental evaluation of the algorithm has shown that the algorithm
is very effective for solving medium- to large-scale instances of the problem on
common benchmarks and that its running time scales well with the dimension
of the instances.

In future developments we plan to enhance the behavior of the ACO meta-
heuristic by testing hybrid approaches. A possible research direction we intend
to pursue is to couple the ACO with a Local Search procedure [13] with the
aim improving the solution found by each ant. Other possibilities include the
replacement of the ACO for genotype ordering with other metaheuristics, such
as evolutionary algorithms or again local search.

Acknowledgments

We thank Inês Lynce and Ana Sofia Graça for kindly providing us their instances
and solvers, and we also thank Ian M. Harrower for sending us his datasets.

6 We omit the complete direct comparison of the two techniques because of limited
space and we refer the reader to [13].

References

1. The International HapMap Consortium: A haplotype map of the human genome.
Nature 437 (2005)

2. The International HapMap Consortium: The international HapMap project. Na-
ture 426 (2003) 789–796

3. Gusfield, D.: Haplotype inference by pure parsimony. In: Combinatorial Pat-
tern Matching (CPM 2003), Proceedings of the 14th Annual Symposium. Volume
2676 of Lecture Notes in Computer Science., Berlin-Heidelberg, Germany, Springer-
Verlag (2003) 144–155

4. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid pop-
ulations. Molecular Biology and Evolution 7 (1990) 111–122

5. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.: A
survey of computational methods for determining haplotypes. In: Computational
Methods for SNPs and Haplotype Inference. Volume 2983 of Lecture Notes in
Computer Science., Springer (2002) 26–47

6. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony:
Complexity of exact and approximation algorithms. INFORMS Journal on Com-
puting 16(4) (2004) 348–359

7. Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype in-
ference by pure parsimony. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 3(2) (2006) 141–154

8. Kalpakis, K., Namjoshi, P.: Haplotype phasing using semidefinite programming.
In: BIBE, IEEE Computer Society (2005) 145–152

9. Huang, Y.T., Chao, K.M., Chen, T.: An approximation algorithm for haplotype
inference by maximum parsimony. In: Proceedings of the 2005 ACM Symposium
on Applied Computing (SAC 2005), ACM (2005) 146–150

10. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: Making the case with hap-
lotype inference. In: SAT. Volume 4121 of Lecture Notes in Computer Science.,
Berlin-Heidelberg, Germany, Springer-Verlag (2006) 136–141

11. Lynce, I., Marques-Silva, J.: Efficient haplotype inference with boolean satisfiabil-
ity. In: Proceedings of the 21st National Conference on Artificial Intelligence and
the Eighteenth Innovative Applications of Artificial Intelligence Conference, Menlo
Park, CA, USA, AAAI Press (2006)

12. Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.L.: Efficient haplotype inference
with pseudo-boolean optimization. In: AB. (2007) 125–139

13. Di Gaspero, L., Roli, A.: Stochastic local search for large-scale instances of the
haplotype inference problem by pure parsimony. Journal of Algorithms in Logic,
Informatics and Cognition (2008) doi:10.1016/j.jalgor.2008.02.004.

14. Wang, R.S., Zhang, X.S., Sheng, L.: Haplotype inference by pure parsimony via
genetic algorithm. In: Operations Research and Its Applications: the Fifth Interna-
tional Symposium (ISORA’05), Tibet, China, August 8–13. Volume 5 of Lecture
Notes in Operations Research. Beijing World Publishing Corporation, Beijing,
People Republic of China (2005) 308–318

15. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA,
USA (2004)

16. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
Transactions on Systems, Man, and Cybernetics – Part B 34(2) (2004)

