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Abstract

Data prefetching has been shown to be an effective

tool in hiding part of the latency associated with cache

misses in modern processors. Traditionally, data prefetch-

ers fetch data into a small prefetch buffer near the L1 for

low latency, or the L2 cache for greater coverage and less

cache pollution. However, with the L1–L2 cache speed

gap growing, significant performance gains can be ob-

tained if the data prefetcher can operate as aggressively

as an L2-level prefetcher but with the fast hit times of an

L1-level prefetcher. In this paper, we propose a prefetch-

ing framework where an L1-level prefetcher and an L2-

level prefetcher work cooperatively to reduce the average

access time more than either one alone can. We evalu-

ate several design alternatives suited to perform synergisti-

cally under different workloads. From the insight we gather

from this analysis, we propose a confidence-based adap-

tive prefetcher that can improve prefetch efficiency signifi-

cantly with judicious use of available bus bandwidth. Our

results show that for certain prefetcher combinations, two-

level prefetching can achieve the cumulative speedup at-

tained from either prefetcher alone. Furthermore, when

compared to other two-level prefetching models, the adap-

tive design provides similar speedups with appreciably less

bus traffic.

1 Introduction and Motivation
Data prefetching is one of the commonly used techniques

in mitigating the negative effects of long cache miss laten-

cies on program execution time. Whether driven by com-

piler inserted instructions, or issued at runtime by a hard-

ware prefetcher, prefetching aims to hide the latency of a

would be cache miss by initiating the data access sooner.

This speculative access brings the prefetched data into the

caches and/or a dedicated prefetch buffer.

Usually, prefetching data directly into the L1 data cache

is avoided to prevent cache pollution. Instead, a small buffer

that has a comparable access time to the L1 cache, stores the

prefetched data until it is used or replaced. Throughout this

paper, we use the term L1 prefetcher to indicate this kind

of prefetching. The alternative is prefetching into the L2
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Figure 1: Average L1 and L2 cache miss rates obtained with our

baseline architecture with no prefetching, a stride L1 prefetcher,

a hybrid next-line/markov L2 prefetcher and a scheduled region

prefetching L2 prefetcher. The cache configuration is shown in

Table 1.

cache – referred to as an L2 prefetcher in the paper. While

this option does not result in significant cache pollution in

most cases, it doesn’t hide as much latency as a prefetch

buffer. Another striking difference between these two types

of prefetching schemes is how aggressive they can get in is-

suing prefetches. Since the prefetch buffer is relatively small

when compared to the caches, an L1 prefetcher needs to be

very selective in which addresses to fetch. For this reason,

these prefetchers tend to have a high prefetching accuracy

but low prefetch coverage. On the other hand, a scheme

prefetching into the L2 is less restricted by space, so it usu-

ally generates a lot of prefetches trying to cover as much

ground as possible. This leads to lower accuracy but higher

coverage. In short, each prefetcher optimizes a different part

of the memory hierarchy by design.

Figure 1 illustrates the average L1 and L2 cache miss

rates with and without prefetching for the set of benchmarks

we analyze in this paper. The L1 prefetcher is a stream

buffer style stride prefetcher [5]. We also show results for

two L2 prefetchers, a moderately aggressive hybrid next-

line/markov prefetcher [4] (labeled nm2) and an ambitious

L2 prefetcher in the scheduled region prefetcher [6] (labeled

reg2). The benchmark descriptions as well as prefetcher

specifics are presented in Section 3. The results show that

the L1 prefetcher focuses on reducing the L1 miss rate and

is not as effective in reducing the L2 miss rate. Meanwhile,

the L2 prefetchers exclusively work on reducing the num-

ber of L2 misses. When used together however, these two

prefetchers can have a profound impact on performance as
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the gap in L1-L2 access times is ever widening with the in-

clusion of smaller L1 caches but bigger L2 caches with each

processor generation. In addition, bus bandwidth needs to

be judiciously utilized in the face of CMP designs.

This paper argues for an integrated approach in data

prefetching that aims to ameliorate both L1 and L2 hit rates

at the same time. Along with an accurate L1 prefetcher, we

propose to simultaneously use an L2 prefetcher in a coop-

erative manner. In the ideal case, the L2 prefetcher reduces

the turnaround time for L1 prefetches as well as reducing the

average latency for demand misses. With a reduced prefetch

turnaround time, hits in the L1 prefetcher are more likely to

hide the full miss latency or a larger chunk of it. In contrast,

in the worst case, the L1 and L2 prefetchers would slow

one another by creating a lot of traffic on the L2-Memory

bus. We put forward several two-level prefetching designs

that promote cooperation rather than competition among the

prefetchers.

The rest of the paper is organized as follows. In Sec-

tion 2, prior hardware prefetching models are discussed.

Simulation methodology and benchmark descriptions can

be found in Section 3. Section 4 describes our prefetching

models while Section 5 presents an evaluation of their mer-

its. Finally, our conclusions are summarized in Section 6.

2 Related Work
In the Markov prefetcher described by Joseph and Grun-

wald [4] each missing address would index into a Markov

prediction table to provide the set of cache addresses that

have followed this address before. After these addresses

are prefetched, the prefetcher stays idle until the next cache

miss. Scheduled region prefetching [6] (SRP) is an aggres-

sive demand-based prefetching technique that fetches the

data surrounding an L2 cache miss. This surrounding re-

gion is typically the same size as a memory page. Subse-

quently, Wang et al. build on the SRP framework to imple-

ment a cooperative software-hardware prefetcher [9]. In this

scheme, the compiler inserts prefetch hints for load instruc-

tions and the region prefetcher would issue the prefetches in

hardware.

Stream buffers follow multiple data streams, prefetch-

ing them in parallel [5]. They prefetch consecutive cache

blocks, starting with the one that missed in the L1 cache.

Farkas et al. [2] extend the stream buffers to use a PC-based

stride predictor to provide a stride that is used to generate

the next prefetch address instead of prefetching consecutive

blocks. Farkas and Jouppi [3] further enhance the stream

buffer design by enforcing the streams being followed by

multiple stream buffers to be non-overlapping. This pre-

vents duplication and saves bus bandwidth. In a further en-

hancement, Sherwood et al. propose a new form of stream

buffer called the Predictor-Directed Stream Buffer [8]. In-

stead of associating a fixed stride with each buffer, they pro-

Parameter Value

Fetch/Decode/Retire width 8 instructions

RUU size 128

Load/store queue size 64

Function units 8 intALU, 2 int mul/div

I-cache L1 ideal

Brand Pred. 2K entry hybrid bimodal and gshare

D-cache L1 32KB, 2-way set assoc., 32 byte lines, 3

Cycle hit latency, 16 MSHRs

L2 cache 1MB, 4-way set assoc., 64 byte lines, 18

Cycle hit latency, 300 Cycle miss latency

L1/L2 data bus bandwidth 8B/cycle

L2/MEM data bus band-

width

4B/cycle

Table 1: Architectural configuration.

pose a framework where any address predictor can generate

the next address to prefetch. Then, that prefetch address can

be recursively used to generate the next prefetch address. In

particular, they present a hybrid stride filtered markov pre-

dictor to direct stream buffer prefetching and find that it can

accurately prefetch both striding and pointer-based work-

loads.

In our analysis, we evaluate a decoupled L1 prefetcher

guided by a PC-based stride predictor. The prefetches are

stored in a unified stream buffer. For the L2 prefetcher, we

experiment with a Markov prefetcher and a scheduled region

prefetcher to represent different levels of prefetcher aggres-

siveness.

3 Methodology
The simulator used in this study was derived from the Sim-

pleScalar/Alpha 3.0 tool set [1], a suite of functional and

timing simulation tools for the Alpha AXP ISA. We rewrote

the SimpleScalar memory system as an event-driven model

with detailed simulation of memory and bus operations. Ta-

ble 1 presents the configuration parameters for the baseline

system. Since instruction footprints of SPEC benchmarks

are fairly small and The effect of instructions on L2 and

memory traffic is minimal, we simulated with an idealized

instruction cache to reduce simulation time.

This work studies 8 memory-intensive benchmarks.

Mcf, parser, applu, mgrid and equake are from

SPEC2000 suite, while swim is from SPEC95. We also

used deltablue, an incremental constraint hierarchy

solver and dot, which is a tool for automatically mak-

ing hierarchical layouts of directed graphs. The programs

were compiled on a DEC Alpha AXP-21164 processor us-

ing the DEC C and C++ compilers under OSF/1 V4.0 oper-

ating system using full compiler optimization (-O4 -ifo).

Each program was simulated for 100 Million committed in-

structions after skipping the initialization part (except for

deltablue) as determined by the SimPoint toolkit [7].

The processor state is warmed up before detailed simulation

starts. The benchmark details are presented in Table 2.

To perform our evaluation, we chose three prefetchers
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Benchmarks Input IPC %DL1 MR %L2 MR FFwd

SPEC95 swim ref.in 1.65 7.2 46.5 0.6B

SPEC2K mcf inp.in 0.06 75.3 90.3 5.3B

parser ref.in 1.27 5 16.3 21.7B

applu applu.in 1.23 10.7 48.6 217.9B

mgrid mgrid.in 1.62 6.2 28.2 3.29B

equake inp.in 0.63 16.8 38 81.2B

MISC deltablue long 1.29 17.1 2.7 0

dot in.dot 0.17 29.3 80.5 5.1B

Table 2: The benchmarks studied in this paper. We also list the

the baseline IPC, L1 data and L2 cache miss rates and the number

of instructions skipped before starting performance simulation.

at different points of the prefetching intensity spectrum.

For accurate L1 prefetching, we use a 128 entry stride

prefetcher. The address predictor is a PC-indexed, 256-

entry, 4-way two-delta stride predictor trained with the L1

miss stream. For moderate L2 prefetching, we utilized a

hybrid nextline/markov prefetcher. This prefetcher has a

large 32K entry markov predictor that holds the next 4 pos-

sible transitions for each entry. If the markov table misses,

we generate a nextline prefetch for this address. To imple-

ment an aggressive L2 prefetcher, we employ the scheduled

region prefetching scheme, which queues up cache blocks

in the surrounding 2KB region of the missing address and

prefetches them when the L2–Memory bus is free. For each

prefetcher at a certain level of the memory hierarchy (e.g.

L1 prefetcher), we probe the prefetch queue and the cache

at that level before each prefetch is issued to the next level.

4 Two-level Prefetcher Design
In our taxonomy of the two-level prefetching hierarchy,

there are two parameters, each with two possible values. We

will describe these models and evaluate their merits in this

section.

The main goal of a two-level prefetching approach is to

reap the benefits of both prefetchers at the same time without

diminishing their effectiveness. In this best case scenario,

the L2 prefetcher forges ahead of the L1 prefetch stream,

reducing the turnaround time for L1 prefetches as well as

mitigating the average latency for L2 demand misses. When

the L1 prefetch data return to the prefetch buffer in a shorter

amount of time, they have a bigger chance of hiding the

complete memory latency.

Figure 2 depicts a simple memory hierarchy augmented

with an L1 and an L2 prefetcher, labeled L1-p and L2-p

respectively. The demand accesses are shown on the left

hand side with white arrows. L2 prefetcher requests, fetch-

ing data from the memory to the L2 cache, are displayed

with the black arrows. The L1 prefetcher requests are the

gray arrows. If we do not allow the L1 prefetcher access

to the memory, the light gray path is blocked. Also pic-

tured are the training streams for the prefetchers. The L1

prefetcher is trained with the demand L1 miss stream. For

the L2 prefetcher, in addition to the demand L2 miss stream,

L1

Memory

L1-p

L2-p

L2

confidence
     filter

L1 demand 
misses

L2 demand 
misses

L1-p
misses

Demand access 

L1-p access 
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Figure 2: The flow of data and prefetch meta-data. Depending

on the two-level prefetching model, some the paths shown in light

gray or dashed lines are restricted.

we could train the address predictor with the L1 prefetch

misses as shown with the dashed line. And finally, as we

will detail in Section 4.2, instead of training with all L1

prefetcher requests, we can filter through only the confident

ones to assure maximum benefit at the lowest possible bus

bandwidth consumption.

The models we investigate mainly differ along two differ-

ent axes: 1) L2–Memory bus access and, 2) L2 prefetcher

training stream. An L1 prefetcher brings data from the

memory to the L2 cache and from the L2 cache to the

prefetch buffer. The L2 prefetcher fetches data from mem-

ory into the L2 cache only. We call this operation shared

mode since the prefetchers share the L2–Memory bus. In

contrast, when the prefetchers operate in exclusive mode,

the L1 prefetcher is only allowed to fetch data from the L2

cache to the prefetch buffer while the L2 prefetcher is re-

sponsible for fetching data from the memory to the L2. In

other words, each prefetcher can only access the bus that

brings data into the level it resides. These two modes of op-

eration allow us to control the amount of bus traffic that is

induced by the prefetchers.

Normally, the address predictors that determine the

prefetch stream are trained with demand miss addresses.

We call this demand-only prefetching. Alternatively, we

can add L1 prefetch misses to the L2 prefetcher training

stream in addition to the demand misses. This allows the L2

prefetcher to anticipate and prefetch L1 prefetch requests,

reducing their transfer time into the prefetch buffer. This is

referred to as the cooperative mode in the paper. Note that

all four pairwise combinations along these two axes can be

useful depending on application characteristics.

4.1 Two-level Prefetching Models
Now that we have defined the different design points we

consider for a two-level prefetcher, we can dissect the four

possible combinations .
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Serial: In a serial model, L1/L2 prefetchers work in ex-

clusive and demand-only mode. It does not permit L2–

Memory activity stemming from the L1 prefetcher. In ad-

dition to reducing bus traffic, this also decreases the likeli-

hood of conflicts and pollution in the L2 cache. However,

this limits how far ahead of the demand miss stream the L1

prefetcher can get.

Parallel: In this model, L1/L2 prefetchers work in shared

and demand-only mode. Both prefetchers operate oblivious

to each other’s existence. Because it has no restrictions on

bus accesses, it generates a lot of traffic on the L2–Memory

bus. On the positive side, if the L2 prefetcher can get ahead

of the L1 prefetch stream, it could reduce the turnaround

time of L1 prefetches.

Delegation: One shortcoming of serial mode is that the

L1 prefetcher is rendered ineffectual when the L2 prefetcher

does not fetch along an overlapping stream. In delega-

tion mode, we eliminate this problem by training the L2

prefetcher with the L1 prefetch misses (cooperative mode).

In a sense, the L2 prefetcher is delegated to bear the burden

of handling L1 prefetch misses in the L2 cache. Note that

this is different from the parallel model where we would

only fetch the missing block from the memory to the L2

cache on an L1 prefetch miss. In delegation mode, depend-

ing on the particular L2 prefetcher, we could be fetching

multiple blocks following/surrounding the miss. Most im-

portantly, the L2 prefetcher can get ahead of the L1 prefetch

stream and warm up the L2 cache.

Drafting: The drafting model is similar to delegation.

The only difference is that the prefetchers work in shared

mode instead of exclusive mode. This ensures that in ad-

dition to the future set of L1 prefetch requests, the current

request is also serviced by the slower levels of the mem-

ory hierarchy. The goal here is to enable the L2 prefetch

stream get ahead of the L1 prefetcher, and maximize the ef-

fectiveness of the L1 prefetch stream. When compared to

delegation, drafting amounts to a more significant reduction

in the average latency of L1 prefetch requests. Note that this

could also lead to an appreciable number of L2 cache con-

flicts due to extra data being brought into the cache by the

L2 prefetcher on behalf of the L1 prefetcher.

4.2 Adaptive Cooperative Prefetching
Cooperative prefetching can be taxing on the L2–Memory

bus, especially for programs with a high L2 miss rate. To

reduce the contention for L2 cache entries and the memory

bus, we propose an adaptive filtering scheme.

In general, the L1 prefetches that will hide the most

latency are those that belong to an accurate prediction

stream. Accordingly, improving the timeliness of these

L1 prefetches should bring the most benefit. In our filter-

ing scheme, we rely on the address predictor for the L1

prefetcher to indicate which prefetch streams are confident.

Specifically, we increment a 2-bit saturating counter in the

stride address predictor each time a prefetch is used by the

processor. A stream is deemed confident if its confidence

counter is above a certain threshold (2 in our case). There-

after, only L2 misses coming from these streams are allowed

to trigger L2 prefetches.

5 Evaluation

We present the quantitative analysis of the proposed two-

level prefetching models in this section. We use several

two-level prefetching architectures. The L1 prefetcher in

these architectures is a unified stream buffer style stride

prefetcher. For the L2 prefetcher, either a relatively moder-

ate nextline/markov prefetcher (NM), or toward the aggres-

sive end, a scheduled region prefetcher (Reg) is used. For

completeness, we also present results with another Stride

prefetcher at the L2 level in Section 5.2. When presenting

relative results, we normalize them to those of our baseline

architecture with no prefetching.

5.1 Exclusive L2-Memory Bus Access Mode

When prefetcher access to the L2–Memory bus is exclusive,

the two-level prefetcher can be in either serial or delegation

mode. Figure 3 shows the performance impact of the exclu-

sive L2 bus modes. In the top graph, the L1 prefetcher alone

gets higher performance than the NM L2 prefetcher alone.

None of the two-level prefetcher modes can outperform the

L1 prefetcher. This is because the L1 prefetching stream is

very accurate. Terminating the requests of the L1 prefetcher

that miss in the L2 cache results in a great loss of oppor-

tunity to prefetch useful data. And since the performance

gain from the L2 prefetcher does not make up for the loss of

L1 prefetcher, a standalone L1 stride prefetcher works better

than the two-level prefetching models.

The bottom graph in Figure 3 uses a Reg L2 prefetcher.

Because the Reg L2 prefetcher is more aggressive, it covers

many more misses than the NM prefetcher. As a result, we

can see that the prefetcher gains have reversed in that the L2

prefetcher enjoys a higher speedup than the L1 prefetcher.

However, similar to the NM L2 prefetcher, we still don’t see

noticeable synergy in the two-level prefetching modes. But,

unlike the previous graph, the two level prefetching modes

maintain the effectiveness of the better prefetcher (i.e. the

Reg L2 prefetcher) since these models do not restrict the L2

prefetcher.

From these two level prefetcher combinations, we can

conclude that exclusive L2 bus access is not a favorable

two-level prefetching model for these benchmarks because

it isolates and restricts the prefetchers. However, it can be

the only viable model in certain cases. One such example is

a CMP with a shared L2 cache where the L2 capacity and

L2–Memory bus bandwidth would already be under heavy

strain from applications running on multiple cores.
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Figure 3: Exclusive Mode: Percent speedup results for the stride

prefetcher, NM L2 prefetcher (top), Reg L2 prefetcher (bottom),

and two-level prefetching configurations using serial, delegation,

and filtered delegation. The results are with respect to the baseline

architecture with no prefetching.

5.2 Shared L2–Memory Bus Access Mode

We will now analyze the performance of the shared bus ac-

cess mode. When the L1 prefetcher is also allowed to ac-

cess the L2–Memory bus, the two level prefetcher can be in

either parallel or drafting mode. There are three sources

of L2 bus requests in shared L2 bus mode - demand re-

quests, the L1 prefetcher and the L2 prefetcher. This re-

sults in more bus traffic compared to exclusive L2 bus ac-

cess mode. The increasing bus traffic has significant perfor-

mance impact depending on how useful these extra memory

requests are. Figure 4 shows the speedup for three different

L2-prefetchers: (1) NM (top chart), (2) Stride(middle chart),

and (3) Reg (bottom chart). In addition to the two main L2-

prefetchers we evaluate, we look at a Stride L2 prefetcher to

see how the significant overlap between the L1 and the L2

prefetcher affect performance.

For the NM prefetcher, we see 92%, 42% and 55% per-

formance gains for parallel, drafting and adaptive modes re-

spectively compared to the standalone L1 prefetcher. Al-

though drafting gets lower average performance than par-

allel, the loss is mostly from mcf. mcf is a very bus

traffic intensive benchmark, as discussed later in Figure 5

and the added pressure from drafting degrades timeliness of

prefetches. It is interesting to note that the average speedup

from the parallel mode is greater than the sum of the sepa-

rate speedups from the L1 and the L2 prefetchers.

When both the L1 and the L2 level prefetchers are based

on Stride-based address predictors, we see almost no ben-

efit from two-level prefetching. This is an intuitive result

because the two prefetchers are prefetching along the same

streams without any lag between them obviating the need

for a second prefetcher.
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Figure 4: Shared Mode: Percent speedup results for the stride

prefetcher, NM L2 prefetcher (top), Stride L2 prefetcher (middle),

Reg L2 prefetcher (bottom), and two-level prefetching configura-

tions using parallel, drafting, and filtered drafting. The results are

with respect to the baseline architecture with no prefetching.

For the Reg prefetcher, we can observe that it obtains

speedups of -8%, 13% and 7% for parallel, drafting and fil-

tered drafting respectively when compared to the standalone

L2 prefetcher. Parallel mode gets worse performance than

Reg L2 alone. This is because Reg is a very aggressive

prefetcher, which creates significant L2 bus traffic. When

we add the L1 prefetcher on the top of the Reg L2 prefetcher,

the performance loss is more than the gain from this extra

traffic. However in drafting and filtered drafting, the Reg L2

prefetcher helps the L1 prefetcher by issuing requests for L1

prefetcher misses in the L2 cache. Because the L1 and the

L2 prefetchers are of different types, the Reg L2 prefetch-

ing can only cover the stride-based L1 prefetch stream when

it is trained with L1 prefetcher misses. This reduces the

turnaround time of L1 prefetching requests to improve per-

formance.

When compared to the exclusive mode results discussed

in Section 5.1, the shared modes outperform the exclusive

access modes for most of the benchmarks. Thus, we focus

on the shared mode results in the reminder of the paper.

5.3 Other Prefetcher Efficiency Metrics
Having observed the performance potential of two-level

prefetching, we now turn our attention to the metrics that

provide an insight into why we attain these speedups.
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Figure 5: L2–Memory bus traffic density behavior plotted over

a 100K-instruction sampling period. The y-axis is the number of

requests in 100K instructions.

Figure 5 presents the bus traffic behavior during program

execution. This figure plots the percentage of time the L2–

Memory bus was busy during program execution. The bus

traffic is sampled at a fixed sampling period (100K commit-

ted instructions in this case). We can see that mcf has a

high bus utilization throughout the whole execution. dot

also exhibits bursts of high bus activity where a big clus-

ter of misses overwhelm the bus. This is where filtering the

streams targeted by the L2 prefetcher on behalf of the L1

prefetcher is useful. In most cases, filtered drafting attains

similar speedups to drafting while utilizing the bus 10% less

frequently on average.

Meanwhile, Figure 6 shows the breakdown of average

load latency. There are eight structures that can service a

memory request: L1 cache, L1 prefetch buffer, L1 MSHRs,

L1 prefetcher MSHRs, L2 hit, L2 MSHRs, L2 prefetcher

MSHRs, and finally the main memory. The total aver-

age latency corresponds to the speedup obtained from each

scheme. Note how the clustered misses in dot and mcf

result in a very high L1 MSHR component. Two-level

prefetching models get a lower average latency in general.

Going from parallel to drafting reduces the average access

latency by prefetching L1 prefetch requests that would have

been L2 misses. Filtered drafting performs close to drafting

but with less bus utilization.

The motivation for two-level prefetching is to combine

the benefit of the standalone L1 and L2 prefetchers. The L1

prefetcher can increase the percentage of loads that have an

L1-level access time (i.e. L1 cache + L1 prefetch buffer).

Meanwhile, the L2 prefetcher focuses mostly on reducing

the number of L2 misses by prefetching data into L2 cache.

In addition, it reduces the turnaround time for L1 prefetch

requests by prefetching on behalf of the L1 prefetcher,

which in turn results in fewer L2 cache demand accesses

because data is found in the L1 prefetch buffer. Figure 7

shows the L1 level hit rate changes for different one-level

and two-level prefetching schemes with Reg L2 prefetch-

ing. We can see that two-level prefetchers get similar or

higher L1 hit rates than L1 prefetcher alone. For mcf, the

L1 hit rate is significantly higher than the original L1 hit

rate of L1 prefetcher alone because of the existence of an

L2 prefetcher.
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Figure 7: Number of L1 hits for the different configurations ex-

amined in the paper.
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Figure 8: Normalized number of L2 miss results for differ-

ent cooperative two-level prefetching schemes using the Reg L2

prefetcher. Results are normalized to those of the baseline archi-

tecture with no prefetching.

We depict the supporting data for the other component of

two-level prefetching synergy in Figure 8. Figure 8 depicts

the L2 miss coverage, which is normalized to the original

L2 misses without a prefetcher. Again, we see that two-

level prefetching models have significantly fewer L2 misses

than L2 prefetcher alone. The L1 and L2 cache performance

graphs verify that two-level prefetcher inherits the benefit of

both standalone prefetchers.

5.4 Comparison of parallel, drafting and

adaptive modes
The key difference between parallel, drafting and filtered

modes is the relationship between the L1 prefetcher and

the L2 prefetcher (i.e. how the L2 prefetcher helps the

L1 prefetcher). Figure 9 shows the breakdown of the L2

accesses stemming from the L1 prefetcher. The data re-

quested by the L1 prefetcher can be brought into the L2

cache from three sources - demand requests, L1 prefetcher

requests and L2 prefetcher requests. Since the L2 prefetcher

prefetches data for L1 prefetcher in drafting and filtered

drafting modes, we can see the increasing portion of misses

serviced by the L2 prefetcher. And because filtered draft-

ing is confidence based where only confident L1 prefetch

streams train the L2 prefetcher, it has lower L2 prefetcher

service coverage than the drafting scheme.

6 Conclusions
The continuing trend of smaller feature sizes will make the

gap between logic and memory speeds growing continually.

New processor versions feature smaller L1 caches for higher

clock frequency. Yet the L2 cache size grows with each new
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Figure 6: Average memory access latency broken down into parts corresponding to the memory hierarchy structure that supplied the data.
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Figure 9: The breakdown of L1-prefetcher requests that were ser-

viced by the L2 cache. Each component corresponds to the struc-

ture that brought the requested cache block into the L2 cache.

generation. While out-of-order execution helps hide short

latencies, other techniques that mask the growing L1-L2 ac-

cess latency gap are necessary.

Data prefetching is an effective technique to reduce the

average memory access latency of a program. Prefetching

schemes aiming for low prefetch hit times use small prefetch

buffers close to the L1 cache. Since the number of slots in

the prefetch buffer is limited, prefetch algorithms opt for

high accuracy, where only highly predictable streams are

prefetched. However, this usually translates to low prefetch

coverage that results in fewer of the original program misses

being correctly prefetched. When designers choose to fa-

vor high coverage, the L2 cache is the common storage for

prefetches. The larger size of the L2 can tolerate inaccurate

prefetches, but it can only mask a portion of the memory

latency.

Realizing the need for optimizing both L1 and L2 cache

miss rates, we proposed a framework for two-level prefetch-

ing in this paper. Our techniques aim to increase coopera-

tion among the prefetchers while attempting to avert poten-

tial bus congestion and cache contention issues. Our ex-

perimental evaluation of a stride L1 prefetcher and a hybrid

nextline/markov L2 prefetcher connected in parallel mode

achieved 92% speedup over stride L1 prefetching technique

alone. Furthermore, for an aggressive prefetcher pairing

of the stride L1 prefetcher and the scheduled region L2

prefetcher, the cooperative drafting model achieved an av-

erage speedup of 13% over L2 prefetching alone (reaching

25% in the best case). Overall, we find that training the L2

prefetcher on a filtered set of confident L1 prefetches helps

improve the timeliness of the L1 prefetcher while minimiz-

ing the bus congestion created by these extra L2 prefetches.
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