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Abstract—RFID networks planning (RNP) is a challenging task on how to 

deploy RFID readers under certain constraints. Existing RNP models are 

usually derived from the flat and centralized-processing framework identified 

by vertical integration within a set of objectives which couple different types of 

control variables. This paper proposes a two-level RNP model based on the 

hierarchical decoupling principle to reduce computational complexity, in which 

the cost–efficient planning at the top levels is modeled with a set of discrete 

control variables (i.e., switch states of readers), and the QoS (quality of service) 

objectives at the bottom level are modeled with a set of continuous control 

variables (i.e., physical coordinate and radiate power). The model of the 

objectives at the two levels is essentially a multi-objective problem. In order to 

optimize this model, this paper proposes a specific multi-objective artificial bee 

colony optimizer called H-MOABC, which is based on performance indicators 

with reinforcement learning and orthogonal Latin squares approach. The 

proposed algorithm proves to be competitive in dealing with two-objective and 

three-objective optimization problems in comparison with state-of-the-art 

algorithms. In the experiments, H-MOABC is employed to solve the two 

scalable real-world RNP instances in the hierarchical decoupling manner. 

Computational results shows that the proposed H-MOABC is very effective and 

efficient in RFID networks optimization. 

 
Index Terms—Multi-objective Algorithm, Multi-level RNP, H-MOABC. 

 

1. INTRODUCTION 

In recent years, radio frequency identification (RFID) networks have become 

increasingly prevalent in the mainstream applications of Internet of Things 

(IoT), including retail production monitoring, supply chain management, 

localization and navigation [1-4]. It is desirable to detect and recognize all tags 

located in the workspace by using the RFID readers and their corresponding 

parameters, which are optimized. The task on how to deploy RFID readers and 

optimize the parameters is the well-known RFID networks planning (RNP) 

problem [3-8]. However, the RNP is very challenging due to the complexity of 

the conditions imposed by the large-scale RFID networks. First, the emerging 

large-scale RFID systems involve a rapidly increasing number of readers and 

tags, which have to be systematically deployed in an efficient manner. 

Therefore, given a specific RNP, the dimension and its mutual coupling degrees 

of the RNP problem could be very large. In other words, the complexity 

increases in proportion to the scale of the RFID network. Second, there are 

different types of underlying optimization goals or decision variables to couple 

together, including discrete and continuous variables (e.g., complete coverage, 

high QoS and cost efficiency). The complexity for optimization increases 

dramatically when the discrete decision variables and continuous variables need 

to be mutually coupled. The heterogeneous nature of the variables with 

continuous and discrete control variables in RNP poses great challenge for 

optimization. For example, the control variables (e.g., the state of a single 

device) and the minimal number of readers to be deployed in RNP are discrete 

while the limited detection range of single device,  x-y coordinates of the 

devices in the network are continuous.  Optimizing an RNP model with a 

mixture of heterogeneous variables of the number of multiple objectives, mixed 

control variables and constrains is not trivial and has been proven to be an NP-

hard issue [6, 7]. 

The RNP problem is a specific instance of sensor deployment problem in 

wireless sensor networks (WSN for short), when the electronic tags and readers 

in RFID network are treated as a special class of wireless sensors. However, the 

RNP problem, strictly speaking, is different from other WSN senor deployment 

problems (e.g., the mobile phone network, Ad Hoc network) in aspects of 

controlled object, controlled variable and control type. First, the main 

difference lies in the fact that a WSN is a multi-hop node-to-node 

communication model, while in an RFID network, the RFID tags (nodes) are 

only detected passively by the readers within a limited interrogation range [7,8]. 

This implies that the controlled object in the RNP is the optimal parameter 

 
 

configure of deployed readers (yet not the tags) involving both continuous and 

discrete variables to potentially enhance the reader's performance in the given 

region, unlike that the WSN needs to optimize the parameters of every 

accessible nodes. Second, the controlled variables in the RNP usually involve 

the static variables, such as the amount of readers, the locations and radiated 

power of readers [9]. Due to its random mobility and dynamic topology, the 

WSN deployment usually involves the time-varying variables. Third, compared 

with other WSN scenarios, in RFID system, the interference between readers 

and tags is more complicated, and the installment cost relies more heavily on 

the number of deployed devices. Consequently, the optimal cost efficiency 

without any communication interference is more essential and urgent in the 

RNP problem. 

Several models have been proposed for the RNP problems. The state-of-the-

art methods  formulate the RNP problem as a set of singe-objective with 

continuous variables [8-12, 18-24]. These objectives are combined into a 

compositional function by the weighted-sum approach so that they can be 

optimized by the conventional intelligent algorithms. Such methods need extra-

work to determine specific coefficients for the compositional function, and they 

cannot handle the trade-off between some conflicting objectives. So far, there 

are only a very limited number of studies [16, 17] to apply multi-objective 

Pareto-based scheme to solve RNP, whereas they only can handle RNP 

problems with continuous variables but they have not considered priority and 

dependency between tasks. Note that the aforementioned RNP schemes are all 

based on the one-level or flat optimization framework, also called vertical 

integration, which couples different RNP objectives together in an optimization 

container. One drawback is that such framework cannot deal with complex 

RNP scenarios with high coupling degree where the RNP objectives have 

different types of decision variables, different dimensions and different 

corresponding priorities. Also, with the increasing of the number of the 

involved objectives, the complexity of coupling action between different 

objectives grows exponentially. Therefore, the existing RNP frameworks with 

coupling actions are ineffective in the complex RFID scenarios. 

In this paper, based on the principle of distributed decision making (DDM) 

[24], we propose a multi-level RNP optimization framework to decouple 

complex RNP problems, which has significant features of centralized control, 

flexibility and simplification. Different from the previous works [13-23], in this 

hierarchical framework, various objectives are assigned to the corresponding 

target level and can be optimized by specific effective strategies according to 

the decision variable's type and task priorities. In our framework, to eliminate 

redundant readers, a two-level multi-objective RNP (MORNP) model is 

instantiated, in which the binary optimizer at the top level aims to minimize the 

number of readers with maximal coverage, and the bi-objective and tri-

objective optimization schemes at the bottom-level are respectively optimized 

in order to provide optimal position and radiated power for each readers. 

To achieve the above goals with the MORNP model, this paper exploits a 

specific RNP-oriented multi-objective evolutionary optimizer named as H-

MOABC to optimize the proposed multi-level RNP model effectively, which 

combines the foraging rules of artificial bee colony (ABC) paradigm with the 

quality indicator based fitness evaluation and specific multi-objective 

techniques. Within H-MOABC, an external archive based on both Pareto 

dominance and preference indicators is designed to preserve the non-dominated 

solutions in each generation, and then a novel dynamical indicator-based 

crowded comparison (DICC) mechanism is developed to maintain this archive. 

By incorporating these mechanisms, the H-MOABC can search a set of 

representative Pareto optimal solutions with a remarkable approximation as 

well as a uniform spread. 

The contribution of this paper lies in: 

(1) A novel two-level master-slave RNP framework and instantiated model 

are proposed to break down conventional vertical integration by using the 

hierarchical decoupling approach. 

l A complicated RNP problems can be decomposed into two types of 

instances: the continuous RNP instances and the discrete RNP 

instances, where the continuous RNP instances will be solved at the 
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bottom layer and the discrete instances will be solved at the top layer so 

that they will be cooperatively optimized in a decoupling manner. These 

RNP instances at different levels are optimized in a certain order 

according to their priorities. For example, the master optimizer at the 

top level generally is designed for the scheduling task with higher 

priorities, and the slave optimizer at the bottom layer is implemented 

for the basic RNP operations. The proposed framework is very flexible 

to allow further integration of new RNP objectives and new 

evolutionary algorithm (EA) or swarm intelligence (SI) approaches. 

l Based on our proposed framework, a two-level MORNP model is 

instantiated to decouple conventional RNP optimization into binary 

top-level scheduling and continuous bottom-level planning. 

Specifically, the top-level scheme is implemented to eliminate 

redundant readers for reducing cost. And the bottom-level scheme is 

responsible for optimizing different continuous conflicting objectives 

simultaneously, including tag coverage, economic efficiency, load 

balance, and reader interference. By contrast to conventional RNP 

models, this hierarchical processing can dynamically eliminate 

redundant readers during the optimization process, and also reduces the 

optimization complexity. 

(2) In order to solve our proposed RNP model effectively, a novel RNP-

orient ABC-based optimizer called H-MOABC is developed by using  quality 

indicator based multi-objective strategies. This algorithm is added into the 

algorithm library of this RNP framework. 

l The preference information based on a quality indicator I is used. The 

new fitness assignment based on quality indicator is designed to update 

the individuals in the population. In this approach, the population 

members are evaluated and ranked according to their usefulness in 

relation to the optimization goal. 

l We propose to maintain the external archive by synthetically 

incorporating the spatial Euclidean distance and the logical 

performance improvement indicator. Within the DICC, only two 

solutions are involved to perform re-calculation of crowding distance 

in each deleting operation, which significantly reduces the computation 

complexity. 

l The reinforcement learning (RL) based on Q-function is incorporated 

into the single-objective ABC paradigm to determine the flight 

trajectories of the foraging bee in order to improve the efficiency of 

information exchange. Also, the orthogonal Latin squares and 

comprehensive learning are used in the population initiation and 

searching process to avoid being trapped into local Pareto fronts.  

The rest of this paper is organized as follows. Section 2 overviews the related 

works. In Section 3, a multi-level RNP framework is proposed and two-level 

MORNP model is instantiated. Section 4 presents the H-MOABC algorithm in 

detail and the corresponding experimental studies. In Section 5, the 

implementation of H-MOABC on two RNP instances-Cd100 and Rd500 is 

detailed, and the experimental results are analyzed. Finally, in Section 6 

conclusions are outlined. 

2. RELATED WORKS 

The primary requirement for a well-planned RFID system is that each tag 

should be detected and recognized by at least one reader or sensor without 

reader-to-reader collision [12]. Most of recent work mainly focuses on some of 

the RNP objectives such as tag coverage, interference, load balance and etc [8-

20]. For example, the objective for coverage is to identify all target tags within 

a limited working region by arranging minimal number of readers. The 

objective for interference aims to reduce the chance of collision between 

readers in a densely region. However, when combining several objectives in a 

single RNP, it is difficult to obtain an optimal solution as the optimization 

complexity for multi-objective is very high. 

From the information management point of view, existing RNP models are 

usually based on the coupling vertical integration framework by taking into 

account continuous variables only [8-12]. For examples, the very early work in  

single-objective RNP model is studied in [8], and this static RNP model is 

further formulated as a non-linear optimization problem in [9-11]. Kumar et al. 

develops an RFID embedded model to map the economical merits in closed 

loop logistics [12,13], and then examines the economical impact of RFID 

adoption to remanufacturing [14]. Especially, a k-coverage RNP model is 

formulated as a multi-dimensional optimization problem with constraint 

conditions, to evaluate the network performance. Furthermore, a dynamic RNP 

model with elimination of redundant readers is developed by Y. Gong et al. and 

this model is handled with by an improved PSO method with tentative reader 

elimination (TRE), which has gained significant attentions [15]. These models 

usually transform the involved RNP objectives into one combinatorial function 

through the weight-sum method and then solve it by a single-objective 

algorithm. Some recent studies [16, 17] have developed multi-objective RNP 

optimization schemes based on Pareto optimality however they require the 

control variables to be continuous variables without any priority. All these RNP 

schemes are based on the flat-coupling optimization framework and they ignore 

complex coupling actions of various objectives with different priorities and 

variable types. As a result, this flat-coupling scheme is very ineffective with the 

increasing number of objectives and of the types of decision variables. For 

example, in a large-scale RFID system for supply chain management, the 

installation cost reduction relies largely on minimizing the number of the placed 

RFID devices and this objective is of high priority. Obviously, this objective 

involves a discrete variable, which is very incompatible with the other RNP 

goals with continuous variables, e.g., coverage. As such, based on the fact that 

an RNP has hybrid variables, an RNP is a complicated multi-objective (MO) 

and mixed-continuous-discrete optimization problem. 

The EA and SI algorithms have been widely applied to resolve these RNP 

models due to their flexibility and robustness. In [18, 19], the differential 

evolution (DE) algorithm and particle swarm optimization (PSO) algorithm are 

firstly introduced to the RNP optimization [18], and the genetic algorithm (GA) 

is also directly applied for the RFID network planning [20]. The bacteria 

foraging optimization (BFO) algorithm has also been used to find the optimal 

layout and deployment for RFID system [21]. The study in [22] proposed a new 

anti-collision algorithm based on artificial immune network for optimizing the 

deployment of  readers. In [10], a novel bio-inspired algorithm named as plant 

growth simulation algorithm is proposed to solve the k-coverage RNP model. 

The application of ABC algorithm and its variants to optimize the optimal 

locations of dense sensors has achieved satisfying results [23-24]. The ABC 

algorithm is an effective evolutionary computation paradigm inspired from the 

intelligent foraging behavior of honeybees and has exhibited enormous 

potential in a variety of complex optimization applications [25-28]. Recently, 

several works have extended the ABC algorithm to tackle multi-objective 

problems. In [25], three multi-objective ABC variants using synchronous and 

asynchronous models, namely A-MOABC/PD, A-MOABC/NS and S-

MOABC/NS, are proposed by incorporating Pareto-dominance and non-

dominated sorting, and experimentally validated on a set of unconstrained 

CEC09 benchmarks. In [26], a generic model based on the vector-evaluated 

ABC (VEABC) algorithm is developed to resolve the design optimization of 

laminated composite components. In [27], a dynamic multi-colony multi-

objective ABC called DMCMOABC is designed by using the multi-deme 

evolution and dynamic information exchanging strategies. In [28], a new multi-

objective ABC variant based on external archive is developed by introducing 

an elitism strategy, which is conductive to avoid premature convergence. In 

[29], the elite-guided multi-objective ABC algorithm is proposed by employing 

the elite-guided solution generation strategy to exploit the neighborhood of 

existing solutions based on the guidance of the elite.   

The above MOABCs are based on Pareto dominance, which is widely used 

to determine the non-dominated solutions in the obtained population [58]. 

However, these approaches are not flexible for the use of preference 

information [37]. It has been shown that, in some specific cases, these Pareto-

based MO algorithms suffer from poor convergence caused by the loss of 

selection pressure [59]. Unlike the abovementioned Pareto-based MOABCs, in 

our H-MOABC, we propose to use the preference information indicator (i.e., 

the binary quality indicator I in [37]) to evaluate the dominance relations of 

obtained solutions, which essentially represents a different type of non-Pareto-

based approaches. Accordingly, the main difference between H-MOABC and 

existing MOABCs lies in the fact that H-MOABC stresses the importance of the 

contribution or usefulness of individual in the population to the optimization goal, 

which is ranked based on the indicator-based fitness assignment with good 

convergence performance, further develops the DICC mechanism for diversity 

presentation, and then utilizes RL strategy to enhance the individual's 

information exchange. 

3. MULTI-LEVEL RNP FRAMEWORK AND MODEL 

3.1 RFID Deployment Modeling 

In a traditional RFID system, the tags and readers are the two main 

components to be deployed optimally in a specific work region. Specifically, a 

tag is attached to a physical object to be tracked with a unique ID for the 

associated object. Wireless communication is established between the readers 

and the tags with a limited interrogation range. The tags, based on EPC protocol, 

are in passive model. The proposed RNP model aims to improve the QoS of the 

RFID network (e.g., tag coverage, reader interface, economic efficiency and 

load balance) by tuning the system’s parameters, including the number, location, 

and radiated power of readers. With regard to the frequency of operations for 

RFID network, the reader-to-tag communicating or recognizing is a high-

frequency operation, which is activated immediately once the reader sends 

reading/wring command to its ambient tags. In addition, it is also necessary to 

re-optimize the deployment of the readers and the corresponding parameters if 

the system detects that new tags join or the existing tags leave the working 

region.  

To establish a robust communication between a reader and a tag, both the 

reader-to-tag communication and tag-to-reader communication must be taken 

into account together [12]. For tag-to-reader  communication, the radio signal 

propagation between readers and tags via RF antennas would cause 
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transmission link budget. As studied in [12], through the RF communication 

process, the final power Pt received by one targeted tag from a reader can be 

calculated as: 
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where Po1 (dBm) is the output transmitted power of the reader, Gr (dBi) and Gt 

(dBi) are the antenna gain of the reader and the targeted tag, respectively, and   

L (dB) is the attenuation factor. The variable L is calculated by Friis 

transmission equation [8, 12, 30], wherel is the transmitted wavelength, d
n
 is 

the distance between the two devices, n is a adjustable coefficient, and d

represents other influence factors. 

Similarly, based on Friis equation [12, 30], the final power received by one 

reader from an activated tag is calculated as: 
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where Gr and Gt (dBi) are the antenna gain of the reader and the tag, 

respectively, PO2 (dBm) is the backscatter power transmitted by the tag, and 

tag
t is the reflection coefficient of the tag. Before constructing RNP objective 

functions, the following notations and presentation used in RNP are 

summarized in Table 1. 

 
Table 1. Notations for RNP model 

RS: the set of readers deployed in 

the workspace 

TS: the set of tags located in the 

workspace 

Pr,t: the radio signal power 

received by tag t from reader r 

Pt,r: the radio signal power received 

by reader r from tag t. 

PT: the threshold value to reader-

to-tag communication 

PR: the threshold value to build 

reader-to-tag communication 

Nr: the number of the readers 

deployed in the workspace 

Nt: the number of the tags located in 

the workspace 

Nmax: the maximum number of the 

readers that can be deployed 

  

 

Tag coverage (f1): This is an objective for the coverage of all the tags and 

we  assume that all the tags in the working region should be covered at least by 

one reader. In order to achieve this objective, for any tag t from TS, the received 

power Pr1,t of one tag t from reader r1 (
1
r RSÎ ) should exceed the threshold 

PT to establish the reader-to-tag communication while the backscatter signal 

Pt,r1 received by reader r1 should exceed the threshold PR to ensure the available 

tag-to-reader communication. Here the Pr1,t and Pt,r1 can be calculated by Eq. 

(1) and Eq. (2) respectively. Then, the objective function of tag coverage can 

be formulated as 
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Reader interference (f2): There are inevitably reader collision accidents once 

multiple densely deployed readers try to interrogate a tag at the same time. This 

interference will deteriorate system performance. Therefore, minimizing the 

chance of collision between the readers is an important objective in the RNP. 

The total amount of interference in an RFID network is formulated as the sum 

of the interference value at each tag,  as follows: 
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                             (4) 

Economic Efficiency (f3): Consider multi-path propagation loss, channel 

attenuation and the stochastic noise, readers should be deployed near the center 

of a tag cluster. Thus, this objective function is calculated by weighing the 

distances of each center of tag clusters from its best served reader, and it can be 

formulated as 

3 min ( , )r r
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f dist I q
Î

= å
                                                (5)  

where dist() is the distance between reader r and the corresponding tag center, 

θr is the position of cluster center of reader r and Ir  is the best served reader. 

Load Balance (f4): In order to boost the efficiency of energy saving, it is 

significant to devise an effective load balancing scheme to distribute tags 

among readers as uniformly as possible. That is, a network with a well-

distribution of readers can provide a better performance than an a network with 

poor configuration. In a large-scale RFID deployment scenario, the set of 

distributed tags to be sensed should be appropriately balanced among all 

deployed readers. This objective function for minimizing the variance of load 

conditions is defined as 
max
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where Cr is the number of tags assigned to reader r and Cr
max

 is the maximum 

number of tags interrogated by the reader r in an unit time. 

Objective Constraint: All tags located in working region should be covered 

by one reader. This constraint is formulated as: 
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where Cr
t
 is the number of available readers that ensure a complete coverage. 

Note that Cr
t
 =1 if the reader tÎRSi, otherwise Cr

t
 =0. 
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Fig. 1. Master-slave RNP framework 

 

3.2 Two-level Master-slave RNP Framework and Corresponding Model 

In this section, based on the distributed decision making (DDM) theory [31, 

32], a two-level master-slave RNP framework is developed as shown in Fig.1. 

In this framework, multiple RNP objectives are grouped into the two layers 

according to implementation priority or variable’s type of objectives, and 

optimized by the specific optimization scheme, respectively. Generally, the 

master model in the top layer has higher priority and provides a decision 

information to guide the optimization process of the slave model in the bottom 

layer. And then, the slave model feeds back to its upper layer. 

From Fig.1, the general mathematical formulation of the RNP objectives can 

be defined as 
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where m is the number of objectives in top layer and k is the number of 

objectives in bottom layer, and  
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In the iterative optimization process,  the master optimizer firstly provides 

an initial decision vector x to satisfy the constrict of Eq.(8). This vector will be 

taken as a prerequisite to guide the optimization of the slave model. Then, under 

the premise of x, the slave optimizer searches the optimal vector y to minimize 

the objective with its constrict. By using the feedback vector y, the master 

optimizer will further adjust its decision x till its objectives with the constrict 

reach the optimal state.  

Because the RFID installation cost relies heavily on the number of readers to 

be deployed, minimizing the deployed reader number has become a challenging 

task with high priority. Thus, an actual two-level RNP model is instantiated as 
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shown in Fig. 2. This model includes top-level scheduling for discrete control 

variables and bottom-level planning for continuous control variables. In this 

framework, the top-level optimizer is responsible to minimize the number of 

deployed readers by dynamically eliminating redundant readers in a binary 

manner, and the bottom-level optimizes continuous objective functions 

simultaneously in the multi-objective manner. 
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Tag coverage
Reader 
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Efficiency

Top-level Model

The Number of Deployed Readers & 

Installation Cost

Load Balance
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Discrete Optimizer
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Fig. 2. Two-level RNP model 

 

At the top-level, decision variables are defined as a discrete vector 

R
T
=(r1,r2,…,rNmax) to represent the array of deployed readers and each element 

ri Î  [0, 1], i=1, 2,…, Nmax. Here, “0” indicates the corresponding reader is 

redundant, and “1” means the corresponding reader is available. Then the top-

level model can be defined as below: 
max
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where fj is the j-th RNP objective function, M is the number of objective 

functions, wi is the weighting factor of i-th objective function, ci donates the 

cost of reader j, and Imax is the maximum total cost. 

According to the optimal reader number from the top-level, the bottom-level 

multi-objective optimizer handles different systematical objectives 

simultaneously via regulating continuous variables of each reader. Then, the 

bottom-level decision variables X can be transformed as shown in Table 2 and 

the corresponding multi-objective problems can be defined as below: 

1 2  ( ) min{ ( ), ( )..., ( )}Bottom M
X

F X f X f X f X=                                    (10) 

  

l Solution presentation 

In the top-level optimization, the solution of the readers can be encoded as a 

binary vector, as shown in Table 2. The corresponding bit state of the binary 

vector represents the presence or absence of the i-th reader. That is, a bit ‘0’ in 

a solution vector donates the corresponding reader is redundant, while a bit ‘1’ 

indicates the essential reader should be deployed. During the top-level 

optimization, each bit state of a solution vector evolves with the time steps to 

enable the reader number to be changed dynamically, and then the redundant 

readers can be removed. 

In the bottom-level optimization, two spatial variables and one functional 

variable of readers are about to be adjusted in the RFID system as shown in 

Fig.3: 

X: the x axis coordinate of one deployed reader. 

Y: the y axis coordinate of one deployed reader. 

P: the interrogation range (i.e. radiate power level) of one deployed reader. 

Then, in the RNP optimization, these RFID variables can be encoded into a 

unified representation of the optimization solution as shown in Table 3. That is, 

each solution can be represented by a D-dimensional vector where D=3Nr. In 

this representation, the first Nr dimensions represent the x coordinates of 

deployed readers, the second Nr dimensions are the y coordinates of deployed 

readers, and the rest Nr dimensions donate the radiate power level of each reader. 
Table 2. Unified representation of top-level solution.  

 Pre-deployed readers 

Solution vector i  Xi
1
 Xi

2
 

… 

Xi
3
 

… 
… Xi

Nr
 

Value 0 1 0 1 0 1  0 1 

 

 
Fig. 3. A typical RFID reader deployment scenario  

Table 3. Unified representation of bottom-level solution.  

 X-coordinate Y-coordinate P-coordinate 

Solution vector i Xi
1
 … Xi

Nr
 Y1

r
 … Yi

Nr
 Pi

1
 … Pi

Nr
 

 

4. HYBRID MULTI-OBJECTIVE ARTIFICIAL BEE COLONY OPTIMIZER 

The original ABC algorithm initially proposed in [33] has been deeply 

developed via learning from the intelligent cooperative foraging mechanism of 

three types of honeybees, i.e., employed bee, onlooker bee and scout bee. 

Recent studies [28-33] have validated the great potential of ABC to solve 

conventional optimization problems, such as sub-optima trap, slow 

convergence and dimension coupling. To take advantage of the ABC, the 

proposed H-MOABC algorithm deliberately restructures the foraging rules of 

bees with comprehensive learning and orthogonal Latin squares approach to 

strengthen the efficiency of population information exchanging. Moreover, 

unlike abovementioned MOABCs based on Pareto dominance, the H-MOABC 

incorporates binary quality indicator to evaluate the quality of candidate 

solutions and then utilizes an external archive to memorize non-dominated 

solutions previously found. This proposed fitness assignment using binary 

quality indicator as dominance preserving can amplify the influence of 

dominating population members over the dominated ones. Given the fixed 

archive size, a novel dynamical indicator-based crowded comparison (DICC) 

mechanism based on indicator-based calculation and Pareto dominance is 

designed to keep diversity preservation. The main components of the algorithm 

can be given as below. 

4.1 Algorithm 

4.1.1 Neighbor-discount-information mechanism 

In RL, the Q-learning is used step-by-step to determine an optimal strategy 

which maximizes the total discounted expected reward in future [34]. Let S=[s1, 

s2,...,sn] be a series of available states for each agent, A =[a1, a2,..., an] be a set 

of available actions to be executed, rt be the immediate reward for 

implementing actions at, the transition rule of Q-learning can be defined as  

( , ) max{ ( , )}
t

a
Q s a r Q s ag= +                               (11) 

Each learning agent selects an action by observing the state vector and then 

enters next state, then in order to obtain the maximum return rewards at next 

state, the main procedures of Q-learning follow as: (1) observe current state st, 

(2) select and implement an action at, (3) receive a immediate reward rt, and (4) 

adjust the Q value as 

1 1( , ) (1 ) ( , ) [ max ( , )]
t t t t t t t t t t

a A
Q s a Q s a r Q s aa a g

- +
Î

= - + +      (12) 

where at is the learning rate to control the learning speed, the discount factorg

is set within [0,1] to ensure the convergence of the Q function. It has been 

proven that the Q-learning will converge if the condition of a is met in a Markov 

environment  [34]. 
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In order to enhance the efficiency of information exchange in the population, 

the neighbor-discount-information (NDI) learning mechanism is developed 

based on RL.  

Definition 1. Given an individual Indi, the individual that can communicate 

with Indi directly can be named as 1-interval neighbors, and the individual that 

can only communicate with 1-interval neighbors directly can be called 2-

interval neighbors, and so on. Without loss of generality, the neighborhood 

interaction relationships in EA can be depicted as shown in Fig.4. 

It is desirable that the evolutionary individual can learn from the elite 

neighbor's state as its next state. Essentially, according to the Q-learning, the 

main idea of the NDI learning is to access the Q values of each individual’s 

neighbors. That is, if a 1-interval neighbor y of the individual x gets the 

maximum Q value, then this individual x will be transmitted to the state of y at 

the next evolutionary time step. 

It is desired that an individual at the state s
t
 can receive a reward t

s
r

immediately and then it moves to the state 
1t

s
+

of its 1-interval neighbors 

according to an optimal strategy sy. Then under this optimal strategy, in order 

to maximize the total discounted expected reward, the Q-learning function can 

be formulated as 

1 int

1 int
1( ) (1 ) ( ) [ max ( )]t t

t t t t t
s

Q s Q s r Q sa a g -

-
-

= - + +            (13) 

where 1-int represents one member of R1, which is the set of 1-interval 

neighbors of this individual. Note that there is a case that each individual has 

its own 1-interval neighbors, which causes the computation imposed by Eq. (7) 

is made in an infinite loop, thus we pre-set a threshold R-interval to control this 

process. That is, when the R-interval neighbor is involved, its immediate reward 

is employed instead of the discounted expected reward value. 

Finally, the NDI learning mechanism is presented in Algorithm 4. 

 

Algorithm1. The NDI learning 

1. Initiate all Q(s) objects randomly. 

  Repeat (for each round) 

2. Determine initial state of each individual. 

  Repeat (for each individual) 

3.  Randomly select a initial state. 

4.  i=1. 

5.  Repeat (each step) 

6.    Get immediate reward rt, and observe the state
1 int
s
-

. 

7.    Update the Q function by Eq.(12) 

8.    s=s1-int and Ind=Ind(s1-int). 

9.    i=i+1. 

    Until i=R+1 

   Until all individuals are handled. 

Until all rounds are completed. 

 

4.1.2 Indicator-based evolution rules of population 

(1) Population initialization 

For an arbitrary D-dimensional problem to be optimized, the spatial 

distribution of initial solutions in EA algorithm significantly affects the 

problem-solving performance during the optimization process. Intuitively, the 

population initialization strives to generate N food sources evenly distributed 

in the search space, in order to significantly enhance the quality of final 

solutions. However, it is difficult for the conventional ABC method to generate 

representative initial solutions that can uniformly cover the high-dimensional 

search space [33], because the number or proportion of initial efficient solutions 

in the unit space will be lowered continuously with the increasing of the 

dimension. 

 

Algorithm 2. Population initialization using orthogonal table 

Step.1: Calculate the discrete point yij of each initial solution: 

( 1)( ) / ( 1)ij i i iy lb j ub lb N= + - - - , 

where i=1,2,…,N, ,j=1,2,…,D, lbi and ubi are the minimum and 

maximum boundary values of each variable. 

Step.2: Compute initial solutions according to the orthogonal Latin squares 

approach: 

xij=yjk, i=1,2…,N, ,j=1,2,…,D. 

where k=(i+j-1) mod N; 

And if k==0, k=N. 

Step 3: Construct the orthogonal table LN(t
D
) with N initial solutions; 

Step 4: Population with N individuals is initialized as Xi=(xi1,xi2,…,xiD), i=1, 

2, … , N. 

 

In order to address this issue, the orthogonal Latin squares approach is 

incorporated into population initialization in order to cover the search space 

with balanced dispersion and neat comparability. The orthogonal table is 

generated according to the principle of the orthogonal Latin squares. Suppose 

a population consisting of N individuals (or food sources) has to be initialized 

in the D-dimensional search space, a orthogonal table LN(t
D
) is designed 

deliberately where N represents the number of initial solutions or table rows, t 

is the factor level of orthogonal table, D donates the dimension of search space 

or the number of orthogonal arrays. Generally, this approach has a merit of 

obtaining optimal space coverage by consuming comparatively less tests, which 

has been proved theoretically by relevant theorem of non-parametric statistics 

in [35]. The steps of population initialization are presented in Algorithm 2. 

Then the initial solution (i.e., Xi = (xi1,xi2,…,xiD), i=1,2,…,N) obtained by 

Algorithm 2 has promising balanced dispersion and neat comparability. 

(2) Sending Employed Bees 

In this phase, an employed bee associated to each food source xi strives to 

explore a new temporary food source by learning from a specific neighbor, 

which is determined by the NDI mechanism (i.e., Algorithm 1).  

In the original ABC, given a food source xi, its temporary position is 

computed as 

, , , ,( )i j i j k j i jv x x xf= + -                                                      (14) 

where vi is the newly produced position by individual i, k is a randomly-selected 

neighbor index which are not equal to i, j is a randomly-selected dimension, f

is a random coefficient within range of [0, 1]. 

As shown in Eq. (14), this operator is much like a blind mutation that only 

generates a single-dimensional learning from a neighbor individual, which 

essentially restricts information exchanging to a narrow local scope. This 

inevitably causes a gradually stagnation of evolution and a slow convergence 

to the exploration when the individual is trapped into  local optima [36]. Thus, 

in our algorithm, unlike original ABC’s inefficient search, the modified 

exploration equation incorporates a novel information exchanging rule based 

on comprehensive learning to enhance the exploration search. Exactly, to gain 

efficient information exchanging, each employed bee fully takes advantage of 

information of the elite (i.e., globally optimal solution, gbest) and its neighbor 

experience to drive individual-level searching and population-level evolution 

towards optimal status. This modified formula for employed bee is defined as 

, , 1 , , 2 , ,( ) ( )i j i j gbest j i j k j i jv x x x x xf f= + - + -                       (15) 

where xgbest is the global best individual from current population, 
1
f  and 

1
f  are 

adjustable coefficient within the scope of [0, 1], which usually are set to 0.5. It

 is intuitive that the learning from gbest drives new candidate solution towards

 the global optima, as well as the conventional k-neighbor item enhances the in

formation diversity. This also helps to avoid algorithm to be trapped into optim

al position. 

After a new temporary food source is yielded, its fitness is then compared 

against the old one with greedy approach. That is, the better one is selected as 

an explored food source and accordingly adjust the record of trial for this food 

source, namely the trial is set to zero if the new temporary one is better than the 

old one, otherwise, it is increased by one. This fitness assignment is re-

structured by I
e +

 indicator [37], which maps the Pareto-optimal approximation 

to a real value. Formally, the formula of the fitness is given as 
(j )/ ( )

( )=
I i c s

I
F i e e

e
+

- - -

+
-å                                                          (16) 

( , j)=max { | ,1 }
P m m

I i i j m M
e e

e e
+ Î

= - £ £                             (17) 

where i and j denote the indexes corresponding to food sources, M is the number 

of objectives, ( )
I
F i

e +
  is used as the fitness of a food source,

,max | ( ) |
i j p

c I i j
eÎ +

= - and s is a zoom factor. Essentially, ( )
I
F i

e +
represents 

the loss in quality if i is deleted. Especially, this binary quality indicator I
e +

 is 

an enhanced extension of the Pareto dominance relation, and it donates the 

minimum distance by which a Pareto-optimal approximation needs to be 

transformed or can be transformed in each dimension in the decision space such 

that another approximation is weakly dominated. Thus this indicator can be 

directly used as dominance preserving in the multi-objective optimization. The 

operation procedure of employed bees is given in Algorithm 3. 

 

Algorithm3. Sending Employed Bees 

For i=1 to N  

  Step1    Calculate the indicator-based fitness of each individual in population 

by Eq.(12): 

  Step2    Choose the global best individual xgbest from current population. 

  Step3    Select one random dimension j and select a neighbor k  by NDI 

(Algorithm 1) from the population 

, , 1 , , 2 , ,( ) ( )i j i j gbest j i j k j i jv x x x x xf f= + - + - ; 

  Step.4:   If (FI(vi) > FI(xi)) 

Add vi into the external archive. 

  xi=vi, triali = 0; 

Else triali = triali+1; 

End IF 

         End For 
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 (3) Sending Onlooker Bees 

After finishing their exploration process, the employed bees share the food 

information regarding nectar amount and position with the onlooker bees by the 

dancing approach. Then, each onlooker bee determines a food source to exploit 

according to the selection probability based on the indicator-based fitness. This 

selection probability probi for the i
th

 individual is defined as 

1
=1- ( ) / ( )

N

i i jj
prob fit x fit x

=
å                                                       (18) 

where fit(xi) represents the indicator-based fitness value of xi, N is the 

population size. As shown in this formula, a better food source (i.e., with lower 

fitness value) is more likely to be chosen by a onlooker bee. 

The mutation operation and fitness evaluation of the onlooker bee follow 

those of the employed bee. The operation procedure of employed bees is 

presented in Algorithm 4. 

 

Algorithm 4. Sending Onlooker Bees 

Step1:  Calculate the indicator-based fitness of each individual in population by 

Eq.(12); 

Step2:  Choose the global best individual xgbest from current population; 

Step3:  Calculated the selection probability probi using indicator-based fitness 

assignment by Eq.(18); 

i=0, r=0; 

While (r < N) 

    If (rand < probi) 

       r=r+1; 

    Select one random dimension j and select a neighbor k by NDI 

(Algorithm 1) from the population ; 

, , 1 , , 2 , ,( ) ( )i j i j gbest j i j k j i jv x x x x xf f= + - + - ; 

Step.4:   If (FI(vi) > FI(xi)) 

Add vi into the external archive; 

  xi=vi , triali = 0; 

Else triali = triali+1; 

End If 

 i=i+1; 

If (i==N)  i=1; 

End If 

       End While 

 

 (4) Sending Scout Bees 

Once a food source is exhausted or cannot be improved in a limited number 

of cycles, the corresponding employed bee would become a scout bee, and its 

food source is re-initialized in the same manner as that in the original ABC 

initialization phase [30]. The algorithm is presented in Algorithm 5. 

 

Algorithm 5. Sending Scout Bees 

For i=1:N 

  If(triali>Limit) 

     For j=1:D 

( )ij j j jx lb rand ub lb= + -
 

 End For 

     triali=0 

   End If 

End For 

 

4.1.3 Archive Maintenance 

An indicator-based external population (i.e., archive) is used to curate and 

maintain salient non-dominated solutions. In multi-objective optimization, it is 

desired that an algorithm finds good approximation to Pareto-optimal front (PF) 

with uniformly spread of solutions as well as good convergence characteristic. 

Traditionally, the crowding-distance estimation [35] is used to keep diversity 

preservation. Specifically, given a solution, the density of solutions surrounding 

it is estimated as follows: 

i 1, 1,

1

= (| |)
M

i j i j

j

C f f
+ -

=

-å
 

(19) 

where Ci donates the crowding distance of individual i, M is the number of 

objective functions, fi,j is the j-th objective function value of individual i. And 

then the sum of obtained Euclidean distance values corresponding to each 

objective is computed as the final crowding distance value assigned to the given 

solution. Then the crowded comparison is implemented to compare all 

population members for driving the external archive evolution toward the ideal 

PF [36]. However, with the increasing number of the objective functions, the 

non-dominated solutions tend to occupy all of population space, which will 

inevitably make it more difficult to identify the difference between individuals. 

In addition, in high dimensional spaces, it is not easy to calculate the similarity 

between individuals. In this case, the crowding-distance estimation would 

unexpectedly delete significant individuals in dense regions at one time, 

damaging the spread characteristic of PF [37, 38]. 

In our algorithm, a novel dynamical indicator-based crowded comparison 

(DICC) mechanism is developed based on indicator-based calculation. 

Specifically, given a solution xi, the indicator-based crowded metric of solutions 

surrounding it is re-defined as 

i 1, 1,

1

= (| ( ) ( ))
M

I i j I i j

j

CI F x F x
e e+ + + -

=

-å  (20) 

where ( )
I i
F x

e +
 is the indicator-based fitness of individual i, which is defined 

as  
( )/( )

,( )= ,where  max | ( ) |j i

i ji

I x x c s

I i x x p j ix P
F x e c I x xe

e e

+
- - -

+ Î +Î
- = -å       (21) 

It can be observed from Eq.(18) that this crowded metric to evaluate given 

solution is more informative by synthetically incorporating the spatial 

Euclidean distance and the logical performance improvement indicator. Finally, 

the detailed procedures of DICC are given in Algorithm 6. 

 

Algorithm 6. The DICC method 

Step1: Initialize the crowding distance of individuals in the non-

dominated population, i.e., CIi= 0; 

Step2: Sort the individuals by computing each objective function; 

The boundary individuals are pre-set to an infinite value to 

ensure the availability in next selection process. 

Step3: Compute the indicator-based crowding distance of the 

individuals in the non-dominated archive by Eq. (19); 

Step4: Determine the minimum individual called ID in the population, 

then delete it; 

Step5: Re-compute the crowding distance of the individual ID+1and 

ID−1 by following equations respectively: 

ID+1 ID 2, ID 1,

1

= (| |)
M

j j

j

C f f
+ -

=

-å  

Flag-1 1, 2,

1

= (| |)
M

Flag j Flag j

j

C f f
+ -

=

-å  

Step6: If the archive size still exceeds the maximum pre-set size, r

eturn to Step3; otherwise, terminate it. 

 

In the proposed approach, we sort obtained non-dominated solutions 

according to fitness evaluation, and then calculate their combined-evaluation 

crowded values by Eq.(20) . When the number of archive members exceeds the 

pre-set AchiveSize, the individual with the smallest crowded fitness is deleted 

and the crowded fitness of remainder individuals of current population is re-

calculated. And then, only two neighbor individuals’ crowded distances are re-

calculated for next loop. From Step 4 and 5 in Algorithm 6, it is apparent that 

this approach can avoid removing too many individuals in one region and 

distribute the solutions uniformly. Moreover, only two solutions are involved 

to perform re-calculation of the proposed crowding distance in each deleting 

operation, which significantly reduces the computational complexity. 

 

Algorithm 7. The H-MOABC algorithm 

Step1: Set relevant parameters, including Limit, Archsize, N, 

D 

Step2: Initialize external archive 

While (Termination condition is not satisfied) 

Step3:   Population Initialization() 

Step4:   Sending Employed Bees () 

Step5:   Sending Onlooker Bees () 

Step6:   Sending Scout Bees () 

Step7:   Archive Maintenance() 

End While 

Step8: Output archive 

 

4.1.4 The procedures of H-MOABC 

We show the H-MOABC in Algorithm 7, which incorporates the above 

algorithms. 

4.1.5 Binarization of ABC algorithm 

l Vector binarization 

In order to cope with the continuous type of objective function, the 

continuous solution vector of ABC has to be binarized and associated with a 

discrete food source [42]. Then, a fast binarization approach inspired from the 

method in [42, 43] is developed for ABC as below. 

_ (| _ mod2 |)mod2
i i

x b round x c=                            (22) 

where x_ci is the continuous type of solution vector and x_bi is the binary type 

of vector converted from x_ci. The main motivation of this bit conversion 

operation lies in that continuous x_ci is mathematically converted by double 

mod, which ensures its absolute value to be rounded to a binary number (i.e., 0 

or 1). 

l Reader elimination detection 

After generating a new solution, the binary optimizer uses the reader 

elimination detection operation to detect whether the number of readers of 

current solution is less than its older solution without changing the tag coverage. 

Then, the vector with less readers is remained. 

As for the algorithmic operations, the binary ABC (BABC) adopts the same 

foraging rues as those of original ABC in [33]. The only difference between 

those two algorithms is that the solution vector of binary ABC should be 

binarized before population initialization. The working process of binary ABC 

is shown as Algorithm 8. 
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Algorithm 8. BABC algorithm 

Step1: Initialize the discrete  population by Eq.(22). 

Step2: According to [33], implement employed bees operation, 

onlooker bees operation, scout bees operation. 

Step 3: Reader elimination detection:  

            Calculate the reader number of current solution by sum 

the number of state '1'.  

            Justify whether its tag coverage is not worse to that of 

the old solution. 

             If the reader number of new solution is less than the 

old solution, remain the new solution. Otherwise, remain the 

old one. 

Step 4: Justify whether the termination condition is not 

satisfied. 

 

4.2 Benchmark Test 

4.2.1 Experimental Configurations 

(1) Test Problems and Performance Measures 

Six representative multi-objective benchmarks are selected to evaluate the 

performance of the proposed algorithm. The first six bi-objective instances 

include four ZDT benchmarks (i.e., ZDT1, ZDT2, ZDT3 and ZDT6) [44] and 

two CEC 2009 benchmarks (i.e., U1, and U2) [45]. The next tri-objective 

instances consist of three DTLZ instances (i.e., DTLZ1, DTLZ2 and DTLZ6) 

[46] and three CEC 2009 benchmarks (U8, U9, and U10) .Due to page 

limitation, detailed formulas of these test instances are not provided and those 

can be referred to [44, 45, 46]. In order to assess performance of our proposed 

algorithm, two performance metrics are adopted: 1) convergence metric¡ - IGD 

metric [45]; 2) spread metricD  [38]. The further information regarding these 

two performance metrics can be found in [45, 38]. 

(2) Algorithmic Configurations 

The H-MOABC is evaluated and compared with IBEA[37] NSGA-II [38], 

MOEA/D [47], SPEA2 [48], A-MOABC/NS [49] and MOABC [50]. For all 

the algorithms, the maximum function evaluation number is 50000. For U1 and 

U2 instances, the population sizes are set to 120, for ZDTs and DTLZs, the 

population is 100. Specific parameters of IBEA, MOEA/D, SPEA2 and NSGA-

II respectively follow those of their original references [37, 38, 47, 48]. As 

advised in [37], the k for IBEA is set to 0.05, the recombination probability is 

set to 0.5 and the probability for mutation is set to 0.8.  As claimed in [38] for 

NSGA-II, the simulated binary crossover and polynomial crossover are used, 

the related crossover and mutation probability are set to pc=0.9 and pm=1/D 

respectively where D donates the number of decision variables. The distribution 

indices for crossover and mutation are set to 
c

h  =
m

h  =20 respectively. The 

simulated binary crossover and polynomial mutation are employed with typical 

parameters as suggested in [47], the number of weight vectors is the same as its 

population size, and the neighborhood size is initialized with 20. For SPEA2, 

the SBX and polynomial mutation are employed to yield the offspring for 

SPEA2, and other parameters of SPEA2 can refer to [48]. For the proposed H-

MOABC, a reasonable set of parameter values are used empirically as 

following: Archive is equal to the population size, and Limit=200. Note that our 

experiments mainly focus on the empirical parameter configure, yet the best 

parameter configuration will be investigated further in future work.  

4.2.2 Results and Analysis  

The computational results of involved algorithms over bi-objective and tri- 

objective benchmarks are reported in Table 4, Table 5, Fig.5, Fig. 6 and Fig.7 

in the supplementary material. Note that due to paper limit, these experimental 

results including Table 4, Table 5, Fig.5, Fig. 6 and Fig.7. are given as the format 

of supplementary material following this paper. In Table 4 in the supplementary 

material, the mean results w.r.t the averaged IGD values over all trials for each 

algorithm are given. For each test problem, the averaged value and standard 

deviation of IGD are reported, and the best result among involved algorithms 

is marked in bold. In order to identify the significance of performance 

difference between those results obtained by H-MOABC and its counterparts, 

the Wilcoxon test is applied to obtained results with a level of significance 

a=0.05 [51]. In the test, the two-sample test value satisfying z > 1.640 indicates 

that the proposed algorithm is significantly superior to its counterparts. 

Conversely, z <1.640 implies that it is significantly worse. In the figures, both 

the true PF and the non-dominated solutions obtained by H-MOABC, NSGA-

II, and MOEA/D are explicitly plotted. Those experimental results are all based 

on the trial with the lowest IGD value. 

Fig. 7 in the supplementary material demonstrates the evolution of IGD-

metric values of one random run via the number of function evaluations in 

involved algorithms on these test instances. From Fig.7, it is apparent that H-

MOABC obtains the lowest IDG-metric values on almost all test functions, 

while converges faster on ZDT1, ZDT2, ZDT3, UF1, UF2, DTLZ1 and UF10. 

For other instances, such as ZDT6, DTLZ2, UF8 and UF9, SPEA2 and IBEA 

have slightly faster convergence rate than H-MOABC. Especially, on ZDT6, 

the indicator-based algorithm IBEA ranks the best, followed by H-MOABC. 

However, it is clear from Fig.7 that SPEA2 and IBEA are easy to trap into local 

optima. This is also the principal reason of compared algorithms could not 

obtain better IGD-metric values than H-MOABC on the test instances. The 

elaborate experimental analysis regarding these results is implemented as 

follows. 

l Comparison of NSGA-II, MOEA/D, SPEA2and IBEA 

  From results of Table 4 in the supplementary material, it can be observed that 

H-MOABC generally finds better results in term of averaged IGD values than 

NSGA-II and MOEA/D on most of bi-objective benchmarks. For instances, 

compared with its counterparts (i.e., NSGA-II, IBEA and MOEA/D), H-

MOABC obtains about a approximately one order of magnitude boost in IGD 

performance for ZDT1, ZDT2 and ZDT6, and over 50% for U1. Especially, on 

ZDT2 and ZDT6, the H-MOABC obtains the best average ranking largely 

outperforming other algorithms. On ZDT3, MOEA/D performs best of all. On 

ZDT1 and U2, IBEA also exhibits satisfactory performance, just a little worse 

than H-MOABC. On the other hand, the z value of two-sample Wilcoxon test 

shows a significant improvement of H-MOABC over NSGAII MOEA/D, IBEA 

and SPEA2 on five of involved test problems. From Fig. 5 in the supplementary 

material, the plotted contour profile of non-dominated solutions obtained by H-

MOABC looks more close to the true PF than those obtained by its counterparts, 

which can be verified by the D -metric results in Table 4. As depicted as above 

section, the D  -metric aims to measure the extent of solution spread among 

final solutions. From Table 4, we can observe that on those benchmarks 

including ZDT1, ZDT3, U1 and U2, the H-MOABC performs more 

competitive to other algorithms. The noticeable performance improvement of 

H-MOABC on these bi-objective benchmarks can be ascribed to the dynamical 

indicator-based crowded distance method incorporated in H-MOABC to 

maintain population diversity. 

For the tri-objective test problems, the H-MOABC exhibits obvious 

performance improvement over its counterparts in term of IGD-metric, 

especially on DTLZ2, DTLZ6, U9 and U10, where the advantage is 

significantly identified by the Wilcoxon test. Generally, compared with bi-

objective problems, these tri-objective instances are more difficult to tackle for 

the test algorithms, whereas the H-MOABC still keeps stable searching 

performance in approximation and uniformity. From Table 5 in the 

supplementary material, it is visibly observed that H-MOABC can rank first on 

five benchmarks and ranks second on one benchmark in terms of IGD-metric, 

and obtains IGD values lower than 0.01 on DTLZ1, DTLZ2 and DTLZ6. For 

spread metric, H-MOABC exhibits obvious advantage that it obtains the 

satisfactory averaged ranking on all test problems, ranking first on four 

benchmarks (i.e., DTLZ1, DTLZ6, U9 and U10), ranks second on four 

benchmarks (i.e., DTLZ2 and U8). From Fig. 6 in the supplementary material, 

it can be observed that, three algorithms perform similarly on DTLZ2. For U8, 

NSGA-II and H-MOABC perform slightly better than IBEA, MOEA/D and 

SPEA2 in uniformity. For more complex U9 and U10 with discontinuous 

Pareto fronts, H-MOABC exhibits a better approximation other algorithms. 

According to these results, the indicator-based evaluation rules and the 

dynamical crowded distance estimation method are essentially validated. 

l Comparison of multi-objective ABC algorithms 

In this section, the H-MOABC is compared with A-MOABC/NS [49] and 

MOABC [50] on a set of multi-objective benchmark functions. A-MOABC/NS 

is an asynchronous multi-objective ABC using non-dominated sorting 

procedure proposed by Akay [49] and its experimental results are directly taken 

from its original literatures [49]. MOABC is a Pareto-based multi-objective 

ABC algorithm using external archive [50]. Due to the page limit, we have 

included the computational results of the algorithms in Table 6 in the 

supplementary material of this paper. 

Table 6 shows experimental results of H-MOABC, A-MOABC/NS and 

MOABC on bi-objective U1, bi-objective U2, bi-objective U3, tri-objective U8, 

tri-objective U9 and tri-objective U10. It is seen from Table 6 that H-MOABC 

obtains satisfactory results on most of the test functions including U1, U2, U8 

and U10. Meanwhile, A-MOABC also performs well on U3 and U9. On U1 and 

U10, H-MOABC outperforms its counterparts in terms of the mean, best and 

standard deviation of IGD results. On U2 and U8, H-MOABC gets the best 

values of the mean and best while A-MOABC obtains the best standard 

deviation value. On U3 and U9, H-MOABC performs somewhat laggard in the 

mean values. However, it still finds the best values of best and standard 

deviation, which verifies its performance stability.  

5. RNP SIMULATION AND COMPUTATION RESULTS 

5.1 H-MOABC-based Implementation for Two-level RNP Model 

5.1.1 RNP Solution Representation 

l Definition of continuous individual 

The continuous decision solution in the bottom-level optimization, involving 

the position and radiated power range of each reader, can be encoded as shown 

in Table 3. 

l Definition of binary individual 
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The discrete decision variable in the top-level optimization as defined in 

Table 2 can be handled as follows: 

Given an individual i at time step t, its binarized representation can be 

expressed as 

max1 2 max( , ,..., ),    [0,1],   1,2,...,t t t t t

i i i iN ij
X x x x x j N= Î =                         (23) 

where Nmax is the maximum number of readers determined by the total 

deployment cost of the RFID network, and each element x
t
ij =0 if the 

corresponding reader is absent, and x
t
ij =1 otherwise. 

l Best compromise solution based on fuzzy decision 

Among the set of obtained Pareto-optimal solutions, a fuzzy-based 

mechanism is employed to select one solution as the best compromise solution 

for decision maker in RFID system [52-59, 62,63]. In this mechanism, each 

objective function of i-th solution can be donated by the following function µi: 

min
1            

max
min max

       ,
max min

max
0                              

f fi i

f fi i
f f fi i i i

f fi i

f fi i

µ

£

-
= £ £

-

³

ì
ï
ï
í
ï
ïî

           (24) 

where fi
max

 and fi
min

 are lower and upper boundary values of i-th objective 

function respectively.  

Then, for each obtained solution, the normalized µ
k
 can be calculated as: 

1
,

11

N
obj k

ik i
N
objM k

i
ik

µ

µ

µ

å
=

=

å å
==

                                       (25) 

where M is the number of obtained solutions, and Nobj is the number of the 

objective functions. The higher value of µ
k
 means the greater satisfaction of the 

corresponding solution. 

 

Initialize a solution x0 for top-

layer

For the best solution x0 in top-population

Y
N

Top-level searchBottom-level search

Implement  H-ABC to find a 

solution y*

Is y* a satisfied solution 

for RNP objectives?

END

Initialize a bottom-population

Y

Pass y* to top layer and using 

BABC to search an optimal 

solution x* 

N

Y

Is x* a satisfied solution 

for RNP objectives?

START

 

Fig. 8. The two-level RNP optimization process based on H-MOABC. 

 

5.1.2 Objective Function Transformation 

First, the bottom-level optimization takes Eq. (10) formulated in Section 2 

as the multi-objective objectives below: 

1 2 4  ( ) min{ ( | ), ( | )..., ( | )}
B

B B T B T B T

Bottom i i best i best i best
X

F X f X X f X X f X X=  (26) 

where Xi
B
 is the continuous vector of bottom-level solution i, which has been 

defined in Section 5.1.1, and Xj
T
 is the discrete vector of top-level best solution 

so far, which has been defined in above section.  

And then the objective function of top-level optimization derived from Eq. 

(8) can be listed as below: 

 

max max

+

1 2 max

1 1

+

3 1 1

( (t 1)) (1 exp( )) [ ]

   if  0
+ w [ f ( (t 1) | )-f ( (t) | )] ( )

0   

N N

T T T

T k u ku u ku

u u

T B T B

k best k best

F X w c x w c x I

X X X X
else

h

s s
s

= =

+

+ = - - + -

>ì
+ = í

î

å å

,  

        (27) 

where w1 , w1 is an user-defined inertia, and empirically set to 0.5 in our 

experiment , w2 and w2 is the punishment coefficients, X
B

best is the obtained best 

decision from bottom-level optimizer. Note that the main goal of top-level 

optimization is to reduce redundant reader number while ensuring the optimal 

tag coverage, thus the f1 function is considered in this top-level objective.  

5.1.3 H-MOABC-based Implementation for RNP 

Step 1. Initialization in the top layer. Set a binary reader-switching vector 

RS=[1,1,...,1], which denotes that all the readers are initially deployed in the 

network. Initialize a solution X0
T
 = RS for the optimizer in the top layer. Note 

that each solution Xi
T
 in the top layer denotes an advisable scheme regarding 

the reader number to drive a bottom-level search process. 

Step 2. Deployment parameter optimization in the top layer. For each 

solution Xi
T
, a bottom-level population [X1

B
,..., Xi

B
] are randomly initialized 

for H-MOABC-based optimization. Xi
B
 represents the x-y coordinates and 

transmitted power level of a deployed reader. 

Step 2.1. For each solution X i
B
 in bottom-level, its fitness is calculated by 

Eq.(26). 

Step 2.2. According to Algorithm1-Algorithm5, three algorithmic operations 

including sending employed bees, sending onlooker bees and sending scout 

bees are implemented respectively to update the bottom-level population. 

Step 2.3. The bottom-level multi-objective optimization operations are 

repeated until the terminal condition (i.e., the maximum function evaluation 

number) is met. Then send current best bottom-level solution Xbest
B
 to the top-

level. 

Step 3. Adjust reader number in the top layer. Based on current 

parameters configure (i.e., Xbest
B
) of readers from the bottom layer, Then the 

binary ABC optimizer in the top layer strives to eliminate redundant readers 

from current Xi
T
 while the tag coverage is maintained. 

Step 3.1. With the bottom-level feedback Xbest
B
, the fitness of each top-level 

Xi
T
 is computed by Eq. (27). 

Step 3.2. Implement the binary ABC paradigm to update the top-level 

population.  

Step 3.3. The top-level optimization operations are repeated until terminal 

condition (i.e., the maximum iteration number) is met. 

Step 4. If the terminal condition of the whole system (total maximum 

iteration number) is not met, return Step.2; otherwise, output the optimal 

solution. 

The flowchart of this two-level RNP optimization process is shown in Fig. 8. 

 

 

(a) Cd100 

 

(b) Rd500 

Fig. 9. The tag distribution in two test scenarios 

 

5.2 Experiment Configuration 

  The mobile readers and passive tags used here are compliant with EPC Class1 

Gen 2. The proposed H-MOABC-based scheme is evaluated on two typical 

RNP instances, namely Cd100 and Rd500 (shown in Fig. 9). The Cd100 

instance is simulated on a 30m×30m working space with 100 clustered 

distributed tags. The Rd500 instance is deployed in a 150m×150m working 

space with 500 randomly distributed tags. According to references [13, 24], the 

related RFID system parameters can be computed and listed in Table 6. 

Specially, the CMOABC algorithm has been adopted and validated in multi-

objective RNP optimization in previous work [13], thus it is employed for 

comparison in this experiment. The parameters setting for H-MOABC and 

NSGA-II can be same as Section .4.1 and the CMOABC parameters can be set 

the same as the original reference [13]. 

 
Table 6. The parameter configurations of Cd100 and Rd500 

 Reader 

Specification 

 Topology 

Specification 

 

Cd100 Reader number 10 Dimension 30m×30m 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

x

y

 

 

Tag

0 50 100 150
0

50

100

150

x

y

 

 

Tag
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Radiated power 0.20-3.0watt Tag number 100 

Interrogation range 2 – 3 m Tag distribution Clustered 

Interference range 3.0 – 4.0m tag power 

threshold 

-11.20dBm 

Rd500 Reader number 50 Dimension 150m×150m 

Radiated power 0.20-3.0watt Tag number 500 

Interrogation range 2 – 3 m Tag distribution Random 

Interference range 3.0 – 4.0m tag power 

threshold 

-11.20dBm 

5.3 Computation Results with Redundant Reader Elimination 

5.3.1 Results on Cd100 

l Bi-objective results 
Table 7 shows experimental results by individually optimizing each single-

objective function on Cd100 to scientifically access the boundary points of the 

following trade-off curve. Then, the bi-objective Pareto-optimal solution 

distribution obtained by H-MOABC, CMOABC and NSGA-II are provided 

visually in Fig.10, where the associated bi-objective pairs include six possible 

instances, namely f1 (tag coverage)–f2 (reader interference), f1(tag coverage)–f3 

(economic efficiency), f1 (tag coverage)-f4 (load balance), f2 (reader interference) 

–f3 (economic efficiency), f2 (reader interference)- f4 (load balance), and f3 

(economic efficiency)-f4 (load balance). After that, among the set of Pareto-

optimal solutions, one best comprised solution should be chosen as the feasible 

RFID deployment scheme. Accordingly, Table 8 gives the best compromise 

solutions based on fuzzy-decision method (i.e., Eqs.(18) and (19)) for each bi-

objective optimization instance, including the optimal reader number from the 

top-level, each deployed reader’s coordinates (X-Y) and radiated power from 

the bottom-level.  

In the comparison process, two Pareto front properties, namely convergence 

and diversity, are taken into consideration. From Fig. 10, it is apparent that the 

Pareto-optimal solutions by H-MOABC distribute more uniformly and the 

corresponding approximated trade-off curve converges better than its 

counterparts on most cases. Specifically, CMOABC and NSGA-II cannot 

approximate a well converged and appropriately distributed Pareto front on f1-

f3, f2-f3 and f3-f4. From Table 8 it is observed that each objective function value 

in the best compromise solutions is generally close to the corresponding ideal 

values shown in Table 7. Moreover, by embedding top-level binary optimizer, 

H-MOABC employs much fewer RFID readers than CMOABC and NSGA-II. 

These results explicitly show that H-MOABC is characterized by remarkable 

global search capability through potentially covering the entire Pareto front. 

l Tri -objective results 
The tri-objective Pareto-optimal solution distributions obtained by H-

MOABC, CMOABC and NSGA-II under four tri-objective instances are 

illustrated in Fig. 11, where these associated tri-objective pairs include f1 (tag 

coverage)–f2 (reader interference) - f3 (economic efficiency), f1 (tag coverage) – 

f2 (reader interference) - f4 (load balance), f1 (tag coverage) – f3 (economic 

efficiency) - f4 (load balance), and f2 (reader interference) - f3 (economic 

efficiency) - f4 (load balance). Table 9 lists the best compromise Pareto-optimal 

solutions for each tri-objective optimization pair. 

As shown in Fig.11, the Pareto-optimal front approximated by H-MOABC 

exhibits significantly better both convergence and diversity than other 

algorithms on most tri-objective cases. Especially, for f1-f2-f3, f1-f3-f4 and f2-f3-

f4, H-MOABC finds more non-dominated solutions than its counterparts. From 

8, it can be observed that H-MOABC can eliminate much more redundant RFID 

readers than other algorithms. According to the best comprise solutions 

obtained by each algorithm in Table 9, Fig.12 shows the reader locations and 

radiated power contours for the four three-objective instances in a visible way. 

From these figures, we can observe that the H-MOABC algorithm is a powerful 

tool to solve these tri-objective RNP instances. Note that these experimental 

results are obtained by H-MOABC and other algorithms in the specific tags-

clustered RFID scenario, which is pre-defined as Cd100 by users. This does not 

help to validate the problem-independence of the involved algorithms. However, 

it is not  the focus of this paper, here we do not consider the effect of the 

parameter configuration of the RNP instance on the performances of the test 

algorithms. 

 

 

 

Table 7. Results obtained by H-MOABC, CMOABC and NSGA-II on Cd100 

 
f1: tag coverage f2: reader interference f3 : economic efficiency f4: load balance 

H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II 

f 1.421e-7 2.102e-6 2.625e-6 1.212e-1 4.401 e-1 4.889e-1 2.404e-2 1.112 e-1 3.093 e-1 2.031 e-2 5.422 e-2 1.213e-1 

 

 

 
(a) f1- f2 

 
(b) f1- f3 

 
(c) f1- f4 

 
(d) f2- f3 

 
(e) f2- f4 

 
(f) f3- f4 

Fig. 10. Distribution of Pareto-optimal solutions obtained by H-MOABC, CMOABC and NSGA-II on (a) f1-f2, (b) f1-f3, (c) f1-f4, (d) f2-f3, (e) f2-f4, and (f) f3-f4. 

 

 
(a) f1-f2-f3 

 
(b) f1-f2-f4 

 
(c) f1-f3-f4 

 
(d) f2-f3-f4 

Fig. 11. Tri-objective Pareto-optimal solutions obtained by H-MOABC, CMOABC and NSGA-II on (a) f1-f2-f3,, (b) f1-f2-f4, (c) f1-f3-f4, and (d) f1-f3-f4. 

 

Table 8. The best compromise solutions for each two-objective pair from the Pareto front based on involved test algorithms 
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f1- f2 f1- f3 f1- f4 f2-f3 f2-f4 f3- f4 

H-

MOA
BC 

CMOA
BC 

NSG
A-II 

H-

MOA
BC 

CMOA
BC 

NSG
A-II 

H-

MOA
BC 

CMOA
BC 

NSG
A-II 

H-

MOA
BC 

CMOA
BC 

NSG
A-II 

H-

MOA
BC 

CMOA
BC 

NSG
A-II 

H-

MOA
BC 

CMOA
BC 

NSG
A-II 

X1 26.68 16.64 15.46  20.47  13.64 4.55  9.05  11.88  19.56  25.30  13.47  24.11  24.41  2.66  25.57  13.29  18.96  16.94  

Y1 32.75 14.80 18.27  30.04  24.35 22.58  25.84  8.70  22.31  14.86  16.08  11.80  3.49  19.25  15.02  24.71  24.03  9.99  

X2 17.01 17.35 25.92  0.02  4.48 28.97  24.74  3.92  19.74  16.72  11.98  25.36  14.86  16.83  14.17  13.03  7.11  12.96  

Y2 17.13 18.47 8.56  13.79  15.15 31.14  19.92  26.35  13.12  17.95  21.28  23.15  10.48  14.55  13.20  22.58  19.06  17.63  

X3 10.76 15.02 15.57  22.68  28.96 13.38  15.27  18.66  12.82  14.69  22.87  14.83  24.17  13.70  14.30  17.51  12.76  25.68  

Y3 17.57 16.50 3.77  20.48  9.82 24.24  21.19  23.64  9.07  14.44  17.87  22.93  23.10  15.75  10.46  2.93  6.78  27.81  

X4 18.83 10.00 21.58  11.32  7.25 17.49  19.89  6.76  6.72  14.93  15.94  10.62  29.41  25.49  10.25  13.26  6.88  31.29  

Y4 14.85 6.53 16.21  0.01  29.54 16.25  13.75  12.91  13.31  10.79  15.67  14.32  12.80  23.34  13.23  15.62  28.73  16.26  

X5 22.36 14.53 9.81  18.48  22.03 7.91  14.79  16.40  15.86  33.24  16.71  16.67  13.43  9.26  13.22  24.57  18.51  28.87  

Y5 17.99 24.36 23.86  3.09  20.53 22.58  14.74  14.29  2.93  14.54  22.10  11.19  13.01  24.40  16.44  7.87  25.83  23.57  

X6 14.54 20.55 8.16  7.31  7.96 34.00  30.45  4.23  13.69  14.88  26.01  12.91  20.00  15.92  17.73  6.83  13.20  6.94  

Y6 25.06 7.27 15.68  9.44  12.84 25.10  19.30  28.52  21.05  36.95  20.40  26.81  32.13  13.57  14.63  18.90  18.14  30.40  

X7 22.97 17.84 15.08  14.03  18.69 15.46  12.56  9.37  23.66  34.01  19.75  8.93  28.33  30.41  28.22  18.78  12.97  17.79  

Y7 29.39 14.70 9.64  26.67  23.39 6.96  4.96  22.43  26.57  24.81  28.10  21.99  18.58  19.64  19.03  16.57  12.96  18.39  

X8 14.47 14.06 13.03  2.12  25.84 0.87  33.22  26.10  21.05  21.91  24.30  20.59  16.55  18.16  22.03  11.06  3.14  19.42  

Y8 14.58 7.93 1.30  11.76  6.96 6.35  20.60  8.14  17.04  19.29  17.47  22.94  12.03  18.23  0.61  13.38  13.24  20.51  

X9 0.04 22.15 15.28  26.41  21.83 17.65  19.09  16.96  26.74  19.06  16.55  24.24  13.79  21.27  13.22  3.97  5.75  8.44  

Y9 0.69 16.24 16.10  14.99  6.50 25.37  14.73  15.34  26.08  27.34  17.86  9.55  18.51  25.36  15.36  5.16  23.56  22.84  

X1

 

1.23 13.31 16.00  14.49  6.27 31.20  14.29  0.00  3.24  13.18  18.63  4.47  21.39  19.51  19.20  14.47  22.14  15.26  

Y1

 

26.35 20.33 22.43  10.43  28.68 15.59  14.14  12.81  18.01  2.94  15.78  21.34  18.61  25.43  13.11  30.66  22.83  8.40  

P1 0.00 30.46 17.18  33.49  0.00 0.00  34.12  8.34  22.73  34.69  22.73  31.12  0.00  33.34  13.70  19.34  23.82  10.82  

P2 28.20 32.61 23.95  0.00  18.92 19.03  14.79  0.00  22.79  34.69  28.04  33.58  35.72  34.04  33.76  36.78  20.37  19.69  

P3 0.00 28.68 0.00  33.49  18.73 26.79  1.94  16.00  12.91  37.99  22.76  0.00  0.00  36.90  31.08  0.00  0.00  8.55  

P4 36.82 0.00 31.96  27.17  26.41 13.71  15.73  0.00  16.70  0.00  0.00  34.71  32.89  36.50  0.00  0.00  0.00  35.93  

P5 0.00 22.98 29.14  0.00  22.44 31.08  33.90  25.62  16.30  38.15  24.01  11.49  37.58  0.00  37.56  37.46  14.59  22.27  

P6 35.93 25.38 0.00  32.87  23.82 21.54  35.03  19.12  16.53  37.87  25.76  34.22  36.85  38.33  37.46  37.22  26.71  21.42  

P7 36.80 24.29 30.44  0.00  0.00 24.46  0.00  19.92  0.00  0.00  31.00  0.00  0.00  38.46  37.71  37.32  21.38  33.13  

P8 0.00 25.72 27.19  27.77  12.42 0.00  35.06  21.04  5.86  38.15  21.60  33.83  37.44  0.00  27.14  0.00  21.14  0.00  

P9 35.37 0.00 30.73  0.00  0.00 33.89  0.00  0.00  0.00  38.15  21.39  29.59  37.97  38.05  34.75  36.93  27.66  0.00  

P1

 

36.17 32.72 30.41  33.49  15.94 31.95  35.03  25.16  15.24  35.03  19.90  25.04  34.13  0.00  25.57  0.00  26.90  21.33  

f1 2.24e-

7 

3.43e-6 7.55e

-6 

2.77e-

7 
2.99e-6 3.94e

-6 

6.21e-

6  

6.334e-

6 

9.71e

-6 

NA NA NA NA NA NA NA NA NA 

f2 0.42 0.65 5.75E

-01 

NA NA NA NA NA NA 4.51e-

1 

4.81e-1 4.80e

-1 

4.72e-

2 

4.21e-1 6.44e

-1 

NA NA NA 

f3 NA NA NA 1.32e-
2 

1.41e-2 1.53e
-2 

NA NA NA 1.13e-
2 

1.43e-2 1.52e
-2 

NA NA NA 1.18e-
2 

1.19e-2 2.10e
-2 f4 NA NA NA NA NA NA 2.64e-

2 
1.02e-1 6.11e

-2 
NA NA NA 9.13e-

2 
1.71e-1 2.36e

-1 
1.41e-

2 
1.66e-2 4.18e

-2 N

e 

6 8 8 7 7 8 8 6 8 8 9 8 7 7 8 6 8 8 

where Xi and Yi donate the coordinates of the ith reader in the working region, Ne donates the optimal reader number and Pi is the radiate power of the ith reader. 
 

Table 9. The best compromise solutions for each tri-objective pair from the Pareto front based on involved test algorithms 

 
f1- f2- f3 f1- f2- f4 f1- f3- f4 f2- f3- f4 

H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II 

X1 18.48  25.04  22.88  15.17  26.00  3.60  20.89  4.01  16.39  2.74  24.66  25.05  

Y1 9.54  21.36  14.60  13.04  15.71  6.00  13.09  6.28  14.06  4.12  15.73  16.20  
X2 14.32  8.33  15.97  21.58  19.49  19.22  33.23  19.37  17.73  7.24  12.07  4.40  

Y2 28.16  14.40  0.20  30.83  17.55  9.61  25.40  9.75  3.18  27.08  18.41  23.42  
X3 24.14  8.80  2.25  12.79  16.85  9.33  31.45  17.15  30  30  14.60  25.63  

Y3 8.96  16.50  27.05  0.48  14.32  19.66  6.73  18.85  16.78  18.95  15.48  13.17  
X4 23.97  12.60  20.06  17.50  15.66  21.06  23.79  14.61  11.17  19.64  14.14  14.17  

Y4 15.40  2.30  7.69  32.97  31.75  20.19  15.61  26.54  9.67  17.16  24.28  30  
X5 14.16  8.48  33.06  21.46  31.75  10.10  36.62  15.83  11.58  13.97  17.56  15.63  

Y5 1.92  19.12  18.22  9.20  9.77  21.37  12.80  16.11  28.21  17.43  17.95  27.83  
X6 1.62  7.36  20.35  5.77  11.54  11.54  3.51  12.08  5.66  21.64  12.71  19.50  

Y6 11.05  0.11  23.26  27.28  3.66  14.04  27.75  31.90  25.55  13.16  16.43  23.33  
X7 5.40  5.40  21.05  4.80  8.74  31.14  17.56  10.87  21.58  18.78  24.16  15.84  

Y7 9.50  25.72  16.96  3.63  14.92  16.61  17.02  12.93  21.53  3.41  26.55  15.77  
X8 24.66  12.54  5.63  32.63  22.29  6.50  4.12  21.80  32.75  20.81  21.79  24.99  

Y8 7.35  7.61  18.95  21.03  14.73  33.30  3.54  20.53  19.77  30  7.06  16.89  
X9 18.64  12.58  15.23  24.46  9.44  10.88  15.08  17.47  5.39  13.60  16.15  20.39  

Y9 23.38  1.37  15.99  9.04  9.62  18.67  22.93  10.92  21.07  11.16  9.90  4.90  
X10 7.37  22.94  20.29  16.75  20.11  21.43  14.21  13.96  2.58  23.21  9.37  11.69  

Y10 0.68  19.29  3.91  6.58  16.08  9.67  1.18  11.50  11.09  6.96  8.94  5.62  
P1 25.90  10.73  10.79  26.40  21.19  8.63  22.90  19.05  4.83  26.44  12.17  8.08  

P2 0.00  0.00  15.23  0.00  19.95  9.91  26.46  14.46  18.49  22.85  20.19  7.22  
P3 0.00  0.00  9.95  0.00  13.19  20.02  0.00  18.77  4.74  26.46  15.80  17.55  

P4 25.89  8.26  14.56  26.40  15.30  0.00  21.81  10.89  21.55  0.00  14.31  9.48  
P5 26.07  15.75  0.00  22.59  10.18  5.31  0.00  11.78  0.00  0.00  15.40  0.00  

P6 0.00  21.14  18.89  20.17  14.88  3.81  26.18  10.98  5.58  0.00  15.56  17.70  
P7 29.46  3.69  21.77  29.46  14.40  22.37  29.34  12.06  16.36  29.44  20.04  12.38  

P8 29.95  17.79  29.36  27.92  0.00  15.07  22.11  14.92  23.96  29.65  24.66  17.95  
P9 27.06  23.03  25.09  0.00  0.00  25.83  2.95  12.54  13.12  26.45  15.73  0.00  

P10 0 20.34  26.15  30  14.66  16.74  20.89  0.00  16.39  27.38  12.07  24.34  
f1 2.38e-7 2.31e-6 5.36e-7 5.46e-6 5.49e-6 4.38e-6 6.93e-6 5.43e-6 3.76e-5 NA NA NA 

f2 5.25e-1 3.46e-1 5.22e-1 5.31e-1 5.18e-1 5.81e-1 5.01e-1 5.77e-1 5.02e-1 3.12e-1 4.23e-1 5.53e-1 
f3 1.68e-2 4.02e-2 5.66e-2 NA NA NA NA NA NA 6.29e-1 6.57e-1 7.95e-1 

f4 NA NA NA 3.88e-1 3.90e-1 6.42e-1 8.31e-1 7.66e-1 8.88e-1 1.189e-1 2.03e-1 3.66e-1 
Ne 6 8 9 7 8 9 7 9 8 7 8 8 

where Xi and Yi donate the coordinates of the ith reader in the working region, Ne donates the optimal reader number and Pi is the radiate power of the ith reader. 
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(d) H-MOABC  

(e) CMOABC 

 
(f) NSGA-II 

 
(g) H-MOABC 

 
(h) CMOABC 

 
(i) NSGA-II 

 
(j) H-MOABC 

 
(k) CMOABC 

 
(l) NSGA-II 

Fig. 12. Reader distribution and radiated power contour obtained by H-MOABC, CMOABC, and NSGA-II: (a)-(c) for f1-f2- f3, (d)-(f) for f1-f2- f4, (g)-(h) for f1-f3- f4; (j)-(l) for f2-

f3-f4. 

 
Table 10. Results of each objective functions by H-MOABC, CMOABC and NSGA-II on Rd500  

 
f1:tag coverage  f2: reader interference f3 : economic efficiency f4: load balance 

H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II H-MOABC CMOABC NSGA-II 

f 1.647e-6 7.836e-6 3.602e-5 1.415e-1 1.898 e-1 1.992 e-1 1.093 e-2 2.498e-2 3.098 e-2 2.011 e-2 7.912 e-2 9.376 e-2 

 

Table 11. The best compromise solutions for each combination from the Pareto front based on involved algorithms on Rd500 (where F1, F2 and F3 correspond to the first, second 

and third function in the combination respectively) 

 

f1- f2- f3 f1- f2- f4 f1- f3- f4 f2- f3- f4 

H-

MOABC 
CMOABC NSGA-II 

H-

MOABC 
CMOABC 

NSGA-

II 

H-

MOABC 
CMOABC 

NSGA-

II 

H-

MOABC 
CMOABC NSGA-II 

f1 
4.793e-6 8.339e-6 7.501 e-5 3.512 e-

5 

5.482 e-5 9.182 e-

5 

4.774e-5 2.482e-5 2.189e-5 3.182e-1 4.289 e-1 3.401 e-1 

f2 
3.358 e-1 4.024 e-1 7.362 e-1 4. 125e-

1 

5.642 e-1 6.711 e-

1 

1.498e-2 1.982 e-2 5.199 e-

2 

9.011 e-

2 

3. 552e-2 1.152 e-1 

f3 
1.702e-2 3.189e-2 4.834 e-2 4.387e-2 5.559e-2 5.298 e-

2 

5.872-2 5.732e-2 3.201 e-

2 

5.401e-2 5.901 e-2 3.199 e-2 

Reader 

number 

39 45 46 43 45 45 40 40 39 42 45 47 

 f1- f2 f1-f3 f1-f4 f2-f3 

 
H-

MOABC 
CMOABC NSGA-II 

H-

MOABC 
CMOABC 

NSGA-

II 

H-

MOABC 
CMOABC 

NSGA-

II 

H-

MOABC 
CMOABC NSGA-II 

f1 
3.601e-6 5.412e-5 2.398 e-5 8.172e-5 9.199e-6 9.230 e-

5 

4.214e-6 6.315e-5 6.251 e-

5 

1.121 e-

1 

2.298 e-1 5.001 e-1 

f2 
2.301 e-1 2.934 e-1 5.183 e-1 1.602 e-

2 

4.424e-2 6.712 e-

2 

5.682e-2 6.84e-2 1.154 e-

1 

2.198 e-

2 

4.001e-2 3.834 e-2 

Reader 

number 

38 41 41 41 42 43 41 45 47 42 47 48 

 f2-f4 f3- f4   

 
H-

MOABC 
CMOABC NSGA-II 

H-

MOABC 
CMOABC 

NSGA-

II 
      

f1 
2.901 e-1 4.211 e-1 3.114 e-1 1.14 6e-

2 

1.253e-2 3.083 e-

2 

      

f2 
6.204e-2 6.143e-2 6.934 e-2 5.702e-2 6.224e-2 7.134 e-

2 

      

Reader 

number 

39 42 45 39 41 41       

 

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-10

0

10

20

30

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-20

-10

0

10

20

30

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-20

-10

0

10

20

30

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-20

-10

0

10

20

30

X-coodinate
Y

-c
o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-20

-10

0

10

20

30

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-20

-10

0

10

20

30

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-10

0

10

20

30

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-20

-10

0

10

20

30

X-coodinate

Y
-c

o
o
d
in

a
te

 

 

0 10 20 30
0

5

10

15

20

25

30

-20

-10

0

10

20

30



 12 

(a) (b) (c) 
(d) 

Fig.13. Reader distribution and radiated power contour obtained by H-MOABC: (a) for f1-f2- f3, (b) for f1-f2- f4, (c) for f1-f3- f4, (d) for f2-f3-f4. 

 

 
5.3.2 Results on Rd500 

With the increasing number of readers and tags located in the working region 

increases, the optimization complexity of RNP increases exponentially. 

Accordingly, the Rd500 instance is employed to further investigate the 

algorithm’s efficiency when handling large-scale scenarios. As shown in Fig. 9 

(b), this can be formulated as a 150-dimensional bottom-level optimization 

problem. Similar to the previous section, all single-objective functions are 

firstly handled individually by H-MOABC, CMOABC, and NSGA-II, as 

shown in Table 10. Then, Table 11 shows the bi-objective and tri-objective 

Pareto-optimal solutions obtained by H-MOABC, CMOABC and NSGA-II, 

where the associated bi-objective pairs include f1–f2, f1–f3, f1-f4, f2–f3, f2-f4, and 

f3-f4, and the associated tri-objective pairs include f1–f2-f3, f1–f2-f4, f1–f3-f4, and 

f2-f3-f4. Fig.12 shows the reader locations and radiated power contours for the 

four three-objective instances in a visible way. 

It can be observed from Table 11 that the objective function values obtained 

H-MOABC are superior to those obtained CMOABC and NSGA-II on all bi-

objective and tri-objective functions instances, where obtained best 

compromise solutions are close to their optimal values as shown in Table 10. 

Furthermore, H-MOABC can provide an optimal reader layout via weeding out 

more redundant readers. As expected, by incorporating the effective dynamical 

crowded distance mechanism of H-MOABC, the high-density non-dominated 

solutions on large-scale RNP problem can be appropriately selected to be 

evolved in next growth iteration, leading to better results. The reader locations 

and radiated power contours obtained by H-MOABC for four three-objective 

instances are plotted in Fig.13 It can be clearly observed from Fig.13 that H-

MOABC can provide a reasonable deployment scheme in the large-scale Rd500 

instance.  

5.3.3 Discussion 

From above experimental results, it is apparent that the two-level RNP 

optimization based on MO algorithms aims to offer an optimal reader layout 

scheme with redundant reader elimination, and it exhibits significant 

superiorities to previous works using fixed number of readers in the 

optimization as below: 

First, the optimal deployed reader number in the RFID system is difficult to 

pre-estimate, whereas excessive amount of readers to be deployed is not cost-

efficient, and on the other hand inadequate readers cannot guarantee the full tag 

coverage. In contrast, the two-level MORNP model allows the algorithm to 

dynamically adjust the reader number by adaptively eliminating the redundant 

ones during the optimization process, and then achieve full tag coverage by 

using an appropriate reader number. This is the reason why the proposed 

scheme outperforms other schemes with fixed reader number. 

Second, the novel two-level RNP model decouples the RNP optimization 

into binary top-level scheduling and multi-objective continuous bottom-level 

configuration. This essentially simplifies network management and accordingly 

reduces the optimization complexity. From the optimization point of view, this 

model is genetic and extendible that a broad variety of multi-objective 

optimization algorithms can be adopted on this model. 

Finally, different from the single-objective optimization, in this MORNP 

optimization two or three objectives are optimized simultaneously and then the 

corresponding trade-off is taken into account: (1) convergence to the Pareto-

optimal set and (2) the diversity over Pareto-optimal solution. The approach of 

performance indicator based fitness assignment and dynamical crowded 

distance method incorporated by the proposed algorithm can cater to these 

purposes of complex RNP optimization.  

Although there are many RNP models handled by some other optimization 

algorithms, most of them are not based on multi-objective approach, but always 

transform multiple RNP objectives into a single-objective problem by weighted 

coefficient approach. Essentially, their processing principle is different from 

our proposed approach, which also indicates that our multi-objective ABC 

algorithm is more suitable to find a set of optimal trade-off solutions for 

multiple conflicting objectives simultaneously in one run. Second, we have 

compared the existing multi-objective algorithms that have been applied in 

RNP with our proposed H-MOABC. Experimental results show the 

effectiveness of H-MOABC. 

Certainly, we cannot assert that the proposed RNP model and H-MOABC are 

always suitable to the real application scenarios because some simplified RNP 

problems do not involve the mixed discrete and continuous control variables, 

or some RNP objectives different from our proposed ones, even cannot be 

grouped into two layers. To some extent, this increases the difficulty of the 

proposed model and algorithm for real applications. In our future work we will 

focus on real applications of the proposed scheme. 

6. CONCLUSIONS 

This paper develops multi-level RNP framework and two-level MORNP 

model to decouple the complex RNP optimization, in order to reduce the RNP 

optimization complexity. Then a novel indicator-based multi-objective 

optimizer (H-MOABC) derived from the foraging rules of artificial bee colony 

is developed to solve this MORNP. In H-MOABC, based on the principle of 

ABC paradigm, a new fitness assignment based on quality indicator is 

developed to drive evolution of population and external archive, and the 

orthogonal Latin squares and comprehensive learning aim to boost population 

diversity to avoid being trapped into local optima. When all solutions are 

processed, the dynamical crowded distance estimation is employed to drive 

evolution of population for the next iteration. 

Then, the H-MOABC is compared against NSGA-II, MOEA/D, and SPEA2 

with a suit of typical bio-objective and tri-objective test problems by conducting 

experiments. Finally, the two-level MORNP model is resolved by this algorithm 

with two typical instances. Computational results show the effectiveness and 

efficiency of the two-level RNP scheme based on H-MOABC. In future, we 

will focus on the following research issues on RNP: (1) extending the proposed 

RNP model to other IoT applications, such as WSN optimization; (2) 

considering the dynamic RNP model for the RFID system with dynamic tags 

and mobile readers; (3) developing dynamic MOABC algorithm to solve the 

dynamic RNP problems; (4) conducting comprehensive sensitivity analysis of 

parameters of the algorithm and investigating the algorithm complexity.  
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