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We present a new technique for reducing computation time of numerical solutions to optimal design problems. We incorporate in the
optimization procedure a coarse model. Our technique, the two-level response and parameter mapping (RPM) algorithm, is based on
space mapping and manifold mapping. Space mapping (SM) performs a mapping between the parameter spaces of the coarse and fine
models, while manifold mapping (MM) makes a mapping between the response spaces of the coarse and fine models through the use of
response correction. Here, we use and compare the three two-level optimization procedures, SM, MM, and RPM, for the optimization
of passive and active shields in induction heating. The results demonstrate accurate and time-efficient optimization of magnetic shields

by the RPM algorithm.

Index Terms—Induction heating, magnetic shielding, manifold mapping, optimization, response correction, space mapping.

1. INTRODUCTION

HE analysis of electromagnetic phenomena in complex
Tsystems demands the use of time-consuming numerical
methods. If one wants to optimize the system for certain ob-
jectives, using traditional direct optimization procedures, e.g.,
the Nelder—Mead simplex method, simulated annealing, genetic
algorithm, etc., several computations are needed in the numer-
ical model. As a result, the computational time for obtaining
the solution of the optimization may become large. Therefore,
the need exists to accelerate the optimal design procedures in
engineering systems. Surrogate optimization has been used for
accelerating time-consuming optimization problems [1], [2].

Two different types of surrogates can clearly be distinguished.
The first type comprises approximation models which are built
by fitting or interpolating response data. The response data are
obtained by evaluating the model for a certain set of sample
points in the design space. Response surface modeling [3], ra-
dial basis functions [4], and Kriging [5] are three frequently used
approximation models. The other type of surrogate is a model
which is physically based on the problem and where some sim-
plifications or assumptions have been carried out. In electro-
magnetic field problems, this coarse model can be constructed
by making some assumptions according to the geometry, nonlin-
earity, material characteristics, sources, etc. The coarse model
can also be created on the basis of the numerical fine model,
where some time-consuming subprocedures are not included or
where a coarse discretization is used instead of a fine one.

The recently introduced efficient global optimization (EGO)
algorithm by Jones et al. [6] for the solution of optimization
problems with computationally expensive black-box functions,
uses the first type of surrogates. In particular, the Kriging
approximation model is employed together with expected
improvement. Expected improvement is a figure of merit that
balances local and global search. A probabilistic framework, the
so-called no-free-lunch [7], can be used to measure the match
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between a specific optimization problem and its algorithm. In
[8], for instance, the fit of hybrid algorithms to a particular
problem is measured using the no-free-lunch framework.

The space mapping (SM) techniques, introduced by Bandler
et al. [9], are surrogate-based optimization techniques where a
coarse model is exploited and aligned with the computationally
intensive fine model. The optimization routines for the original
time consuming model are expanded with this coarse model:
two-level optimization. The techniques have successfully been
applied in the field of microwaves for component and system
modeling. For a review, see [10]. The techniques were also ap-
plied for the design of a linear actuator [11] and for the design
of passive shields [12]. In this paper, several two-level optimiza-
tion schemes are described and compared in performance for
a shielding application. In this introduction, a brief qualitative
outline of these algorithms is given; in Section III, a more de-
tailed study including mathematical background is carried out.

Traditional SM techniques try to map the parameter spaces of
both the fine and the coarse model. The SM techniques might
fail to converge to the optimum of the accurate model when the
response space of the coarse and the response space of the fine
model are severely misaligned [13].

The so-called space mapping based interpolating surrogate
scheme (SMIS), introduced in [14], tackles this problem by in-
troducing “response correction.” The SMIS tries to map on the
one hand the parameter spaces of both the fine and the coarse
model and on the other hand the response spaces of the two
models.

More recently, Koziel et al. described in [15] a generalized
implicit space-mapping (GISM) framework that forces exact
matching of responses and Jacobians between the surrogate and
the fine model. The GISM and SMIS algorithm utilize a more
general surrogate model but they have drawbacks. Jacobians
need to be evaluated and the set of mapping parameters, which
can become large, needs to be optimized using the coarse model
in every step.

The manifold mapping (MM) approach, presented in [13] and
applied in [16], also uses the response correction principle but
moreover employs a different update scheme for the determina-
tion of the optimal parameters. The mapping parameters are ob-
tained on the basis of the calculated responses of the coarse and
fine model and do not need to be obtained through optimization.
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The optimization problem of shielding is an interesting op-
timization problem because it possesses the following charac-
teristics. When simulating the coarse and fine model responses
for the passive shield only, the responses are very similar [12].
On the other hand, for the simulation of the passive and ac-
tive shield, the responses are severally misaligned. Further, op-
timizing the active and passive shield using the coarse model is
on itself hard: exhaustive search (genetic algorithm) is needed
in order to obtain a global optimum. The determination of the
large set of mapping parameters is consequently very hard when
the SMIS and GISM algorithms are used. The determination of
the Jacobians in the numerical fine model is also rather hard
and very time-consuming. When utilizing the SM or the MM
algorithm, one would not use a more general surrogate model
as the one in the SMIS algorithm but the mapping parameters
are determined in a far easier way. This shielding optimization
problem has already been solved using a one-level algorithm,
the genetic algorithm [17]. A global optimum was obtained,
but the needed computational time for solving the optimization
problem was high.

In this paper, we propose the response and parameter mapping
(RPM) algorithm. The RPM algorithm performs, besides a
mapping in the parameter space (as in SM), also a mapping
in the response spaces (as in MM) of the fine and coarse
model. The main difference between the SMIS and the GISM
algorithm is the fact that a composite mapping formulation
is used and that the mapping parameters are obtained on the
basis of the coarse and the fine model responses. The RPM
algorithm was first applied to the multiobjective optimization
of the passive shield only. Further, the two-level algorithm was
applied to the difficult optimization problem of the active and
passive shield. Comparisons were carried out with the other
two-level optimization algorithm and the one-level genetic
algorithm.

II. OPTIMIZATION PROBLEM OF MAGNETIC SHIELDING
IN INDUCTION HEATING

The chosen application example on which the optimization
routines are applied, is the design of magnetic shields for an
induction heating device with configuration shown in Fig. 1.
The time-dependent magnetic field generated by the excitation
coil of this device can treat a metallic specimen in a thermal
way. The excitation coil creates also a magnetic field in the sur-
rounding region. The operator of the equipment as well as elec-
tronic devices may be exposed to magnetic fields that are signifi-
cantly higher than the reference levels of the International Com-
mission on Non-Ionizing Radiation Protection (ICNIRP) [18]
and the European Union [19], [20]. The goal of the optimiza-
tion is to mitigate the magnetic field in a given area by using on
the one hand passive shielding, which uses suitable materials to
limit electromagnetic losses within the shield, and on the other
hand active shielding, which generates counter fields opposite
to the main one by proper currents in a number of compensa-
tion coils. Next to the field reduction, the optimization problem
has some other objectives. For example, the modification of the
thermal treatment of the work piece by the passive and active
shielding must be limited to a minimum. It is obvious that the
problem is a multiobjective optimization problem, where the
total “cost” function K ( -) to minimize is the weighted sum of
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Fig. 1. Magnetic source, workpiece, passive shield, compensation coils, and
target area.

the following contributions, to be determined by the fine or the
coarse model:

K() :wlBa\,g—}—wgPp +w3(Pw0 —Pw)—l—w4Cp (1)

where
Bavg average flux density in the

target area with surface Sta:

Bavg = (Jp |Blds)/(Sta) where
|B| = +/|Br|? + | B.|? with B,., B,
being the radial respectively the
z-component of the flux density
phasors in the time-harmonic,
quasi-static coarse or fine model;

P, power dissipated in the passive shield;

w3(Puwo — Puw) power in the workpiece without shield
P,,0 minus the power with shield
present P, indicates the disturbing

influence on the heating process;
Cy investment cost to build the shield.

The weighting coefficients w; determine the impact of each
term on the solution. The influence of a high weighting factor
wy (relative to wy) in (1) results in an optimal shield with small
height far from the source, in order to reduce the losses in this
shield. The factor w3 mainly influences the optimal radius. If
both ws and w3 are very small compared to w;, the optimal
shield is very high and very close to the source: it mitigates the
field effectively, but it may dissipate much power and have a
strong influence on the heating process in the work piece. The
factor wy finally may be used to avoid geometries that are dif-
ficult to construct. Finally, the geometrical area in which to add
shields is constrained, as the accessibility of the work piece
should be guaranteed.

By solving the multiobjective optimization problem, the op-
timal position and height of the passive shield, as well as the
optimal current for the active shield and the number of turns
of all coils have to be returned. In order to apply space map-
ping, an analytical coarse model is constructed besides the fine
numerical model based on the finite-element method. The fine
and coarse model calculate the magnetic field distributions in
the target area and the other electromagnetic quantities needed
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b

Fig. 2. The passive shield in (a) is replaced by a number of mutually coupled
coils in (b). The section of the passive shield equals the sections of all equivalent
coils together.

a
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to compute (1). The optimization problem that has to be solved
is given by

x} = argmin K (f(xy)) 2)
xy

with K ( - ) being the objective function (1), which calculates the
“cost” of the fine model f of an active and/or a passive shield
with the variables x ¢ as inputs.

In order to evaluate K( ), the fine model uses a time-har-
monic, quasi-static finite-element model of the axisymmetric in-
duction heater with geometry of Fig. 1. The domain is defined
by the work piece, the excitation coil and the air surrounding the
induction heater. The chosen shield material is copper. Details
about the model as well as an experimental verification can be
found in [17].

In the coarse model, the axisymmetric copper shield is re-
placed by a set of equivalent coaxial coils, see Fig. 2. Each
coil has its own resistance, self inductance, and mutual induc-
tances between the coil and all other coils. This results in an
electrical circuit in which the components are calculated by
well-known analytical formulas for nonferromagnetic passive
shields (shielding by eddy currents) [21]. The sources in the cir-
cuit are the voltages that the excitation coil induces in the open
coils of the replaced passive shield. Consequently, these volt-
ages result from the nondistorted magnetic field, generated by
the excitation coil in presence of the work piece. The induced
voltages are obtained by one previous finite-element calculation
of the unshielded induction heater. This voltage source repre-
sentation of the induction heater stray field has the advantages
that the stray field is modeled more accurately and that also fer-
romagnetic workpieces can be modeled, whereas the analytical
expressions used in the coarse model can only take into ac-
count nonferromagnetic objects. The disadvantage is that the
third term in the objective value—the change of P,—cannot
be calculated in the coarse model. Other approximations in this
coarse model are the replacement of the continuous thin shield
by a number of coils with discrete positions, and the uniform
current distribution in the equivalent coils without taking into
account possible skin effect. Consequently, the coarse model is
less accurate than the fine model, but obviously, it is much faster.

III. TWO-LEVEL OPTIMIZATION

A. Introduction

The m-dimensional response vector of the coarse (fine)
model for a certain n-dimensional control variable vector
x. € X.(xy € Xy), is denoted by c(x.) € Q.(f(x5) € Q).

For the case of the optimization of magnetic shields, the control
variables x are the height and position of the passive shield
and the currents and positions of the various coils of the active
shield, while the responses are the magnetic induction values
in the target area and the three other terms shown in (1).

In the following sections, we alter (2) to the following:

x} = arg min |[f(xz) -y 3)
xr€Xy

y is the objective of the optimization problem: the specifications
of the aim in the optimization problem. Since we want to mini-
mize the induction values in the target area and the other terms
in (1), y is 0 in the case of the magnetic shields optimization. In
this paper, we perform two-level optimization using space map-
ping (SM) techniques, the manifold mapping (MM) algorithm,
and the proposed response and parameter mapping (RPM) al-
gorithm for the magnetic shields optimization.

B. Space Mapping Techniques

The research on space mapping (SM) has expanded enor-
mously since its introduction [10]. In space mapping, the coarse
model is used as a basis for generating successive surrogates
for the fine model. A suitable surrogate model is obtained by
constructing a mapping between the parameter spaces of the
two models. We want to generate a parameter mapping func-
tion p(x) in order to obtain an approximation of the form

f(xy) ~ c(p(xy))- “)

Finding the parameter mapping function x. = p(xy), the
so-called parameter extraction (PE), is a very important sub-
problem of the SM technique [10]. The parameters of the
coarse model or surrogate are extracted so that the coarse
model matches the fine model:

p(x) = arg min [le(x.) - £(x/)| )
for some specific norm.

The popular aggressive space mapping (ASM) algorithm uses
the following surrogate model in the kth iteration [22]:

s (xs) = c(p® (x5)) ©6)
with

p(k)(xf) =p (x;k)) +B® (xf — xgck)) . @)

x;k) is the kth quasi-Newton iteration and B(*), which is an

approximation of the Jacobian of p(x;k)), can be updated using
Broyden’s rank one formula [23]. The hybrid ASM algorithm
(HASM) enables switching between direct optimization and the
space mapping technique. For further details, see [24].

The ASM algorithm fails to converge if the coarse and the
fine model are severely misaligned [13]. So-called response cor-
rection needs to be implemented. A type of space mapping that
implements response correction is the space mapping based in-
terpolating surrogate scheme (SMIS). This algorithm uses the
following surrogate model S(SIIC\?HS(X ) in the kth iteration [14]:

a® (C(B(k)xf n P(k)> _ c(B<k>x§f) +P®)) 1 gH) (8)



304

where some specifications can be made regarding the defect cor-
rection matrix a*) and vector 8 (k) It is assumed that the defect
correction matrix is diagonal and that 8 k) — ¢ (xs,k) ). Response
correction is applied in this algorithm and the mapping param-
eters a(®), B(*) and P(*) are identified using a parameter ex-
traction procedure. In the generalized implicit space mapping
framework (GISM), their mapping parameters need to be iden-
tified in a similar way [15].

We emphasize that in every iteration of the SM method, only
one evaluation of the fine model (f(x;k))) and one solution of a
minimization in the coarse model (5) are carried out.

C. Manifold Mapping Techniques

Besides the SM approach, where a mapping has to be deter-
mined in the parameter space only, there exists a manifold map-
ping (MM) approach, where an affine mapping is defined in the
response space only. An affine map between two vector spaces
consists of a linear transformation followed by a translation. The
manifold mapping uses the following surrogate model in the kth
iteration [16]:

sta(xp) = £ (x7) + DD (elx) — e (7)) )

where D) is a regular m X m matrix. The iteration x;kH) is
computed the following way:
k+1 . k
XY = arg min [s{Ge) -yl (0)

X. = Xy in the MM algorithm. The algorithm has been suc-
cessfully applied to the design of a linear actuator [16]. The
surrogate model (9) is similar to the surrogate model (8). The
main difference between the SMIS algorithm and the MM algo-
rithm is the use of different update schemes. The D*)-matrices
are evaluated using the responses in the fine and coarse models
in the previous iterations, while the SMIS algorithm uses the
parameter extraction procedure. For a detailed description, see
[13].

We underline again that in every iteration of the MM method,
only one evaluation of the fine model (f (x}k) )) and one solution
of a minimization in the coarse model (10) are carried out.

D. Response and Parameter Mapping

The response and parameter mapping (RPM) algorithm is
based on the SM and the MM approach. The algorithm is based
on the space mapping approach, due to the use of a parameter
mapping function between the parameter spaces of the coarse
and fine model. The RPM algorithm is also based on the re-
sponse correction principle by establishing a surrogate model
with an affine mapping in the response spaces of the coarse and
fine model. The RPM algorithm employs an affine mapping be-
tween the response spaces of the coarse and fine model and em-
ploys an affine mapping between the parameter spaces of the
two models.

The RPM algorithm is built in the following way, by using
the surrogate model:

srpM(x) = S(c(p(x))) an

IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 2, FEBRUARY 2008

Rm

Fig. 3. Diagram of the mappings performed in the RPM method. The time-con-
suming evaluation in the fine model f(x ;) is replaced by the surrogate model

s(xs) = S(c(p(xy)))-

with response mapping function S and parameter mapping func-
tion p. Fig. 3 shows a diagram of the mappings performed in the
RPM algorithm. The space mapping algorithm employs only the
p-mapping (with S the identity mapping), whereas the manifold
mapping algorithm employs only the S-mapping (with p the
identity mapping or a certain constant mapping). The RPM re-
places the time expensive evaluation in the fine model f(x ) by
employing the surrogate (11). In this section, we denote x = X
to simplify the notation. The goal is to obtain the optimal param-
eters x* with S and p being the correctly recovered mapping
functions:

S(e(p(x"))) = £(x7).

We denote S as the response mapping function and we denote p
as the parameter mapping function. We propose to build up the
mapping in the following way:

S(e(p(x))) = £(x7) + D(c(p(x)) — c(p(x7))).

This mapping is similar to (8). When performing this mapping
in an iterative way, we have the following iterative surrogate
model S*) (c(p™®(x))):

12)

13)

£(x) + DP(c(p® () - e(p® (x))).  (14)

For the definition of the parameter mapping function p(*) in the
kth iteration, we start from the following aim:

p(x*) =x* (15)
with
X" = argmin [|e(x) — f(x¥)]|. (16)

We propose the following affine mapping in the parameter space
in the kth iteration

p(k)(x) =x( 4 B(k)(x _ X(k)) (17)
where the parameter value X(*) is defined as follows:
x®) = argmin [lc(x) — f(x®)]|. (18)

We remark that (17) and (18) are similar to (7) and PE-step (5).
Finally, S*)(c(p™®)(x))) is given by

f(x) + DE (% + BH (x — xP)) — c(x®))) (19
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where the update of D®*) and B*) are performed in a similar
way as the MM approach. In the algorithm, we use thus two
different iteration schemes x(*) and X(¥), where x(*) are the
recovered iterations of the response mapping and the parameter
mapping and X(*) are the iterations obtained from the parameter
mapping only.

The main iteration scheme of the RPM algorithm is given by

1) Setk =0, B® =1, and D© = I and compute

x( = arg min |c(x) — y||. (20)
2) Evaluate x(*) in the fine model: f(x(*)).
3) Compute X*) = p*)(x(*))
x*) = arg min |le(x) — £(x)]| (21)

and evaluate c(X(®)). If k = 0, then (¥ = x(©).
4) If & > 0, then build the following parameter mapping

function:

p®(x) =x*® + B®(x — x®). (22)
Compute B®*) in the following way, see also [13]:
B® = AXAXT + (T-UU0) (1-U,U7)  (23)

with the columns of AX and~A§( respectively given by
AX; = xk=D — x(®) and AX; = ) — (k) forj =
1,...,min(m, k). Their singular value decompositions are
respectively AX = U, ¥, UT and AX = U;E};U% . For
k = 0, is the mapping function identity p(®)(x) = x.

5) Compute c¢(p®) (x*=9)) fori = 1,..., min(n, k).

6) If k£ > 0, build the following response mapping function:

$®(c(p™® (x))) =£(x)
+D® (c(p™ (x)) — c(p™ (%)) (24)

where D) ig computed as [13]

D® = AFACT + 1- U, UT)1-U,UT)  (25)
with the columns of AF and AC respectively given by
AF; = f(x*=9)—f(x®)) and AC; = c(p® (xF—9))—
c(x®), for i = 1,...,min(n, k). Their singular value
decompositions are respectively AF = U;X;U% and
AC = U UL Fork = 0, is SO(c(p@(x))) =
f(x(@) + ¢(pV(x)) — e(x?).

7) The next iterand is computed as

x 1) = arg min [|[S® (c(p*) (x))) — | (26)
= arg min ||D(k)(C(P(k)(X))
— c@M)) + £(x®) — y|| 27
or as
XD — argmin [le(p® (x) —y®||  (28)

TABLE 1
OPTIMAL PARAMETERS OF PASSIVE SHIELD

Parameters: | rp (m) ty(m) hp(mm) | K(x) | No. f evals.
Xon 031 052 020 | 2176 4
Xiasy | 029 048 020 | 2161 10
Xirar 029 048 020 | 216.1
XppM 0.29 0.48 0.20 216.1 6

with y(®) = ¢(X®)—[ACAFT +I-U, UT](£(x*))—y).
Equations (26) and (28) are asymptotically equivalent.
8) Set k = k + 1, and go to step 2.

The main differences between the manifold mapping algo-
rithm and the proposed algorithm are the construction of
the parameter mapping function and the use of the X(*) it-
erations. This means the introduction of steps 3, 4, and 5
and the change in the computation of D) and x(*+1)

In every iteration of the RPM method, only one evaluation
of the fine model (step 2 of the algorithm) and two solutions
of a minimization in the coarse model [(21) and (26)] are
carried out.

IV. RESULTS FOR THE OPTIMIZATION OF ACTIVE AND PASSIVE
MAGNETIC SHIELDS

For the excitation current, a sinusoidal excitation current as
high as 4 kA at 1 kHz is used in the simulation, which is nec-
essary to heat the workpiece quickly [17]. The optimization in
the coarse model was performed using the genetic algorithm.
For the ASM algorithm this is the evaluation of (5), for the MM
algorithm this is the evaluation of expression (10) and for the
RPM algorithm this is the evaluation of expressions (21) and
(26). The specifications, i.e., the weighting coefficients w;, of
the cost function K ( - ) when optimizing the passive shields are
given in [12] and when optimizing the passive and active shield
are given in [17]. The computational effort is given by a time
measure on a 2.4-GHz PC configuration.

A. Optimization Using SM

The aggressive space mapping optimization of the passive
shield only was performed in [17]. Only three variables were op-
timized, namely the radial position 7, thickness ?,,, and height
hy of the passive shield. The obtained optimal values x7 gy,
are shown in Table I. When we applied the hybrid aggressive
space mapping method to the optimization problem, we ob-
tained a solution with a lower cost evaluation. More fine model
evaluations were needed for solving the problem. We applied
the gradient-method as direct optimization method in the fine
model. However, when applying ASM for the optimization of
active and passive shields, where eight additional active shield
parameters have to be determined, bad convergence properties
are obtained. Fig. 4 shows the convergence history of the ASM
method. The figure depicts the cost of the fine model response
in every iteration K (f (ng))). The fine model is only evaluated
once in each iteration, namely during the evaluation of (5). We
observe a low reduction in cost at the end of the optimization

process compared to the cost K (f(x%)) evaluated in the first
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Fig. 4. Convergence history of the ASM, RPM, and MM algorithm when op-

timizing the active and passive shields. Here, the cost function K ( - ) of (1) is
considered.
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Fig. 5. Fine model, coarse model, and final surrogate models generated by
ASM, MM, and RPM algorithm. Model responses generated for one variable
parameter: height of passive shield, the other parameters are kept constant.

iteration. Table IIT shows the relative large cost K (x}gy) Ob-
tained through ASM compared to the cost obtained through the
one-level genetic algorithm.

The ASM algorithm has difficulty to converge to the optimal
values, due to the fact that the objective y is not reachable. In-
deed, ASM recovers X¢ from [22]:

arg min [le(x) - £(xp)] = arg_min fe(x) — | 29)
and where it is necessary that there exists a certain x; where
f(xs) =y, for having good convergence properties [13]. When
we added to the objective y a certain value €, we obtained better
optimal solutions. Nevertheless, this is not a suitable way to
solve the problem, because it is never known in advance how
large € must be chosen.

Fig. 5 shows the cost function evaluations of the forward fine
and coarse models and of the surrogate models. This is a cross
section of the cost function surface which makes it possible to
visualize the responses of the several models. The surrogate
model has to approximate the fine model in the best possible
way. The height of the passive shield is varying while the other
parameter are kept constant. The cost of the optimal value of the
surrogate model is at the same height as the cost of the optimal
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-~ MM surrogate cost
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Fig. 6. Surrogate cost of ASM algorithm: Ix"(c(p("')(x(fk)))), surrogate cost
of MM algorithm: K (s{¥), (x(fk+1))) and surrogate cost of RPM algorithm:

KE(s$), (ngl"Jrl))) in every iteration. Here, the cost function K ( - ) of (1) is
considered.

value of the coarse model. The space mapping method makes it
not possible to change the response of the surrogate model, so
that the surrogate model comes closer to the fine model. On the
other hand, the figure shows that the surrogate model is closer
to the fine model than that the coarse model is to the fine model.

Flg 6 deplcts the cost of the surrogate function

AkSM K(c(p(k)(x;k)))) in every iteration. We
observe that the cost does not go below a certain value. This is
due to the fact that ASM does not apply response correctlon
so that the surrogate model SXQM( ) # f ( ) can not
be corrected in every iteration. The obtalned optlmal value of
the ASM surrogate model is not close to the optimal value of
the fine model, due to the fact that the approximation of the
surrogate model to the fine model is not close enough.

When we applied the SMIS algorithm to the optimization
problem, problems occurred regarding the identification of the
mapping parameters a(*), B(*) P(¥) The large set of mapping
parameters was hard to find. We applied the surface fitting pa-
rameter extraction approach, presented in [14], for the iden-
tification of the parameters. This procedure needs the evalua-
tion of the calculated Jacobian matrices in the fine model. Ap-
plying this procedure turned out to be very time-consuming in
the case of optimization of magnetic shielding. Further, non-
uniqueness problems occurred for the identification of the map-
ping parameters. The same was observed when applying the
GISM algorithm.

B. Optimization Using MM

When applying MM to the optimization problem of active
and passive shielding, better convergence properties are yielded.
This is shown in Fig. 4. Table II shows the needed CPU-time for
the optimization of the passive shield. The implementation of
the two-level algorithm yields a huge decrease in needed com-
putational time. Response correction is not really needed in the
case of passive shielding. However, when more parameters need
to be optimized, response correction is needed. The MM surro-
gate model is a far better approximation of the fine model than
the ASM surrogate model. Fig. 5 shows this graphically. The
computational time needed was (approximately 10 times) more
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TABLE II
NEEDED CPU-TIME FOR OPTIMIZING THE PASSIVE SHIELD ONLY

CPU-time
Genetic Algorithm ~2h
ASM 14 min
MM 19 min
RPM 26 min

computationally efficient in comparison with the genetic algo-
rithm. See Table III for a comparison of the computational cost
and the final cost K ( -) between the several algorithms.

It was necessary to perform regularization during the MM
optimization procedure for AF, so that the response mapping
was stabilized. Indeed, in some iterations, y(k)-values became
negative and the |B|-values of the surrogate response vectors
have to be positive. We applied the technique groposed in [13],
where AFT = U 1UT is replaced by AF, = U, (2] +
/\JAFI)U:]C - oaF 1 the largest singular value of AF and 0 <
A < 1is a trust region parameter. The optimal design resulting
from this algorithm was not the same as the one resulting from
the genetic algorithm and we observed a higher cost.

Flg 6 shows that the cost of the surrogate model
K sl\lzl)w(x;kﬂ))), when evaluating (10) in every iteration,
goes far below the cost of the surrogate model of the ASM
algorithm. This is due to the implementation of the response

correction, which implies Sl(\/[l)\/l( (k)) =f (x;k)).

C. Optimization Using RPM

The parameter mapping in the RPM algorithm, takes simulta-
neously place with the response mapping. The algorithm applies
a response mapping and parameter mapping where the several
mapping parameters do not have to be evaluated using the diffi-
cult parameter extraction step.

Table I shows that the same optimal values are obtained as
the ones obtained from the HASM and MM algorithm, when
solving the optimization problem of the passive shield only. We
remark that more coarse model evaluations are needed in the
RPM algorithm due to the fact that steps 3 and 5 of the algo-
rithm need additional coarse model evaluations compared to the
MM algorithm. Table II shows that more computational time is
needed for solving the optimization problem using the RPM al-
gorithm. This is due to the fact that in every iteration two so-
lutions of a minimization in the coarse model are needed while
the SM and MM algorithm only need one optimization in the
coarse model.

Fig. 4 illustrates the convergence history for the optimization
of active and passive shields. The computational time needed
was larger than the MM algorithm (about 1.4 times larger, see
Table III), due to the additional optimizations in the coarse
model. A lower cost was obtained at the end of the optimization,
compared to the MM algorithm and the result was close to the
optimal values resulting from the genetic algorithm. However,
it is difficult to prove that the RPM algorithm recovers a global
optimum for any test case. Indeed, in case that the coarse model
is too coarse, the convergence may be questionable. Further
research should be concentrated on that issue.

TABLE III
NEEDED CPU-TIME AND COST FOR OPTIMIZING THE ACTIVE
AND PASSIVE SHIELD

CPU-time K(x)
Genetic Algorithm 170 h 5-103
ASM 16h 26-103
MM 17h 11-103
RPM 23h 5.7-103

We have the following remarks regarding the implementation
of the RPM algorithm. A regularization was performed for AX
in order to stabilize the parameter mapping. Indeed, AXT =
U~ETUT was replaced by AX:rog = U~(Ei + Aoy UL
where a~ is the largest singular value of AX. The trust reg1on
parameter \is important for letting p(*) (x) € X..Aregulariza-
tion was also performed on the fine model space as we applied
it in the MM algorithm.
Flg shows the cost of the surrogate model
K (SIQ.M (x fk+1))) when evaluating (26) in every itera-
tion. It is shown that sgpy goes faster to the optimal cost,
compared to the sy model. This is due to the fact that
srpm(X7) approximates f(xs) in a better way, as graphically
shown on Fig. 5, than that sypy(x¢) approximates f(x ).

The SM and MM algorithm, which is working properly for
the passive shield optimization, works also for the RPM algo-
rithm although more CPU-time is needed when using the RPM
algorithm. The passive and active optimization using the MM
algorithm is working rather good but is working better using the
RPM algorithm. This is due to the fact that the coarse and fine
model are severally misaligned and a more general surrogate
model is needed, as illustrated by Figs. 5 and 6. The RPM al-
gorithm is suitable for optimization problems where the coarse
and fine model differ importantly.

V. CONCLUSION

We optimized active and passive shields using two-level op-
timization methods. We applied space mapping, manifold map-
ping, and the novel response and parameter mapping onto the
optimization problem. Good convergence properties were ob-
served regarding the RPM algorithm, particularly due to the
fact that the generated surrogate model approximates in a much
better way the fine model than the surrogate models of the ASM
and MM algorithm.
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