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Fig. 2. V versus r for a uranium nucleus (4 =238, Z = 92), using
& = 0.1 #c. Solid curve: z = 0; dashed curve: z = 1.

expected to be well described by the present spherically
symmetric continuum model. ,

According to Eq. (3), the radii of the “*Ca and 2**U
nuclei are 4.17 and 7.56 fm, respectively. But it can be
observed from Fig. 2, for example, that ¥ reaches its maxi-
mum value beyond the nuclear surface because the nuclear
force used here has a finite range A. The position of the
maximum can be obtained simply if one wishes to compute
it.

II1. CONCLUDING REMARKS

The Yukawa model has been used to calculate the net
potential of a nucleus. The specific cases presented in Figs.
1 and 2 indicate that the Coulomb term becomes important
in heavy nuclei, as expected. The resulting picture of the
net nuclear potential is significantly different from the
square well plus Coulomb tail approach that is often given
in textbooks.®” Yet it is consistent with the conventional
Woods—Saxon shapes which are often used in the research
literature.® Finally, note that the maximum of the nuclear-
Coulomb potential occurs at values of » that are larger
than the nuclear radius in heavy nuclear. This is because
the nuclear force does not fall off to zero immediately at
r = R, as assumed in simple square-well models.
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Koo and Liew' have used matrix methods to calculate
the time derivatives of unit vectors in orthogonal curvilin-
ear coordinate systems as an alternative to the algebraic
derivations presented in standard textbooks.”” We would
like to point out that a simple geometric derivation of the
same transformation equations exists which is fully equiva-
lent to both matrix and algebraic derivations but which, in
the author’s experience, is more transparent and appealing
to beginning physics students. Since this geometric deriva-
tion is not given in standard textbooks,® a brief outline of
the derivation will be presented here for the case of cylin-
drical polar and spherical polar coordinate systems along
with a short discussion of possible extensions of the deriva-
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tion to other less common coordinate systems.

The possibility of a geometric derivation of the time de-
rivatives of unit vectors is based on the fact that any linear
change in the unit vectors, such as the time derivative, can
always be expressed as a simple rotation’ of the unit vector
triad in three-dimensional space since only the orientation
(but not the amplitude) of the individual orthogonal unit
vectors can change in time.®® A two-line derivation of the
time derivative of the unit vectors follows immediately
from a knowledge of the angular velocity associated with
the rotation of the unit vector triad.

More specifically, for the case of cylindrical polar co-
ordinates, any instantaneous change in the unit vector triad
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Fig. 1. (a) Here, p, ¢, and z denote cylindrical polar coordinates and the
corresponding unit vectors p, 43, and 2, respectively. (b) Here, 7,  and ¢
denote spherical polar coordinates and the cooresponding unit vectors 7,
6, and ¢, respectlvely The cylindrical polar vector p lies in the same plane
as Fand 8.

i :;5, #in time can be described in terms of a simple rotation
of the unit vector triad about the z axis at the angular veloc-
ity o [see Fig. 1(a)]'® where

- (ﬁ)z (1)

so that the time derivatives desired will be given immedi-
ately by:!!

dt X g & dt
The well-known transformation equations for the time de-
rivatives of cylindrical polar unit vectors then follow di-
rectly by straight forward inspection of the vector products

in Eq. (2):

D_(B)y; 2 (L) Z<0.  ®
dt dt dt dt dt

Analogously, for spherical polar coordinates, any instanta-
neous change in the unit vector triad (#,6,4) in time can be
represented [see Fig. 1(a)]'? as a simple rotation of the
spherical polar unit vector triad about the 2 and ¢ axes at
the angular frequency o given by

() (2

so that the time derivatives of spherical polar unit vectors
will be given immediately by:'*
d? . do . d¢
dt dt
The standard transformation equatlons for the time deriva-
tives of spherical polar unit vectors then follow directly by
straightforward inspection of the vector products in Eq.
(5):

% = (%)@H— (d¢ sin 9)¢

Sy Bmcp

= 0X¢; (5
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%‘%-: (d¢s1n0) (%cos&)@,

where we have used the fact that the unit vector Zin Eq. (4)
can by simple geometry [see Fig. 1(b)] be rewritten as

%= (cos 8)% — (sin 9)8. 7N

For other less well-known coordinate systems, it is not pos-
sible to write down the angular velocity associated with the
rotation of the unit vector triad by simple inspection of the
relevant orthogonal coordinate variables alone. Math-
ematical expressions for the angular velocity in terms of the
relevant coordinate variables can be derived but such
mathematical calculations greatly reduce the pedagogical
advantage of a direct geometric derivation compared to
standard algebraic or matrix derivations of the time deriva-
tives. For such less common coordinate systems, the sim-
plest geometric approach is probably that of Koo and
Liew' where the rotation of the unit vector triad as a func-
tion of the coordinate variables is expressed in terms of
cylindrical polar or spherical polar coordinate variables, ¢
or 6, which are then substituted into the standard transfor-
mation equations [Egs. (3) and (6)] already derived for
cylindrical polar and spherical polar coordinate systems,
respectively.
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"%Changes in the cylindrical polar variables p and z will not affect the
orientation of the (p,¢ 2) vector triad.

Y'Equations (2) and (5) for the time derivatives of a vector of constant
amplitude rotation at the angular velocity e are given in standard intro-
ductory texts (e.g., Refs. 2-5) and are readily denved and/or accepted
by beginning physics students.

Changgs in the spherical polar variable » will not affect the orientation of
the (F,@,&) vector triad.
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