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113(1988) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 2,113—121 

TWO LOCAL PROPERTIES OF GRAPHS 

BOHDAN ZELINKA, Liberec 

(Received June 21, 1984 (Part 1), November 3, 1985 (Part 2) 

Summary. For a graph G and its vertex v the symbol NG(v) denotes the subgraph of G induced 
by the set of all vertices which are adjacent to v in G. We say that a graph G has locally the 
property P, if NG(v) has the property P for each v. Two local properties are studied: the local 
disconnectedness (NG(v) is disconnected for each v) and the local cyclicity (NG(v) is a circuit 
for each v). 

Keywords: Locally disconnected graph, locally cyclic graph. 

AMS classification: 05C40, 05C38. 

Lately, various local properties of graphs have been studied by various authors. 
The first impulse was the problem of A. A. Zykov at the symposium on the graph 
theory in Smolenice in 1963 [1]. A survey on this topic is given in the paper [2] 
by J. Sedlacek. 

Let G be an undirected graph, let v be its vertex. The symbol NG(v) denotes the 
subgraph of G induced by the set of all vertices which are adjacent to v. L. Szam-
kolowicz [3] suggested to study graphs G in which NG(v) for each vertex v belongs 
to a given class K of graphs. In particular, he mentioned the case when K is the class 
of all circuits. This case will be studied in the second part of this paper; the first 
concerns the case when K is the class of all disconnected graphs. 

1. LOCAL DISCONNECTEDNESS 

We say that a graph G is locally disconnected, if for each vertex v of G the graph 
NG(v) is disconnected. 

Theorem 1. Let G be a finite planar locally disconnected graph, let n be its 
number of vertices, n ^ 4. Then the number of edges of G is at most \n — 6. 

Remark. For n ^ 3 locally disconnected graphs with n vertices do not exist; 
the proof of this assertion is left to the reader. 

Proof. Consider a representation of G in the plane; then the faces of this repre
sentation will be called faces of G. The symbols n, m,f, t will denote the numbers 
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of vertices, edges, faces and triangular faces, respectively. Let v be a vertex of G. 
If all faces of G incident with v except at most one were triangular, then NG(v) would 
have a Hamiltonian path (the edges of this path are the edges of those triangulars 
faces which are opposite to v) and therefore it would be connected. Hence, as G 
is locally disconnected, each vertex v is incident with at least two non-triangular 
faces. If S(v) is the degree oft; in G, then the number of all faces incident with v is S(v) 
and the number of the triangular ones is at most d(v) — 2. As each triangular face 
is incident with three vertices, the total number of triangular faces of G is at most 

i I (s(v) - 2\ We have 

veV(G) 

i I (8(v) - 2) = i £ (50) - in . 
veV(G) veV(G) 

As i Z Kv) = m > we have 

veV(G) 

t = i(m-n). 

From Euler's Formula we have 

/ = 2 — n + m . 

The number of non-triangular faces of G i s / — t and we have 

(1) f - t = 2 - n + m - f (m - n) = 2 - %n + Jm . 

At each non-triangular face we may choose two non-adjacent vertices which are 
both incident with this face, and join them by an edge (a diagonal of the face); the 
resulting graph is also planar. Hence we may a d d / — t edges to G without violating 
its planarity. The resulting graph has n vertices and m + / — t edges. The upper 
bound for the number of edges of a planar graph with n vertices is 3n — 6, hence 

m + / - t = 3/i - 6 . 

On the other hand, (l) yields 

m + / - t = 2 - in + fm . 

These two inequalities imply 
2 - i" + t m = 3w - 6 , 

which yields 

m = \n — 6, 
which was to be proved. • 

The following theorem will show that this upper bound cannot be improved. 

Theorem 2. Let n be an even positive integer, n = 8. Then there exists a planar 
locally disconnected graph with n vertices and | n — 6 edges. 

Proof. If n = 8 and n = 2 (mod 6), there exists a positive integer k such that 
n = 6k + 2. Let V(G) = {v(ij) \ 1 = i = k, 1 = j = 6} u {x, y). If for two vertices 
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uO'i>Ii)> v(hJi) we have either it = i2, ^ - j 2 | = 1 (mod 6), or (ij - i2 | = 1, 
Ii = I2> then these two vertices are adjacent in G. Further, if i — j is even and 
/ < fc, then v(i9j) is adjacent to v(i + 1, j + 1), where the sum; + 1 is taken modulo 
6. Finally, the vertex x is adjacent to the vertices v(\9 2), i?(l, 3), v(i9 5), v(l9 6) and 
the vertex y is adjacent to the vertices v(k9 2), v(k9 3), v(k9 5), u(fc, 6). This graph G 
has the required properties. 

If n = 4 (mod 6), we construct a graph G' with n — 2 vertices which has the 
required properties, and choose a face of G' with four vertices. Into that face we add 
two vertices and five edges as is shown in Fig. 1. The graph G thus obtained has the 
required properties. If n = 0 (mod 6), we construct a graph G' with n — 4 vertices 
and with the required properties, and choose again a face of G' with four vertices. 
Into that face we add four vertices and ten edges as is shown in Fig. 2. The graph G 
thus obtained has again the required properties. • 

Fig. 1 

Fig. 2 

For n odd the number frc — 6 is not an integei, therefore there exists no graph 
with this number of edges. Nonetheless, there exists a graph with n vertices and 
[jrc] — 6 edges. It suffices to construct a graph with n — 1 vertices and f (M — 1) — 6 
edges according to the proof of Theorem 2 and to add one vertex and two edges into 
a face with four vertices as is shown in Fig. 3. 

Fig. 3 
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In Fig. 4 we see an example of a graph from Theorem 2 for n = 26. Instead of 
v(i9j) we write shortly ij. 

We will study properties of locally cyclic graphs. 

2. LOCAL CYCLICITY 

If NG(v) is a circuit for each vertex v of a graph G, the graph G is called locally 
cyclic. 

The idea to study such graphs comes from [3]. 

Theorem 3. Let G be a finite undirected graph. Then the following two assertions 
are equivalent: 

(i) G is locally cyclic. 
(ii) Each edge of G is contained in exactly two triangles and there are no two 

distinct wheels in G with a common centre. 

Proof, (i) => (ii). Let e be an edge of G, let M, V be its end vertices. Thus v is a vertex 
of NG(u). As NG(u) is a circuit, there exist exactly two vertices x and y ofNG(u) which 
are adjacent to v. The sets {M, V, X}, {M, V, y} induce two triangles in G which contain e. 
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There exists no other triangle with this property; otherwise v would have a degree 
greater than 2 in NG(w) and NG(w) would not be a circuit. If there were two distinct 
wheels in G with a common centre w, then NG(w) would contain two distinct circuits 
and G would not be locally cyclic. 

(ii) => (i). Let w be a vertex of G. If v is a vertex of NG(w), then uv is an edge of G. 
This edge belongs to exactly two triangles in G, therefore the degre of v in NG(w) is 2. 
As v was chosen arbitrarily, the graph NG(w)is regular of degree 2. If NG(w) contained 
two distinct circuits, then G would contain two distinct wheels with the common 
centre w. Therefore NG(w) is a circuit. As w was chosen arbitrarily, G is locally 
cyclic. • 

This assertion enables us to generalize in a certain sense the concept of the dual 
graph of a planar graph. 

Let G be a finite connected locally cyclic graph. We assign a certain graph D(G) 
to it. The vertex set of D(G) is the set of all triangles in G. Two vertices of D(G) are 
adjacent if and only if they have an edge in common (as triangles). The graph D(G) 
will be called the dual graph to G. 

Let D be the class of finite connected graphs with the following properties: 
(a) Each graph from D is regular of degree 3. 
(b) In each graph H from £> there exists a system # of circuits in H such that any 

two of them have at most one edge in common and each edge of H is contained in 
exactly two circuits of (€. 

(c) If three circuits of # have the property that any two of them have a common 
edge, then all three have a common vertex. 

Theorem 4. Let G be a finite connected locally cyclic graph. Then its dual graph 
D(G) e D. 

Proof. Each triangle in G has three edges and thus it has common edges with 
exactly three other triangles and (a) holds. Now for each vertex w of G let C(w) 
be the subgraph of D(G) induced by the set of all vertices corresponding to triangles 
of G which contain w; it is evidently a circuit. By C let us denote the set of all C(w) 
for vertices w of G. If w, v are two adjacent vertices of G, then there exist exactly 
two triangles in G containing both w and v (and obviously also the edge uv). These 
triangles form a pair of adjacent vertices in D(G). The edge joining them is the 
unique common edge of C(w) and C(v) in D(G). If w and v are not adjacent in Gy 

then there is no triangle in G containing both w and v and the circuits C(w) and C(v) 
are edge-disjoint. Now let e be an edge of D(G), let its end vertices be x and y. These 
two vertices are triangles in G with a common edgef. Let a and b be the end vertices 
off in G. Then e is a common edge of C(a) and C(b), and (b) holds. Now let C l9 C2, 
C3 be three circuits of C and let any two of them have a common edge. Let ci9 c2, c3 

be vertices of G such that Cx = C(cx), C2 = C(c2), C3 = C(c3). Then any two of 
the vertices c1,c2,c3 are adjacent and thus the set {ct,c2,c3} induces a triangle 
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in G. Let x be the vertex of D(G) corresponding to this triangle; then x is the common 
vertex of Ci9 C2 and C3 and (c) holds. 

Theorem 5. Let H be a graph contained in D. Then there exists a finite connected 
locally cyclic graph G such that D(G) ^ H. 

Proof. Let ^ be a system of circuits in H satisfying (b) and (c). We shall construct 
the graph G. The vertex set of G is # ; two vertices are adjacent in G if and only if 
they have a common edge (as circuits in H). The graph H is regular of degree 3 and 
therefore for each vertex u of H there exist exactly three circuits of %? containing u. 
Any two of them are adjacent and thus they form a triangle T(w) in G. Hence to 
each vertex u of H a certain triangle T(u) in G is assigned. Two triangles T(w), T(v) 
have a common edge if and only if u and v are adjacent in H. Now let Tbe a triangle 
in G, let w, v, w be its vertices. These three vertices are circuits of H with the property 
that any two of them have a common edge. According to (c) there exists a vertex u 
of G contained in all three circuits; evidently T(w) = T. Hence we have a one-to-one 
correspondence between the vertices of H and the triangles of G with the property 
that two vertices of H are adjacent if and only if the corresponding triangles of G 
have a common edge; this implies D(G) ^ H. 

Now we recall the concept of an independent system of circuits in a graph. Let G 
be a graph, let SP be a certain set of subgraphs of G. Then the composition of graphs 
from SP is a subgraph of G whose edge set consists of all edges e with the property 
that the number of graphs from SP containing e is odd, and whose vertex set is the 
set of the end vertices of these edges. If SP is a system of circuits in G with the property 
that no circuit CeSP is the composition of circuits from a subset of Sf — {C}, the 
system SP is called independent. The maximum number of independent circuits in 
a graph G is called the cyclomatic number of G and denoted by c(G). The equality 
c(G) — m — n + p holds, where m, n, p are respectively the numbers of edges, 
vertices and connected components of G. 

Theorem 6. Let H e D , let <& be a system of circuits from the definition of D. 
Let C0 be an arbitrary circuit of <S. Then <8 — {C0} is an independent system 
of circuits in H. 

Proof. Let C e ^ - {C0}. Suppose there exists a subset # ' c <g — {C0} such that 
the composition of all circuits of # ' is C. Then the composition of # ' u {C} is the 
empty graph and thus any edge of H is in an even number of circuits of # ' u {C}. 
As «" u {C} £ # , this number is 0 or 2. If «" u {C} = # - {C0}, then we have 
a contradiction, because any edge of C0 lies exactly in one circuit of this set. If 
<8" u {C} is a proper subset of ^ — {C0}, then there exists a circuit C± belonging 
to ^ — {C0} and not belonging to # ' u {C}, and having a common edge with 
a circuit of # ' u {C}. Then this common edge is contained in exactly one circuit 
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of <€' u {C}, which is again a contradiction. Hence the system # — {C0} is in
dependent. 

Theorem 7. Let G be a finite connected locally cyclic graph with n vertices and m 
edges. Let D(G) have n' vertices and m! edges. Then 

ri = fm , 
m' = m , 

m ^ 3n — 6 . 

Proof. The number n' of vertices of D(G) is equal to the number of triangles in G. 
If u is a vertex of G and d(u) its degree, it follows from Theorem 1 that the number 
of triangles containing u is equal to d(u). As each triangle has three vertices, we have 

n' = i E 4u) . 
ueV(G) 

On the other hand, 
m = i Z <*(M); 

UGV(G) 

this implies 

n' = f m . 

Now we define a mapping <p of the edge set E(G) of G onto the edge set E(D(G)) 
of D(G). Let eeF(G). Then e is contained in exactly two triangles; these triangles 
are adjacent vertices of D(G). The edge of D(G) joining these vertices will be cp(e). 
It is easy to prove that the mapping cp is a one-to-one mapping of E(G) onto E(D(G)) 
and thus 

mf = m . 

The number n of vertices of G is equal to the number of circuits in # . Theorem 4 
implies 

/i - 1 = c(D(G)) = m' - n' + 1 . 

If we substitute n' = f m, m' = m, we obtain 

n— 1—^m — f m - 1 - 1 , 

which implies 

m = 3/i — 6 . 

Theorem 8. Let H e D, Ze£ ̂  be the system of circuits from the definition of D. 
Lei* Ce^. Then the edge set of C is not an edge cut of H. 

Proof. Suppose that the vertex set of C is an edge cut of H. The graph H' obtained 
from H by deleting the edges of C is disconnected. There exist two adjacent vertices 
ul9 u2 of C which lie in distinct connected components of H'. Let ex (or e2) be the 
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edge of H not belonging to C and incident to ux (or u2, respectively). Let e be the 
edge joining ut and u2. Let C0 be the (uniquely determined) circuit of ^ which has 
the common edge e with C. As C0 cannot have more than one common edge with C, 
it must contain et and e2. Let P be the path obtained from C0 by deleting e. Then P 
is a path in H connecting the vertices ul9 u2 from distinct connected components 
ofHf. Thus it must contain an edge e0 of C distinct from e. The edges e, e0 are distinct 
common edges of C and C0, which is a contradiction. 

The results which were presented here enable us to construct locally cyclic graphs, 
outgoing from their dual graphs. If we find a graph H e D, we can construct the 
locally cyclic graph whose dual graph is H. 

In the end we prove a theorem showing a recurrent method of constructing graphs 
from D. 

Theorem 9. Let H0 e D. Choose a circuit C e ^ and two edges el9 e2 of C. Replace 
the edge ex (or e2) by a path of the length 2 with the inner vertex ux (or u2, respec
tively). Join ux and u2 by an edge. The graph thus constructed belongs to £>. 

Proof. By this transformation the circuit C is replaced by two new circuits C l 5 C2 

with the common edge uiu2. It is easy to prove that the new graph is again regular 
of degree 3 and that the set (# - {C}) u {C1? C2} satisfies (b) and (c). 

In Fig. 5 we see a graph which satisfies (a) and (b), but not (c). Any two of the 
circuits Cl9 C2, C3 have a common edge, but there is no vertex belonging to all 
three. 
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Souhrn 

DVĚ LOKÁLNÍ VLASTNOSTI GRAFŮ 

BOHDAN ZELINKA 

Symbolem NG(v) se označuje podgraf grafu G indukovaný množinou uzlů spojených hranami 
s uzlem v. Je-li NG(v) nesouvislý graf pro každý uzel v, graf G se nazývá lokálně nesouvislý. Je-li 
NG(v) kružnice pro každý uzel v, graf G se nazývá lokálně cyklický. Zkoumají se lokálně nesou
vislé grafy a lokálně cyklické grafy. 
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Peзюмe 

ДBA ЛOKAЛЬHЫX CBOЙCTBA ГPAФOB 

BOHDAN ZELINКA 

Пycть NG(v) oбoзнaчaeт пoдгpaф гpaфa G, пopoждèнный мнoжecтвoм вepшин cмeжныx 
c вepшинoй v. Гpaф G нaзывaeтcя лoкaльнo нecвязным, ecли гpaф NG(v) нecвязeн для кaждoй 
eгo вepшины v, и лoкaльнo iгjнкличecким, ecли NG(v) являeтcя кoнтypoм для кaждoй eгo вep-
шины v. B cтaтьe изyчaютcя лoкaльнo нecвязныe и лoкaльнo цикличecкиe гpaфы. 
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