1' frontiers

in Plant Science

ORIGINAL RESEARCH
published: 25 October 2019
doi: 10.3389/fpls.2019.01341

OPEN ACCESS

Edited by:
Lara Giongo,
Fondazione Edmund Mach, Italy

Reviewed by:

Tae Kyung Hyun,

Chungbuk National University,
South Korea

Maria Manuela Rigano,
University of Naples Federico I,
Italy

*Correspondence:
Toshi M. Foster
Toshi.Foster@plantandfood.co.nz

Specialty section:

This article was submitted to
Crop and Product Physiology,
a section of the journal
Frontiers in Plant Science

Received: 11 June 2019
Accepted: 26 September 2019
Published: 25 October 2019

Citation:

Jibran R, Spencer J, Fernandez G,
Monfort A, Mnejja M, Dzierzon H,
Tahir J, Davies K, Chagné D and
Foster TM (2019) Two Loci, RIAF3
and RiAF4, Contribute to the
Annual-Fruiting Trait in Rubus.
Front. Plant Sci. 10:1341.

doi: 10.3389/fpls.2019.01341

Check for
updates

Two Loci, RiIAF3 and RiAF4,
Contribute to the Annual-Fruiting
Trait in Rubus

Rubina Jibran', Jessica Spencer?, Gina Fernandez?, Amparo Monfort3+,
Mourad Mnejja®*, Helge Dzierzon’, Jibran Tahir', Kevin Davies’, David Chagné’ and
Toshi M. Foster™

"The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New
Zealand, 2 Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States, °IRTA (Institut
de Recerca | Tecnologia Agroalimentaries), Barcelona, Spain, 4 Centre for Research in Agricultural Genomics (CRAG) CSIC-
IRTA-UAB-UB, Barcelona, Spain

Most Rubus species have a biennial cycle of flowering and fruiting with an intervening
period of winter dormancy, in common with many perennial fruit crops. Annual-fruiting
(AF) varieties of raspberry (Rubus idaeus and Rubus occidentalis L.) and blackberry
(Rubus subgenus Rubus) are able to flower and fruit in one growing season, without
the intervening dormant period normally required in biennial-fruiting (BF) varieties. We
used a red raspberry (R. idaeus) population segregating for AF obtained from a cross
between NC493 and ‘Chilliwack’ to identify genetic factors controlling AF. Genotyping by
sequencing (GBS) was used to generate saturated linkage maps in both parents. Trait
mapping in this population indicated that AF is controlled by two newly identified loci
(RIAF3 and RiAF4) located on Rubus linkage groups (LGs) 3 and 4. The location of these
loci was analyzed using single-nucleotide polymorphism (SNP) markers on independent
red raspberry and blackberry populations segregating for the AF trait. This confirmed that
AF in Rubus is regulated by loci on LG 3 and 4, in addition to a previously reported locus
on LG 7. Comparative RNAseq analysis at the time of floral bud differentiation in an AF
and a BF variety revealed candidate genes potentially regulating the trait.

Keywords: marker-assisted selection, primocane, floricane, comparative mapping, RNA sequencing,
annual-fruiting, biennial-fruiting

INTRODUCTION

The Rosoideae subfamily of Rosaceae contains many economically important soft berry crops,
including red and black raspberry (Rubus idaeus and Rubus occidentalis L. respectively), blackberry
(Rubus subgenus Rubus) and strawberry (Fragaria species), which are renowned for their taste and
health properties (Potter et al., 2007; Hummer and Janick, 2009; Shi et al., 2013; Simpson, 2018).
Raspberry (Rubus sp.) is a shrub that initiates shoots (canes) from a perennial root system (Keep,
1988; Carew et al., 2000; Sensteby and Heide, 2009; Heide et al., 2013; Graham and Simpson, 2018).
Biennial-fruiting (BF) raspberry varieties (also called floricane-fruiting or summer-fruiting) initiate
axillary floral buds toward autumn of the first year of growth, but these do not develop into fruit
until spring/summer of the following year. Annual-fruiting (AF) varieties (also called primocane-
fruiting or autumn-fruiting) initiate flowers in late spring/early summer that develop into fruit from
summer until late autumn of the same year. In both AF and BF varieties, flowering and fruiting
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initiate from the shoot tip and develop basipetally after vegetative
growth has stopped. The key developmental difference between
the two flowering phenologies is that AF floral buds are initiated
earlier and progress directly to fruit set, whereas floral initiation
is normally followed by dormancy in BF types (Keep, 1988;
Carew et al., 2000; Sensteby and Heide, 2009; Heide et al., 2013).
Flowering time is controlled by complex interactions among
endogenous factors, such as developmental pathways and
hormones, as well as environmental cues, such as temperature
and day length (Simpson and Dean, 2002; Song et al., 2018; Tabas-
Madrid et al., 2018; Kinmonth-Schultz et al., 2019; Kozlov et al,,
2019). A number of genes that integrate specific signals and either
repress or activate flowering have been identified and characterized
in model species, such as Arabidopsis and Antirrhinum (Simpson
and Dean, 2002; Wigge et al., 2005; Khan et al., 2014; Blumel
et al, 2015; Sasaki et al, 2015). Among these, CONSTANS
(CO), FLOWERING LOCUS T (FT), SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS 1 (SOC1), FLOWERING
LOCUS C (FLC), AGAMOUSI1 (AG1), and LEAFY (LFY) are
the best characterized flowering integrators (Yanofsky et al., 1990;
Blazquez et al., 1997; Kardailsky et al., 1999; Kobayashi et al., 1999;
Michaels and Amasino, 1999; Yoo et al., 2007; Deng et al., 2011;
Pin and Nilsson, 2012; Song et al., 2018; Tabas-Madrid et al., 2018).
For example, CO activates flowering under long days in both
FLC-dependent and independent manners by activating flower
promoters FT'and SOCI (Kim et al., 2008; Michaels and Amasino,
2001). FLC regulates floral transition by repressing the key genes of
flowering pathway, for example, FT and SOCI (Simpson and Dean,
2002; Crevillen and Dean, 2011). FLC antagonizes the flowering
pathway in a dose-dependent manner, with FLC abundance being
regulated by an interplay between epigenetic factors and RNA-
processing factors, such as polyadenylation and splicing (Simpson,
2004). Recently, it was shown that CO accelerates flowering under
long days but represses flowering under very short days (3 hours
light) by regulating FT expression (Luccioni et al., 2019).
Although there is little information on the genes controlling
flowering in raspberry, more is known about the environmental
cues that stimulate flowering. For example, floral induction in BF
varieties is triggered by a combination of decreased temperatures
and shorter photoperiod (Fejer and Spangelo, 1974; Dale
and Daubeny, 1987; Carew et al., 2000; Sensteby and Heide,
2009; Hodnefjell et al.,, 2018). Although there is no absolute
requirement for AF varieties to experience chilling in the prior
season to initiate flowering, as newly initiated canes can progress
through fruiting in a single season, the expression of AF in terms
of floral consistency across canes and the total number of flowers
is strongly influenced by chilling (Sensteby and Heide, 2009).
Modern AF varieties of red and black raspberry have complex
pedigrees because of interspecific hybridization with other
Rubus species during their development, including R. arcticus,
R. odoratus, and R. spectabilis (Keep, 1988; Lewers et al., 2005;
Dossett et al., 2012). Many studies have been conducted to study
the genetic inheritance of AF in raspberry and blackberry, along
with an analogous continuous flowering trait in strawberry.
Continuous or perpetual flowering in commercial strawberry
(Fragaria x ananassa) is controlled by quantitative trait loci
(QTLs) on linkage groups (LGs) 3, 4, and 7 (Gaston et al,,

2013; Perrotte et al., 2016; Hackett et al., 2018), whereas AF in
blackberry and red raspberry was suggested to be controlled by
a recessive monogenic trait (Lewis, 1939; Haskell, 1960; Lopez-
Medina et al., 2000). Castro et al. (2013) reported that in auto-
tetraploid blackberry, this recessive locus was located on LG7.

Lewis (1939) demonstrated that the AF trait is controlled by a
single recessive locus, later named “af” (Haskell, 1960). However,
trait segregation analysis performed on various AF populations
suggested an alternative possibility of multiple loci having minor
effects on the expression of AF (Slate, 1940; Waldo and Darrow,
1941; Oberle and Moore, 1952; Ourecky, 1976; Fejer, 1977;
Barrientos and Rodriguez, 1980). For example, Barrientos and
Rodriguez (1980) suggested the possibility of partial dominance for
the AF cultivar ‘Malling Exploit’ Similarly, Fejer (1977) reported
that inheritance of AF in mapping populations raised from a
series of diallelic crosses among seven red raspberry cultivars was
predominately additive and proposed that the genetic control for
the trait could not be recessive. Thus, the genetic regulation of AF
in raspberry is still unclear.

To address this issue, we constructed saturated linkage maps
for the AF accession NC493 and the BF cultivar ‘Chilliwack’ to
map genetic loci associated with control of AF. Trait mapping
in this population indicated that AF is controlled by two newly
identified loci (RiAF3 and RiAF4) located on Rubus LGs 3 and
4. The location of these loci was verified in independent red
raspberry and blackberry populations segregating for AF In
addition, we compared the transcriptomes of AF and BF axillary
buds to identify candidate genes involved with the transcriptional
regulation of the AF trait.

MATERIALS AND METHODS

Plant Material and Assessment of

Fruiting Phenotype

A segregating population of 131 F, individuals was developed from
a controlled cross made in 2004 between AF accession NC493
(R. parvifolius x R. idaeus ‘Cherokee’) and BF ‘Chilliwack’ (CW)
(R. idaeus). The seedling population was planted in 2006 at the
Sandhills Research Station, Jackson Springs, NC, USA. In 2008,
the 131 NC493 x CW progeny were assessed biweekly from July
to September for the presence or absence of AF by determining
whether flowers or fruits were present on the primocanes (canes
initiated that season). The population was again evaluated in 2009
for AF on a weekly to biweekly basis from June to August, except
for two individuals that died over the winter.

Three families of red raspberry (R. idaeus), x16.093, x16.109,
and x16.111 of 47, 55, and 49 individuals, respectively, were
developed from controlled crosses between AF and BF parents
within the Plant & Food Research (PFR) breeding program and
planted in 2017 at the PFR site located at Motueka, New Zealand.
These populations were phenotyped for the presence of AF in 2018.

A tetraploid blackberry (R. subgenus Rubus) mapping population
(C1) was generated from a cross between BF RM44 and AF RM63
from the IRTA-PLANASA breeding program. The population was
planted in 2015 at Cartaya, Spain. The parents and progeny were
phenotyped for the presence of AF in 2016 and 2017.
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Genotyping by Sequencing

High molecular weight DNA was extracted from 100 mg of leaf
tissue from each individual in the 131 progeny in the NC493 x
CW family using a standard CTAB protocol (Doyle and Doyle,
1987). The genotyping by sequencing (GBS) method of Elshire
et al. (2011) was used to obtain reduced representation of the
genomes for the two parents and progeny of 83 individuals. The
GBS library preparation protocol was first optimized for the red
raspberry genome by digesting DNA from a few individuals with
ApeK1, as described by Elshire et al. (2011). GBS libraries were
then constructed for 83 individuals and the two parents. The
libraries from 83 individuals were combined to make the final
pooled library. The quantity and quality checks of the individual
libraries and the pooled library were performed using a Qubit
Fluorometer and a Fragment analyser, respectively. The pooled
DNA library was dried and sent to the Australian Genome
Research Facility for sequencing on two lanes of the Illumina
HiSeq2500 platform using single-end sequencing chemistry.

The sequencing reads were demultiplexed based on GBS
library preparation bar codes using the ea-utils.1.1.2-537
package (Richardson, 2013), and those reads starting with the
approved bar code immediately followed by the remnant of the
ApeK1 cleavage site sequence were retained for further analysis.
The bar coded reads meeting the initial read quality criteria
were aligned to the R. occidentalis genome assembly of ORUS
4115-3 v3.0 (Vanburen et al., 2018) (https://www.rosaceae.org/
analysis/268) using Burrows-Wheeler Aligner (bwa/0.7.17) (Li
and Durbin, 2009). Single-nucleotide polymorphism (SNP)
calling and GBS data filtering were performed using the GATK
pipeline (gatk/3.8.0) (McKenna et al, 2010) using default
parameters. The GBS pipeline used to create a set of markers is
available on Github at https://jupyterhub.powerplant.pfr.co.nz/
user/cfprxj/notebooks/cfprxj/bioinf Braspberry_GBS/Variant_
calls_Braspberry_ GATK_pipeline.ipynb. GATK_GBS analysis
yielded a total of 284,146 SNPs between the two parents.

Preparation of GBS Markers for

Linkage Analysis

The SNP data were filtered and formatted for appropriate genetic
segregation codes using MS Excel (Microsoft Corporation, USA).
Markers segregating abxaa, aaxab, and abxab were selected for
each parent using GATK and MS Excel. Homozygous SNP calls,
such as A/A, G/G, T/T, and C/C, were converted into aa marker
type, whereas heterozygous SNP calls (such as A/G, A/T, C/T,
etc.) were converted into the ab marker type. Joinmap v5.0® (Van
Ooijen and Voorrips, 2001) was used to develop genetic linkage
maps for each parent of the NC493 x CW population. A LOD
score >6 was employed for grouping. Due to the high number of
markers on each linkage group, the markers were then filtered
based on chi-square values ranging from 0.1 to 7.0, and these
selected loci were subsequently used to reconstruct the maps
using regression mapping (Kosambi mapping function).

Trait Mapping
Trait mapping was initially performed by including the AF
phenotypes of both years in the GBS data set using Joinmap

v5.0® (Van Ooijen and Voorrips, 2001). As the phenotypes in
the CW x NC493 population were scored as a presence-absence
of AF, which is not quantitative and cannot be used for QTL
mapping with methods such as interval mapping, a chi-square
test was performed on all GBS markers that were heterozygous
in only one parent to identify markers linked to AF. Chi-square
values for the significant differences between the expected allelic
frequencies and the observed allelic frequencies were calculated
with the formula:

X?=3k =1 [(observed value;_expected value; )2 / expected value, ]

GBS markers with chi-square test values between 5 and 20 and
p values <0.05 were selected for identification of QTLs controlling
to the trait. This filtering criterion yielded 26,925 abxaa markers
that are heterozygous for the NC493 parent and 6,571 aaxab
markers that are heterozygous for the CW parent. The markers
that are heterozygous for one parent and homozygous for other
parent were used for QTL mapping.

Further mapping was performed using abxaa markers
(heterozygous for AF parent) located around the AF loci on the
NC493 parental map. The phase of these markers was calculated
using Joinmap v5.0® (Van Ooijen and Voorrips, 2001), and they
were ordered according to their physical location on the ORUS
4115-3 v3.0 R. occidentalis genome assembly (Vanburen et al.,
2018). Bins of 10 to 12 markers within focal points spanning no
more than 100 kb physical intervals were manually inspected.
Focal points were evenly spaced throughout the region flanking
the RiAF4 locus at 0.1, 2, 3.1, 3.6, 3.8, 4.1, 4.5, 6, and 8 megabase
pairs (Mb). Likely genotypic errors due to allelic dropout, a
common feature in GBS data for heterozygous species and
detectable as a single change in phase within a linked focal
point, were manually corrected. A consensus genotype was then
imputed for each focal point and compared to the neighboring
focal points. The linkage between each focal point and the AF
phenotype was examined to delimitate the most likely genomic
interval flanking the AF loci.

High-Resolution Melting Marker
Development

SNPs that were closely associated with the AF loci were selected
from the GBS data set for the NC493 x CW population for
transformation into high-resolution melting (HRM) quantitative
PCR markers. PCR primer pairs were designed to span amplicons
ranging from 70 to 150 basepairs (bp) flanking the selected
SNPs using Primer3 (http://frodo.wi.mit.edu/primer3/). The
following criteria were employed for primer pair design: max
self-complementarity and max 3’ self-complementarity were
set to 4 and 1, respectively; GC content of the primers ranged
from 40 to 55%. SNP analysis (Liew et al., 2004) was performed
on a LightCycler480 instrument (Roche Diagnostics), and
amplifications were performed using the PCR mix and conditions
described in Guitton et al. (2011). Outputs were analyzed using
the LightCycler480 SW1.5 software. Heterozygous genotypes
were identified as having a lower melting temperature in
comparison with homozygous genotypes and a shoulder in
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the melting peaks. HRM markers, which were heterozygous
and homozygous for the AF and BF parent, respectively, were
screened over the x16.093, x16.109, and x16.111 populations,
and association between the HRM genotypes and the presence of
the AF trait was assessed using a chi-square test.

Simple Sequence Repeat Marker
Development and Screening

PCR primers for simple sequence repeats (SSRs) from Rubus were
developed close to the chromosomal regions associated with the
loci of interest identified in the NC493 x CW raspberry population,
as well as the LG 7 locus identified in blackberry by Castro et al.
(2013). SSRs were screened over the C1 blackberry population
using a Hitachi ABI3500 Applied Biosystems genetic analyzer
(Foster City, CA, USA). Association between the SSR alleles and
the presence of the AF trait was determined using a chi-square test.

RNAseq and Differential Gene

Expression Analysis

Total RNA was extracted from axillary buds 5-10 nodes below
the apex of ‘Heritage’ and ‘Wakefield, which are AF and BE
respectively. The cultivars were grown together in the field under
standard conditions at the PFR orchard at Motueka, New Zealand.
Bud samples were collected on November 5 (spring/early summer).
Tissue was snap-frozen in liquid nitrogen, and total RNA was
extracted from three biological replicates of each cultivar, as described
in Janssen et al. (2008). The quality and concentration of the RNA
samples were assessed using a Fragment Analyzer (Agilent, Santa
Clara, CA, USA), and only samples with an RNA Integrity Number
higher than 8 were sequenced. Library preparation was completed at
the Australian Genome Research Facility using the TruSeq Stranded
kit, and subsequent paired-end Illumina® sequencing employed the
NovaSeq6000 platform, with the S2 flow cell. An average of ~19
million, 150-bp paired-end reads was retrieved for each sample
(~6 Gb of data). Read sequences of low-quality ribosomal RNA
and adaptors were filtered out using Trimmomatic (Bolger et al.,
2014) and SortMeRna (Kopylova et al., 2012). RNAseq reads were
aligned to the R. occidentalis reference gene models (Vanburen et al.,
2018) using Spliced Transcripts Alignment to a Reference (STAR),
and differential expression analysis was performed using DESeq2
(Love etal., 2014). All RNAseq data, read statistics, and differentially
expressed genes (DEGs) are deposited in NCBI's Gene Expression
Omnibus (Edgar et al., 2002) and are accessible through GEO Series
accession number GSE135907 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgiacc = GSE135907). Significant DEGs were selected
using a threshold of a< -0.005 with an adjusted p value of <0.01 and
a [log2 fold change | > 1. Arabidopsis orthologues were determined
by BLAST against the TAIR database.

RESULTS

Phenotypic Segregation for AF

in Raspberry

The segregating population of 131 F, individuals from the
NC493 x CW (AF x BF) cross was assessed for the AF trait
over two consecutive years. The observed segregation ratio

for AF : BF phenotypes were 55:76 and 66:65 in 2008 and
2009, respectively. Thirty-three phenotypes were inconsistent
between years. The subset of the population with consistent
AF and BF phenotypes between years was used for GBS
analysis. Out of 98 individuals sampled, five did not yield
sufficient DNA for GBS and could not be analyzed further.
The final set (93 individuals) used for GBS library preparation
contained 42 and 51 with AF and BF phenotypes, respectively
(Table S1).

GBS of the NC493 x ‘Chilliwack’
Segregating Population

Two lanes of Illumina HiSeq2500 single-end 100 bp reads
generated a total amount of 50,515,918,100 bp sequences and
505,159,381 total reads. The removal of adapters and filtering
of low-quality reads yielded 46,822,022,484 bp (92% of the total
data). The GBS libraries for eight individuals failed to produce
any sequencing data. In total, 85 GBS libraries from the progeny
and two duplicates of each parent yielded an average number
of ~5.8 million reads per individual that were used for read
alignment against the R. occidentalis genome assembly ORUS
4115-3 v3.0 (Vanburen et al., 2018) (https://www.rosaceae.
org/analysis/268). SNP calling identified 284,146 SNPs in
total (Table 1). Further filtering of the SNP data was applied
to remove loci that had more than 10% missing data and were
monomorphic or ambiguous. These filtering criteria yielded
a total of 48,002 abxaa and 16,440 aaxab SNPs heterozygous
for NC493 and CW, respectively. An additional 5,821 abxab
type markers were generated between the parents, resulting in
70,263 SNP markers in total.

Map Construction

Linkage maps were constructed for both parents (Figures 1 and 2;
Table 2). The NC493 map comprised 473 markers that spanned
the seven LGs, and extended over 378.1 c¢M, with an average
distance of 0.8 cM between markers (Figure 1). LG4 had the
greatest number of markers (80), LG5 had the fewest number
of markers (33), and LG4 was the longest (108.7 cM). The CW
parental map was constructed from 419 markers that spanned the
seven Rubus LGs and covered 251.6 cM, with an average distance
of 0.6 cM between markers (Figure 2). LG5 had the greatest
number of markers (74), and LG7 had fewest markers (27). LG5
was the longest group, with 74 markers covering 75.96 cM.

TABLE 1 | Summary of single-nucleotide polymorphism (SNP) markers obtained
by genotyping by sequencing of a mapping population derived from NC493 x
‘Chilliwack’” (CW).

Parents Total SNPs Monomorphic abxaa abxab
identified by SNPs + markers SNPs SNPs
GBS between with 10%
parents missing data
NC493 284,146 230,323 48,002 5,821
CcwW 261,885 16,440

abxaa type markers are heterozygous in one parent and homozygous in the other
parent. abxab type markers are heterozygous for both parents.
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FIGURE 1 | Rubus idaeus genetic map for Annual-Fruiting (AF) parent NC493. The vertical bars represent linkage groups, and the lines across the bars represent
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FIGURE 2 | Rubus idaeus linkage map for Biennial-Fruiting (BF) parent ‘Chilliwack’. Each linkage group (represented by a vertical bar) was constructed using SNP
loci generated by genotyping by sequencing (GBS). The lines across the bars represent marker positions in the map, and the scale on the right represents the
genetic distance in centiMorgan (cM). All markers segregated according to the Mendelian ratio at p < 0.005, and markers were named according to their physical
positions in the genome (right-hand side of each LG). The maps were generated in Joinmap v5.0® (Van Ooijen and Voorrips, 2001).
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TABLE 2 | Summary of the linkage groups (LG) constructed for NC493 (Annual-
Fruiting, AF) and ‘Chilliwack’ (CW, Biennial-Fruiting, BF) parents and the number
of markers identified per LG.

Linkage groups Number of loci mapped in Number of loci mapped

the NC493 map in the CW map
1 75 58
2 64 53
3 73 83
4 80 64
5 33 74
6 76 60
7 72 27
Total markers 473 419

The LGs were constructed by using the SNP markers obtained from a NC493 x
‘Chilliwvack’ mapping population.

Trait Locus Mapping for AF

The AF trait was not significantly associated with any markers on the
saturated CW (BF) linkage map when the AF phenotypes for both
years were included in the GBS data set used in map construction.
Because the phenotypes were scored qualitatively as presence-
absence of AE they could not be used for interval mapping of
QTLs. Hence, the chi-square test was performed on heterozygous
GBS markers for each parent to identify markers linked to the AF
phenotype (Table S2). The analysis of markers heterozygous for

NC493 identified two genomic regions, located on LGs 3 and 4,
that were significantly associated (LOD > 4) with AF (Figure 3).
These two new loci were named RiAF3 and RiAF4 for R. idaeus AF,
located on LGs 3 and 4 of NC493, respectively. The GBS markers
chr3_41,124,650 and chr4_4,076,592 are those most significantly
linked to RiAF3 and RiAF4, respectively. A third locus on LG5 may
be present; however, none of the markers were associated with the
trait with a LOD score greater than 4. No linkage with phenotype
was found for the markers that were informative for CW.
Examination of the genotypes of 85 individuals over segments
of chromosomes 3 and 4 spanning the SNP markers with the most
significant LOD scores enabled us to determine the genotypes of
the population between 35.1 to 43.7 Mb of chromosome 3 and
0 to 8 Mb of chromosome 4. The mapping analysis using a bin
map based on the number of recombinants over a window of 8
Mb indicated that RiAF4 is located in an interval between 3.50
Mb and 4.38 Mb (Figure 4). We were unable to perform similar
mapping analysis for RiAF3 because the order of markers on the
linkage map was not colinear with the ORUS 4115-3 v3.0 genome.

Analysis of QTLs in Three Independent
Populations of Red Raspberry

The phenotypes of parents and number of progeny in the three
independent populations segregating for the AF trait are shown in
Table 3. HRM-based markers were developed by designing PCR

NC493

LGl LG2 LG3 LG4 LG5 LG6 LG7

LoD

LR 1
£

e 0

BV

Physical position

Table S2. CW = ‘Chilliwack’.

FIGURE 3 | Manhattan plot showing genomic regions associated with Annual-Fruiting (AF) in Rubus idaeus. Genotyping by sequencing (GBS)-based single-
nucleotide polymorphism (SNP) markers significantly linked to the trait was identified by the chi-square test using markers that were heterozygous in NC493 (AF)
and homozygous in ‘Chilliwack’ (Biennial-Fruiting, BF). The x-axis shows LOD scores, and the y-axis indicates the physical position of markers (black points) in the
genome divided into seven linkage groups (LGs). The names and the physical position of the markers associated with control of AF are given in Supplementary

cwW

LGl LG2 LG3 LG4 LG5 LG6 LG7

Lop

VI
g

Physical position on each Linkage Group

Frontiers in Plant Science | www.frontiersin.org

October 2019 | Volume 10 | Article 1341


https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org

Jibran et al.

Genetic Control of Annual-Flowering in Rubus

Genome

location Annual-Fruiting Biennial-Fruiting

(Mb)

01 aaaaasaaamaaaaaaabbabbbbbbabaabbbbbbblbbbbbbbbbbbbbbbbbbbbbaabbababbaaaaaaa
2 aaaaaasaasapnaaaananaaaaaaabaaabaabbbbbbblbbbbbbbbbbbbbbbbbbbbbabbbababaaaanaaa
31 aaaaasadnaasaaaasnaaaasaasgabaaaaabbbbbbbblbbbbbbbbbbbbbbbbbbbbbabbbbbabaaaaaaaa
36 lgaaaaaaaaaaaaaaaaaaaaaaaaaaaabhbbbbbbhI:-bbhhbbbhhhhbbbbbbhhhbbbbbabaaaaaaaa
38 |lJaaaaaasaaanasaasanaaaaaaaaaasaaabbbbbbbblbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaa
4.1 aaaaanaaapaaaasnaanaaasaaaaaaaaabbbbbbbblbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaa
45 |laaaaaaaaanaaaanaaasaabaaaaaaaaabbbbbbbblbbbbbbbbbhbbbbbbbbbbbbbbbbbbbbaaaaaaanaa
6 aaaaamaamaaaaaasnaaaabapnaaaaaaabbbbbbbblbbbbbbbbbbbbbbbbbbbabbbaababaaaaaaaaa
8 Aaaaananannaanaanaaabaanaasaaaabbbbbbbbblbbbbbbbbbbbbbbbbbbbaabbaababaaasnaaanaal

FIGURE 4 | Fine mapping the RiAF4 locus. A bin map was created by analyzing the genotypes of individuals over small genomic regions located within 0-8
Mb of LG4. Each column represents genotypic data from a single individual, either Annual-Fruiting (AF) or Biennial-Fruiting (BF). The allele of single-nucleotide
polymorphisms (SNPs) in the genomic region of LG4 listed in the first column is indicated as a or b. The “a” allele (in pink) and “b” allele (in green) are linked to AF
and BF, respectively. Recombination breakpoints are visible as a change in color and narrow the RiAF4 locus to the region located between 3.6 and 4.1Mb indicated

by black horizontal lines.

TABLE 3 | Summary of red raspberry (R. idaeus) populations segregating for the Annual-Fruiting (AF) trait.

Population Female parent Male parent Total progeny AF individuals BF individuals in Chi-square value P value
size in progeny progeny

x16.093 Z12041-2 (AF) Z12022-7 (BF) 47 23 24 .01 .950

x16.109 Z12027-13 (AF) 712022-7 (BF) 55 32 23 .73 .75

x16.111 212027-13 (AF) Z12011-8 (BF) 49 30 19 1.23 75

These populations were used for validating RIAF3 and RiAF4 loci. Seedlings were planted in spring of 2017 at the Plant & Food Research site located at Motueka, New Zealand,

and were scored for AF in the summer of 2018. BF, Biennial-Fruiting.

primer pairs that flanked the most closely linked SNPs on LG3
and LG4 and near the Rubus285a maker on LG7 (Table S3). These
markers were screened over the three populations (Figure 5). In
x16.093 and x16.109 populations, the chr3-9,188,040 marker is
associated with the AF trait, with chi-square tests significant at 95%
and 99% (d.f. = 1), respectively. In population x16.111, ch4-7,738,811
and chr7-4,042,651 markers are associated with the AF trait with
chi-square test significance of 95% and 99% (d.f. = 1), respectively.

Screening of SSR Markers for RIAF3,
RiAF4, and the LG7 locus in a Blackberry
(R. subgenus Rubus) Population

To verify the two newly identified loci, we analyzed markers linked
to AF in a tetraploid blackberry population (C1) segregating for
the AF trait. In this population, 76 progenies were scored over
two consecutive years as 12 AF and 64 BF (Table S4). The C1
population was screened with SSR markers from R. idaeus LGs 3, 4,
and 7 (Castro et al,, 2013), and only the LG3 marker Rubus285a was
associated with AF (Figure 6). The data show that the 244-bp allele
of Rubus285a from BF parent is linked to the BF phenotype. This
allele is not present in the AF parent. No association between marker
and phenotype was identified for markers located on LGs 4 and 7.

Candidate Genes Underlying RiAF3

and RiAF4

The region of the ORUS 4115-3 v3.0 genome spanning from 35.1
to 43.7 Mb on LG3 contains 1,276 predicted gene models, and
the region from 0 to 8 Mb on LG4 contains 1,399 gene models

(Table S5). A number of genes in these intervals are involved
with flowering time.

DEGs Between AF and BF Axillary Buds

To identify genes potentially involved with the transcriptional
regulation of AF, we compared gene expression in axillary buds of
AF ‘Heritage’ and BF ‘Wakefield’ in late spring. Of the DEG genes
with a |log2fold change| > 1, 443 (2.22%) were upregulated, and
363 (1.8%) were downregulated in AF compared with BE The
majority of the DEGs are orthologues of genes identified in other
species as being involved in reproduction, flower development,
and defence responses against biotic and abiotic stress.

Table S6 shows the relative expression of all genes within the
genomic intervals spanning the RiAF3 and RiAF4 loci. The genomic
locations and biological functions of some of the most promising
differentially expressed candidate genes are listed in Table 4. Within
the RiAF3 interval, a gene orthologous to Arabidopsis JUMON]JI
14 (JM]14) was expressed 2-fold higher in AF relative to BE In
the RiAF4 region, PHYTOCHROME AND FLOWERING TIME
1 (PFT1), FLOWERING LOCUS A (FCA), and AGAMOUS-LIKE
24 (AGL24) genes were all upregulated in AE with AGL24 having
5-fold higher transcript levels in AF relative to BF (Figure 7).

DISCUSSION

We report that AF is a complex genetic trait regulated by at least
two loci on R. idaeus LGs 3 and 4, RiAF3 and RiAF4. These novel
loci are syntenic to QTLs identified in strawberry for control of
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FIGURE 5 | Histograms showing allelic frequencies of SNP-based markers underlying quantitative trait loci in three independent red raspberry populations
segregating for the Annual-Fruiting trait. The marker names indicate their chromosome and physical positions (in bp) on the Rubus occidentalis genome (Vanburen
et al., 2018). The * and ** represent chi-square test significance of 95% and 99% (d.f. = 1), respectively. The marker chr7-4,042,651 was monomorphic in the
x16.109 population.
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A Alleles present 197 bp 244 bp
(frequency)
AF parent absent  present  present absent present
BF parent present  present  present  present  absent
AF progeny 6 11 6 1 7
(N=11) (54%)  (100%) (54%)  (9%) (63%)
BF progeny 25 55 42 33 38
(N=55) (40%)  (100%)  (90%) (55%) (63%)
B BAF OBF
1
0.8
]
=
m 0.6
=
*¥%
o 0.4
=
0.2
0
195 197 201 244 265
FIGURE 6 | Rubus285a marker segregation in a tetraploid blackberry mapping population segregating for Annual-Fruiting (AF). (A) Table showing the presence or
absence of alleles in parents and the numbers of AF and Biennial-Fruiting (BF) progeny with each allele and the percentage in parentheses. The AF parent has three alleles
with PCR product sizes of 197, 201, and 265 bp. The BF parent has four alleles with sizes of 195, 197, 201, and 244 bp. (B) Histogram showing allelic frequencies of the
Rubus285a marker in the C1 blackberry population. The 244-bp allele is linked with BF trait with chi-square test significance of 99% (d.f. = 1) indicated by **.

recurrent flowering, suggesting conserved function across the
Rosoideae subfamily. Markers linked to the newly discovered loci
and to a locus previously identified on LG7 (Castro et al., 2013)
were tested in independent raspberry and blackberry populations
segregating for AE. In addition, we identified DEGs that may be
involved in regulating the AF trait in Rubus.

Development of a High-Density Genetic
Map of R. idaeus

GBS technology has greatly facilitated SNP discovery and
genotyping for crop genetics (Crossa et al., 2013; He et al., 2014;
Ipek et al., 2016; Hackett et al., 2018). We used GBS-based SNP
markers to develop a high-density genetic map of red raspberry.
This new map is constructed with 70,263 SNP markers and is
aligned with the genome assembly of black raspberry. In a previous
study, a blackberry genetic map developed with 119 SSR markers

in a mapping population segregating for AF (Castro et al., 2013)
was employed to identify three markers linked to AF. However, one
marker was 71cM from AF and, hence, unlinked. Furthermore,
none of their LG7 markers mapped on the black raspberry genetic
map of Bushakra et al. (2012) and the blackberry LG7 was assigned
by default. It is possible that one of the other six LGs could have
split and been mistakenly designated LG7 by Castro et al. (2013).

AF Is a Complex Genetic Trait

Castro et al. (2013) proposed that AF in blackberry was
controlled by a single locus located on LG7. We were unable to
map the AF phenotype as a single locus in the NC493 x CW
population. A chi-square test of the thousands of markers
detected by GBS identified two novel loci on LGs 3 and 4 for
control of AF in red raspberry. The previous single locus
hypothesis was largely based on the 3:1 (BF : AF) phenotypic
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TABLE 4 | Differentially expressed candidate genes that underlie RIAF3 and RiAF4 loci.

Rubus gene model Location in genome (bp) Log2Foldchange (BF/AF) Arabidopsis hom Description
ologue
Ro04_G19915 8,594,128 -0.28 AT4G16280 Flowering Control Locus A (FCA)
Ro04_G02642 4,485,423 -0.51 AT1G25540 Phytochrome and Flowering
Time 1
Ro04_G36356 8,736,093 -1.75 AT4G24540 Agamous-like 24 (AGL24)
Ro03_G05776 35,959,751 -0.001 AT3G12680 Hual, Enhancer of Ag-4 1
Ro03_G15781 37,388,564 -1.08 AT4G20400 Jumoniji 14 (UMJ14)
Ro03_G33037 38,575,123 -0.88 AT1G30330 Auxin Response Factor 6 (ARF6)
Ro03_G 13396 39,438,396 1.43 AT1G29390 Cold regulated thylakoid
membrane
Ro03_G 13391 39,478,286 -0.03 AT4G18130 Phytochrome E
Ro03_G05247 40,252,833 0.50 AT2G42610 Light Sensitive Hypocotyls 10
Ro03_G06544 40,834,857 -0.5 AT1G28330 Dormancy-Associated Protein-
like 1
Ro03_G06488 41,189,726 -0.16 AT4G04920 Sensitive to Freezing 6

RNAseq was performed on axillary buds from three biological replicates each of ‘Heritage’ (Annual-Flowering) and ‘Wakefield” (Biennial-Flowering). The physical location of each R.
occidentalis gene model is given in bps (ORUS 4115-3 v3.0, Vanburen et al., 2018). The log2 fold change of ‘Wakefield’ relative to that of ‘Heritage’ is presented.

1400 *% B 'Heritage' (AF)

1200 O'Wakefield' (BF)
1000

%
800 1
600
400 *
200 . *k
0 I_-—l [

Ro03 G15781 Ro04 G02642 Ro04 G19915 Ro04 G36356

RPKM

JMJ14 PFTI FCA AGL24

FIGURE 7 | Expression of flowering time genes located in RIAF3 and RiAF4 mapping intervals. RNA was collected from axillary buds in late spring from ‘Heritage’
(Annual-Fruiting, AF) and ‘Wakefield’ (Biennial-Flowering, BF). The x-axis shows RPKM (Reads Per Kilobase Million) for Ro03_G15781 (orthologous to JUMONJI

14, IMJ14), Ro04_G02642 (orthologous to PHYTOCHROME AND FLOWERING TIME 1, PFT1), Ro04_G19915 (orthologous to FLOWERING CONTROL LOCUS A,
FCA), and Ro04_G36356 (orthologous to AGAMOUS-LIKE 24, AGL24). The columns represent the means of three biological replicates, and error bars are standard
error of the mean. * and **indicate statistically significant differences (P < 0.05 and P < 0.017, respectively) between AF and BF using Student’s t-test.

ratio observed in several populations but is unsupported by In this study, we found that LGs 3, 4, and 7 HRM markers
molecular marker data (Oberle and Moore, 1952; Keep, 1961).  were linked to the AF trait in red raspberry (Figure 5). An LG3
On the basis of the phenotypic data collected from intercrossing ~ SSR marker (Rubus285a) was linked to the BF trait in blackberry
or selfing AF individuals, some studies have suggested a complex ~ (Figure 6). We were unable to verify all three loci in all of the
genetic basis for the trait (Lewis, 1939; Waldo and Darrow, 1941;  populations, which could be due to one or more loci being fixed
Haskell, 1960; Fejer and Spangelo, 1974; Fejer, 1977). Various  in a homozygous state in the parents, hence preventing detection
studies concluded that AF is controlled by a number of minor  of polymorphic markers linked to AE

genes with predominant evidence that AF is a complex genetic Our GBS data indicated that RiAF3 is located at the bottom
trait controlled by loci on three LGs (RiAF3, RiAF4, and LG7). of chromosome 3 (Figure 3). However, the HRM marker that
Recently, linkage analysis of ‘Glen Moy’ x ‘Latham’ raspberry =~ was developed from the most closely linked SNP is located
population identified flower development QTLs on LGs 3,5,and ~ on the upper arm of chromosome 3 (chr3-9,188,040). This
7 (Hackett et al., 2018). These QTLs harbored genes involved  discrepancy is likely due to errors in the assembly, and it is
in regulating flowering time. For example, FKF1, a regulator =~ possible that the HRM marker position is incorrect. The
of CO expression, was mapped to LG7. Similarly, FT, EFL7 (a  populations used for the QTL analysis were relatively small,
regulator of FLC levels), and COL9 (a regulator of CO levels)  which would reduce the possibility of detecting several
were mapped to LG3. loci. This analysis should be repeated in one or more large
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populations to more precisely identify the genomic intervals
linked to AFE.

RiAF3 and RiAF4 Are Syntenic With Two
Loci for Control of Recurrent Flowering
in Strawberry
To extend the fruiting season, many international strawberry
breeding programs are focusing on developing early, late, and
perpetual (continuous) flowering cultivars. Comparative genomic
studies between strawberry and raspberry have revealed a high
degree of synteny between the genomes of two species (Bushakra
et al., 2012; Jibran et al., 2018). Results from molecular studies also
support a common molecular mechanism for control of flowering
time among different Rosaceae species (Gaston et al., 2013; Honjo
etal,, 2016; Perrotte et al., 2016; Samad et al., 2017). Floral repressors,
suchas Perpetual Flowering 1 and Terminal Flower 1,control perpetual
flowering habits in strawberry. Seasonal flowering (SF) strawberry
plants produce flowers only in autumn, whereas perpetual flowering
(PF) plants flower over an extended time. The strawberry PF habit
is under the control of a major QTL named FaPFRU, located on the
lower arm of LG4 called LG4b-F (Gaston et al., 2013). This mapped
region contains a floral activator gene orthologous to Flowering Time
(FT) (Yoo et al., 2005). Perrotte et al. (2016) investigated the effect of
FaPFRU on PF habit in 28 strawberry genotypes and found that the
locus was linked to PF when analysis was carried out in both PF and
SF genotypes. However, the analysis involving only PF genotypes
did not detect linkage of FaPFRU with the PF trait; instead, a QTL
located on LG3c-F (LG3c), associated with a late PF-intense phase,
was identified. Hence, the authors concluded that PF in strawberry
is regulated by multiple loci. It was postulated that FaPFRU regulates
the switch between PF and SF, whereas the LG3c locus controls the
intensity of flowering. Furthermore, Albani et al. (2004) suggested
that the PF trait in woodland strawberry (Fragaria vesca L.) and
cultivated strawberry are regulated by different genetic components.
In woodland strawberry, two early flowering QTLs were identified
on the upper and lower arm of LG4 (Samad et al., 2017).

The two novelloci RiAF3 and RiAF4 identified from the NC493
x CW population colocalize with the previously identified QTLs
related to PF in strawberry. FaPFRU is located on the lower arm
of LG4, whereas RiAF4 locus is located at the upper arm of LG4.
The difference in the genome positions between species might
well be because parts of LG4 are inverted in raspberry compared
to strawberry (Vanburen et al., 2018).

Candidate Genes Underlying RiAF3

and RiAF4

JMJ14 is the best candidate for RiAF3. JMJ14 is a histone H3
lysine 4 (H3K4) demethylase, and H3K4 methylation is linked to
transcription of key flowering time genes (Lu et al., 2010; Lu et al,,
2011; Cui etal.,, 2016). The Arabidopsis jmj14-1 mutant flowers early
under short day conditions and has elevated levels of LFY, FT, and
API transcripts (Jeong et al., 2009). Previous studies have indicated
that demethylases are involved with the regulation of flowering
time. Yang et al. (2012) found that Arabidopsis plants overexpressing
JMJ15, a member of the H3K4 demethylase JARIDI family, had
accelerated flowering time. The early flowering phenotypes of
the overexpression lines were associated with an increased FT

expression and a decrease in H3K4me3 at the FLC locus that cause
FLC repression. It has also been shown that JMJ14 is required for
gene silencing (Searle et al,, 2010). Similarly, Zheng et al. (2019)
found that JMJI3 is a floral repressor that regulates Arabidopsis
flowering timing in a temperature- and light-dependent manner.

The genomic region underlying the RiAF4 locus contains three
key genes that promote flowering, PFT1 (Ro04_G02642), FCA
(Ro04_G19915),and AGL24 (Ro04_G36356) (Simpsonetal., 2003;
Turck et al., 2008; Michaels et al., 2003; Torti and Fornara, 2012).
PFT1 is a nuclear protein that integrates various environmental
cues into plant flowering pathway both in a CO-dependent and
-independent manner (Liu et al., 2017). PFT1 regulates flowering
by increasing the transcript abundance of CO and FT (Iiigo
et al,, 2012). FCA is an RNA binding protein that downregulates
expression of the floral repressor FCA by methylating central
parts of the FLC gene (Liu et al., 2007). Reduced FCA function
results in late flowering due to increased FLC activity, whereas
overexpression of FCA causes early flowering, both in long and
short day photoperiods (Liu et al., 2007). AGL24 is a MADS-
box transcription factor that regulates flower timing by inducing
expression of the floral integrator SOC1 (Liu et al, 2008).
AGL24 loss-of-function mutants and plants with reduced AGL24
transcript levels showed delayed flowering phenotypes, whereas
overexpression of AGL24 resulted in early flowering phenotypes
(Michaels etal., 2003; Yu et al., 2002). It was suggested that AGL24
controls flower timing in a dosage-dependent manner (Yu et al.,
2002). Our finding that the raspberry orthologues of PFT1, FCA,
and AGL24 are upregulated in AF buds relative to BF makes each
of them promising candidate genes in the control of AE.

CONCLUSION

We have presented the first evidence of loci linked to control of
AF in R. idaeus. Our results suggest that two major loci RiAF3
and RiAF4 and a region located on the upper arm of LG7 control
AF in Rubus. Additionally, we identified putative flowering
time genes as candidates for functional validation. The genetic
loci identified will be of value for marker-assisted selection of
AF raspberries and blackberries following further validation in
breeding germplasm.
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