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1 Introduction

Tree-level and multi-loop amplitudes are the building blocks of predictions of gauge field
theories and, in particular, for observables in high-energy scattering experiments. For this
reason a lot of theoretical effort has been invested in their evaluation and in the develop-
ment of ever-more efficient methods for their calculation. A number of gauge theories are
being studied, starting from string and supersymmetric theories [1–13], to gravity [14–16],
to Yang-Mills [17, 18], to QED [19] and QCD [20–32] and ultimately to the full Stan-
dard Model [33–42]. Research on generic methods for solving multi-loop integrals is also
ongoing [43–61].

In this work we focus our attention on QCD which is the theory most relevant to
high-precision physics at the Large Hadron Collider. Within QCD, the current frontier
for 2 → 1 and 2 → 2 processes is three loops [62–68], while for 2 → 3 scattering pro-
cesses with massless partons it is two loops. A lot of work has already been carried out
in this direction, mostly for planar amplitudes [69–73] but recently also for non-planar
ones [49, 57, 59, 74–77]. All this progress has enabled the very recent first calculation of
a 2 → 3 process at NNLO, namely, three-photon production at the LHC. This has been
achieved by two separate groups [33, 42] following very different methods. An essential
ingredient for these calculations was the corresponding two-loop amplitude qq̄ → γγγ.
Both references have evaluated it in the leading-color approximation, following different
computational approaches. The actual results for the amplitude have, until very recently,
not been publicly available.

The goal of the present work is to complete this gap and present the explicit analytic
result for the leading-color two-loop amplitude qq̄ → γγγ used in the NNLO calculation of
ref. [33]. We also compare our result with the one used in ref. [42] and published recently

– 1 –



J
H
E
P
0
6
(
2
0
2
1
)
1
5
0

in ref. [78]. We find full agreement between the two results. Our subsequent discussion
will be focused on methods used for the evaluation of the amplitude and we refer the
interested reader to ref. [33] for a broader introduction to the problem and the subject, the
definition of the leading color approximation for this process as well as the implications of
this calculation.

The paper is organized as follows. In section 2 we detail the evaluation of the amplitude.
Specifically, in section 2.1 we introduce our notation and define the finite remainder; in
section 2.2 we describe the method for projecting helicities, while in section 2.3 we explain
how the rational coefficients of the amplitude are derived. Our results are presented in
section 3. They are available for download in electronic form with the arXiv submission of
this work.

2 Computation of the helicity amplitudes

2.1 Notation and renormalization

We consider the partonic process

qh1
c (p1)q̄h2

c′ (p2)→ γh3(p3)γh4(p4)γh5(p5) , (2.1)

where hi ∈ {+,−} denotes the helicity of the i’th parton, i = 1, . . . , 5. The indices
c, c′ denote quarks’ color. All partons are massless and on-shell p2

i = 0. Momentum
conservation and on-shell conditions leave five independent parity-even Lorentz invariants
sij = (pi + pj)2 and one parity-odd tr5 = 4iεp1p2p3p4 . We choose the following set of
variables to parameterize the amplitudes

x = {s12, s23, s34, s45, s51, tr5} . (2.2)

All other Lorentz invariants can be expressed in terms of this set:

s13 = s12 − s23 − s45 (2.3)
s14 = −s15 + s23 + s45 (2.4)
s24 = s15 − s23 + s34 (2.5)
s25 = s12 − s15 − s34 (2.6)
s35 = s12 − s34 − s45 . (2.7)

The physical scattering region satisfies [47]

s12 > 0, s12 ≥ s34, s45 ≤ s12− s34, s23 > s12− s45, s−51 ≤ s51 ≤ s+
51, (tr5)2 < 0 , (2.8)

with

(tr5)2 = s2
12(s23 − s51)2 + (s23s34 + s45(s34 + s51))2−

2s12(s2
23s34 + s23s34s45 − s23(s34 + s45)s51 + s45s51(s34 + s51)) , (2.9)
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and

s±51 = 1
(s12 − s45)2

(
s2

12s23 + s12s34s45 − s23s34s45 − s34s
2
45−

s12s23(s34 + s45)± 2
√
s12s23s34s45(s45 + s23 − s12)(s45 + s34 − s12)

)
. (2.10)

The UV renormalized amplitude for this process is denoted by

M(αs)h1h2h3h4h5
cc′ (x) = δcc′M(αs)h1h2h3h4h5(x) ≡ δcc′Mh̄ (2.11)

where we factored out the (trivial) color dependence. We summarize the helicity configu-
ration by h̄ = {h1, h2, h3, h4, h5} and suppress the kinematic dependence for brevity. The
amplitude can be expanded in αs

Mh̄ =Mh̄(0) +
(
αs
4π

)
Mh̄(1) +

(
αs
4π

)2
Mh̄(2) +O

(
α3
s

)
. (2.12)

The UV renormalized amplitudeMh̄ is related to the bare amplitude computed in d = 4−2ε
dimensionsMh̄,B through

Mh̄(αs) =
(
µ2eγE

4π

)−2ε

ZqMh̄,B(α0
s) , (2.13)

where Zq is the light quark wave-function renormalization constant. The bare coupling α0
s

is renormalized in the MS scheme according to

α0
s =

(
eγE

4π

)ε
µ2εZαsαs . (2.14)

All UV renormalization constants are given in appendix A.
The IR divergences of the UV renormalized amplitude can be factorized by means of

the so-called Z operator:
Mh̄ = ZF h̄ . (2.15)

Once the Z-factor, the finite-remainder F and the amplitude M have been expanded in
powers of αs/(4π), eq. (2.15) reduces to

Mh̄(0) = F h̄(0) , (2.16)

Mh̄(1) = Z(1)Mh̄(0) + Fh(1) , (2.17)

Mh̄(2) = Z(2)Mh̄(0) + Z(1)F h̄(1) + F h̄(2) . (2.18)

We define Z in the MS scheme. This completely specifies the finite remainder F h̄. The
explicit expansion for Z through two-loops in QCD is given in appendix A.

The amplitude can be decomposed in color and electric-charge structures. For the
two-loop finite remainder we find four non-vanishing contributions

F h̄(2)(qq̄ → γγγ) = Q3
q

(
4C2

FF h̄,C
2
F + 4CFCAF h̄,CFCA + 2CFnlF h̄,CFnf

)

+ Qq

∑
q′

Q2
q′

 2CFF h̄,Q . (2.19)
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∼ C2
F ∼ CFCA ∼ CFnf

∼ CF
∑
q′ Q

′2
q ∼ CF

∑
q′ Q

′3
q

Figure 1. Representative two-loop diagrams and their color/charge factors.

In the above equation, Qi are quarks’ QED couplings (Qu,c,t = 2
3e and Qd,s,b = −1

3e).
The sum over q′ in eq. (2.19) goes over all massless quarks. The difference between the
QED couplings in the first and second lines of eq. (2.19) is due to the following: all diagrams
contributing to the first line of eq. (2.19) have all three photons coupling to the external
quark line (of flavor q) while the diagrams contributing to the second line of eq. (2.19)
have one photon coupling directly to the external quark line (of flavor q) and two photons
coupling to an internal fermion loop with a flavor q′. Example diagrams for the different
contributions can be found in figure 1. In this work we do not consider diagrams with
massive quark loops. We also note that the contribution proportional to CF

∑
q′ Q

3
q′ from

diagrams with three photons coupling to an internal fermion loop (see figure 1) vanishes
by Furry’s theorem.

The leading color contribution of F h̄(2)(qq̄ → γγγ) is proportional to N2
c and, as follows

from eq. (2.19), is only dependent on a linear combination of the first two factors in the
first line of eq. (2.19):

F h̄(2)(qq̄ → γγγ)
∣∣∣∣
l.c.

= Q3
qN

2
c

(
F h̄,C2

F + 2F h̄,CFCA

)
+O(Nc) . (2.20)

The phenomenological analysis in ref. [33] is based on eq. (2.20). The justification for the
use of this approximation can be found in that reference.

Despite recent progress, the non-planar diagrams in this process are still beyond reach.
For this reason, in this work we derive and present in analytic form the planar results for
the following two factors:

F h̄,C2
F + 2F h̄,CFCA and F h̄,CFnf . (2.21)

2.2 Helicity projections

The process (2.1) has two independent helicity amplitudes. As such we choose

F{+−−−−} ≡ F h̄− and F{+−−−+} ≡ F h̄+ . (2.22)
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All other helicities can be obtained from this set by conjugation and/or permutation of
external momenta. Since at tree-level F (0),h̄− = 0, the one-loop contribution to this helicity
is finite and its two-loop correction does not contribute to the squared matrix element for
this process through two loops.

In order to extract the helicity amplitudes (2.22) in the ’t Hooft-Veltman scheme
we employ the projection method proposed in ref. [79]. Similar approaches have been
advocated in refs. [80, 81]. The essence of this method is that, for a given helicity, it
provides explicit prescription for constructing the external wave-functions. For the process
under consideration, these wave-functions can be factored out by writing the amplitude in
the following way

Mh̄ = ε∗µ3,h3
ε∗ν4,h4ε

∗ρ
5,h5

v̄(h2)Γµνρu(h1) . (2.23)

The construction of the external wave-functions is done in 4 dimensions. On one hand
this significantly simplifies the construction of a basis of polarization vectors. On the
other, it introduces scheme dependence into the bare loop amplitude. As demonstrated in
refs. [79, 82, 83], however, this scheme dependence does not affect the finite remainder of
the amplitude in the limit ε→ 0.

Our construction of the fermionic wave functions introduces the matrix γ5. The fact
that wave functions are constructed in 4 dimensions implies that we only use 4-dimensional
identities for γ5. With the help of these identities we eliminate all occurrences of γ5 and, in
this process, trade them for objects involving εµνρσ. Multiplying (and dividing) the term
proportional to εµνρσ by (tr5)2 and recalling that (tr5)2 is a polynomial function of the
invariants sij (see eq. (2.9)), we eliminate all occurrences of εµνρσ using

εp1p2p3p4ε
µνρσ = + pρ1p

ν
2p
µ
3p

σ
4 − pν1p

ρ
2p
µ
3p

σ
4 − p

ρ
1p
µ
2p

ν
3p
σ
4 + pµ1p

ρ
2p
ν
3p
σ
4 + pν1p

µ
2p

ρ
3p
σ
4 − p

µ
1p

ν
2p
ρ
3p
σ
4

− pρ1p
ν
2p
σ
3p

µ
4 + pν1p

ρ
2p
σ
3p

µ
4 + pρ1p

σ
2p

ν
3p
µ
4 − p

σ
1p

ρ
2p
ν
3p
µ
4 − p

ν
1p
σ
2p

ρ
3p
µ
4 + pσ1p

ν
2p
ρ
3p
µ
4

+ pρ1p
µ
2p

σ
3p

ν
4 − p

µ
1p

ρ
2p
σ
3p

ν
4 − p

ρ
1p
σ
2p

µ
3p

ν
4 + pσ1p

ρ
2p
µ
3p

ν
4 + pµ1p

σ
2p

ρ
3p
ν
4 − pσ1p

µ
2p

ρ
3p
ν
4

− pν1p
µ
2p

σ
3p

ρ
4 + pµ1p

ν
2p
σ
3p

ρ
4 + pν1p

σ
2p

µ
3p

ρ
4 − p

σ
1p

ν
2p
µ
3p

ρ
4 − p

µ
1p

σ
2p

ν
3p
ρ
4 + pσ1p

µ
2p

ν
3p
ρ
4 ,

(2.24)

and then promoting all indices to d dimensions. Once this has been achieved, the subse-
quent contractions of external polarization states with the rest of the amplitude are per-
formed in d dimensions. The remaining factor εp1p2p3p4 is converted into tr5 which is then
treated as an independent kinematic variable that is included in the rational coefficients
Ab defined in section 2.3 below.

We next derive explicit expressions for the wave functions of the final state vector
particles of given helicity h = ±1

εµi,h with i ∈ {3, 4, 5} . (2.25)

As a first step we replace those with new linear polarization vectors

εµi,h = 1√
2

(εµi,X + hiεµi,Y ) , (2.26)
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polarized along two directions X and Y . The polarization vector along X is defined through
the following ansatz

εµi,X = cXi,1p
µ
1 + cXi,2p

µ
2 + cXi,3p

µ
i . (2.27)

As a reference vector for all vectors εµi,X we chose the vector qµ = pµ1 + pµ2 . The coef-
ficients cXi,n, n = 1, 2, 3 are determined from the system of normalization and orthogonality
conditions for the polarization vectors:

(εi,X)2 = −1 , εi,X · q = 0 , εi,X · pi = 0 . (2.28)

The polarization vector along the direction Y is given by

εµi,Y = Ni,Y εµνρσqνp
ρ
i ε
σ
i,X , (2.29)

where we have used the conventions of ref. [79] for the Levi-Civita symbol: ε0123 = +1
and ε0123 = −ε0123. The normalization factors Ni,Y are determined from the condition
ε2
i,Y = −1.

Lastly, we note that the above construction does not fix the vectors εi,X and εi,Y unique-
ly. There are two possible solutions which correspond to the change εi,X/Y → −εi,X/Y . The
overall signs of these two vectors are chosen in such a way that the vectors ~pi, ~εi,X and ~εi,Y
form a right-handed coordinate system.

The fermion wave functions are treated in the following way. The spinor part of the
amplitude (2.23) has the following structure

M = v̄(p2, h2)Γu(p1, h1) = Tr
{

(u⊗ v̄) Γ
}
. (2.30)

The matrix u⊗ v̄ in the above equation can be rewritten in the following way:

(u⊗ v̄)αβ = ūNv

ūNv
(u⊗ v̄)αβ = 1

ūNv
(u⊗ ū)αγNγδ(v⊗ v̄)δβ = 1

N
[(u⊗ ū)N(v⊗ v̄)]αβ , (2.31)

for some matrix N , to be specified below, and N ≡ ūNv 6= 0. The outer spinor products
read

u(p, h1)⊗ ū(p, h1) = /p
1− h1γ5

2 , (2.32)

v(p, h2)⊗ v̄(p, h2) = 1− h2γ5
2 /p . (2.33)

The matrix N depends on the process-specific kinematics. In particular, it is linearly
independent of p1 and p2, otherwise ūNv = 0. Since for helicity configurations with
h1 = h2 the amplitude (2.1) vanishes to all orders, in the following we only consider the
case h = h1 = −h2. For this helicity configuration the matrix N is given by

N = iεγp3p4p5 if h1 6= h2 . (2.34)
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For this choice of N , eq. (2.31) takes the form

u⊗ v̄ = 1
N /p1

1− hγ5
2 iεγp3p4p5

1 + hγ5
2 /p2

= 1
N

(1
2/p1iεγp3p4p5/p2 −

h

2/p1

( 1
3!εγγγµε

µp3p4p5

)
/p2

)

= 1
N

1
2/p1iεγp3p4p5/p2 + h

2/p1
1
3!

 ∑
i 6=j 6=k=3,4,5

(−1)Nperm[i,j,k]
/pi/pj/pk

 /p2

 , (2.35)

where Nperm[i, j, k] is the number of transpositions needed to map an ordering (i, j, k) to
the default ordering (i, j, k) = (3, 4, 5).

As mentioned, in the above equation we have used the relations {γµ, γ5} = 0 and
γ5γ

σ = −i
3! ε

µνρσγµγνγρ, and all manipulations in eq. (2.35) have been done in 4 dimensions.
The normalization factor N needs to be evaluated only after IR renormalization, in the
context of the finite remainder F . For this reason the calculation of N is straightforward
and can also be performed in 4 dimensions.

To summarize the results of this section, the amplitude for a specific helicity config-
uration eq. (2.23) is obtained by evaluating the photon polarization vectors according to
eq. (2.26) and the product of the two quark spinors according to eq. (2.35). The resulting
expressions are contracted with the tensor Γµνρ which is constructed diagrammatically and
whose expression is independent of helicities. In practice only the two helicity configura-
tions shown in eq. (2.22) need to be computed. The generation of the Feynman diagrams
is performed with the help of a private software and the calculations of spinor traces and
color factors are performed with the help of the program FORM [84].

2.3 Reduction to pentagon functions

In this work we consider four independent amplitude structures. They correspond to
the two color factors in eq. (2.21) and the two helicities in eq. (2.22). We would like to
express these structures in terms of transcendental functions and transcendental constants
with rational coefficients. Since we assume that the set of functions forms a basis, the
evaluation of an amplitude structure is equivalent to the evaluation of all its rational
coefficients. To this end, we have built an automated framework that uses finite-field
methods to numerically evaluate, interpolate and then reconstruct the exact analytical
expressions for these coefficients. Throughout this section, the term numerical should be
understood to refer to finite-field numerics. We will now provide a detailed account of
our framework.

Any bare scalar 2-loop amplitude, or amplitude structure, M is expressed as a linear
combination of 2-loop scalar integrals Ib:

M =
∑
b

AbIb. (2.36)

The coefficients Ab are rational functions of the kinematic invariants sij , defined in sec-
tion 2.1, and polynomials in ε. As explained in section 2.2 the coefficients Ab are also
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i Πi

1 k2
1

2 k2
2

3 (k1 + p1 + p2)2

4 (k1 − k2)2

5 (k2 + p1)2

6 (k2 + p1 + p2)2

7 (k2 − p3)2

8 (k1 + p1 + p2 − p3)2

9 (k1 + p1 + p2 − p3 − p4)2

10 (k2 − p3 − p4)2

11 (k1 + p1)2

Table 1. The propagators {Πi} defining the 2-loop 5-point planar integrals Ib.

C1

p1

p2
p3

p4

p5

C2

p1

p2

p3

p4

p5

Figure 2. The integral topologies C1 and C2.

linear functions of the parity-odd kinematic variable tr5. The planar two-loop integrals Ib
appearing in the amplitude of interest in this paper are defined [43] as follows:

Ib =
∫

ddk1d
dk2

Πn1
1 Πn2

2 . . .Πn11
11

, (2.37)

where the propagators Πi are defined in table 1 and ni ≡ ni(b) ∈ Z. These 11 propagators
form a complete basis of bilinears through which any scalar numerator structure in an
integrand can be expressed. A maximum of 8 propagators appear in the denominator of
any given integrand; for the three remaining propagators, denoted spurious propagators,
the corresponding indices ni satisfy ni ≤ 0. We can accordingly classify the integrals into
two topologies, which are represented pictorially in figure 2. In the C1 topology, propagators
7, 10, and 11 are spurious. In the C2 topology, propagators 6, 7, and 10 are spurious.

Following the standard Integration-By-Parts (IBP) approach, we map the integrals Ib
onto a basis of master integrals, Mc

Ib =
∑
c

BbcMc . (2.38)
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The coefficients Bbc are rational functions of sij and ε. All coefficients required in this
calculation are known analytically from ref. [43]. The IBP identities map all required C1
integrals onto a basis of 61 master integrals,1 and all required C2 integrals onto a basis
of 28 master integrals. The 28 C2 master integrals can themselves be identified with C1
integrals, in some cases by permuting the external momenta {pj}.

The next step in our calculation is to map the master integrals Mc onto a basis of
transcendental functions and constants. In this work we choose the basis of functions
provided recently in ref. [59]. That reference solves a set of specially designed loop master
integrals M (UT) of uniform transcendentality (UT)

M
(UT)
d =

∑
e

Ddete, (2.39)

where the basis {te} is built out of sums and products of the transcendental functions F and
transcendental constants tcr and tci that are defined in ref. [59] as well as the unity. The
coefficients Dde are rational functions of the kinematic invariants sij and linear functions
of tr5. They also depend on ε, however, they are only known as a series expansion of
sufficient depth

Dde =
0∑

n=−4
D

(n)
de ε

n +O (ε) . (2.40)

In order to map our set of master integrals Mc onto the function basis {te} we first
use the analytic form of the IBP solutions from ref. [43] to express the set M (UT) in terms
of the set Mc, then we invert it:

Mc =
∑
d

B
(UT)
cd M

(UT)
d . (2.41)

Combining equations (2.41) and (2.39), we obtain an analytical expression for each C1
master integral Mc in terms of the function basis {te}

Mc =
∑
e

Ecete , (2.42)

where
Ece =

∑
d

B
(UT)
cd Dde . (2.43)

We would like to combine the above results in order to express the amplitude M in
terms of the functions te:

M =
∑
e

Gete , (2.44)

with coefficients
Ge =

∑
b

∑
c

AbBbcEce . (2.45)

1For the purposes of the IBP-solving approach in ref. [43] there are 62 master integrals in the C1 topology,
but two of these are related to each other by a discrete symmetry and can be set equal in the present context.
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In practice, we only seek the Laurent expansion G(n)
e of the coefficients Ge

Ge =
0∑

n=−4
G(n)
e εn +O (ε) , (2.46)

where
G(n)
e =

∑
n1+n2+n3=n

∑
b

∑
c

A
(n1)
b B

(n2)
bc E(n3)

ce . (2.47)

The coefficient A(n)
b appearing in eq. (2.47) are defined as

Ab =
nmax∑
n=nmin

A
(n)
b εn . (2.48)

The coefficients B(n)
bc and E

(n)
ce appearing in eq. (2.47) are defined similarly to eq. (2.48)

but with respect to the functions Bbc and Ece. For each one of the functions Ab, Bbc and
Ece, the powers nmin and nmax appearing in eq. (2.48) are chosen in such a way that the
range for the index n in eq. (2.46) is satisfied.

The coefficients G(n)
e can be split into two parts: one which is proportional to tr5 and

one which is independent of it. Both parts are rational functions of the invariants sij . The
reason only the first power of the parity-odd variable tr5 appears in the final result is that
(tr5)2 is itself a polynomial of sij , see eq. (2.9).

The calculation of the coefficients G(n)
e is based on eq. (2.47) and proceeds as follows.

We first note that the coefficients A(n1)
b , B

(n2)
bc and E

(n3)
ce appearing in that equation are

all known in analytic form. In principle one can multiply and add them, as required, to
derive the analytic expressions of the coefficients G(n)

e . The problem with this strategy is
that the size of the rational expressions that need to be combined becomes huge which
hampers their subsequent simplification. Such a strategy was followed by us in ref. [33]
for the evaluation of the squared amplitude for qq̄ → γγγ. We refer the reader to that
reference for more details about the subtleties of such an approach.

In this work we follow an alternative strategy for the evaluation of the coefficients G(n)
e .

The idea is to numerically evaluate the functions A(n1)
b , B

(n2)
bc and E(n3)

ce , then multiply and
add them as appropriate, in order to obtain a numerical value for G(n)

e in a given kinematic
point. The finite-field evaluations of G(n)

e are then passed to the FireFly library [85] in
order to reconstruct the exact analytical expressions for the coefficients G(n)

e .
We have created an automated framework which is designed to calculate simultaneously

multiple amplitudes (that have the same kinematics) following the finite-field evaluation
approach just described. The reason it may be advantageous to compute several ampli-
tudes at the same time is efficiency, noting that only the coefficients A(n1)

b depend on the
amplitude while the coefficients B(n2)

bc and E(n3)
ce are process independent.

To fully specify our approach we need to describe one more feature which has to do
with momentum crossings. The coefficients A(n1)

b do not require any further crossing since
all crossings are already included at the diagrammatic level. Similarly, the functions {te}
are already defined in such a way that all possible crossings have been already implemented
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in their definition [59]. This is one significant difference with respect to the functional basis
constructed in ref. [47] and used by us in ref. [33]. The basis of ref. [47] does not include
momentum crossings and if they are required the user needs to implement those. As a
result of such crossings one generally arrives at a functional basis which is non-minimal.
To reduce the extended set of functions to a minimal set, functional identities need to be
derived and applied; see ref. [33] for more details on this point.

Where momentum crossings still need to be applied is the part of eq. (2.47) that
involves IBPs. Specifically, this affects the coefficients B(n2)

bc as well as the coefficients
E

(n3)
ce through their constituent coefficients B(UT)

cd , see eq. (2.41). The reason additional
crossings are needed in the parts where IBPs are involved is that, in general, an integral
can appear in an amplitude with any of the 5! permutations of the external legs while
the analytical IBP solutions are only needed — and therefore only provided — for the
‘standard’, topology-defining permutation eq. (2.37), see also table 1 and figure 2. In
principle any crossing of the IBP solution can be obtained analytically by rearranging the
solution in terms of the crossed kinematic invariants. Such a strategy would be impractical
in our numerical approach due to the significant size of the IBP solutions and the very
large number of crossings.

The way we deal with crossings in our practical implementation is as follows. The
master integral reductions E(n)

ce are derived analytically for all required momentum cross-
ings. The coefficients B(n2)

bc are permuted numerically by first applying the corresponding
permutation to the numerical values of the kinematic invariants sij and then evaluating
the ‘standard’ IBP solutions at the resulting numerical point. Since the coefficients B(n2)

bc

are universal, at each finite-field point they only need to be evaluated once per required
momentum crossing, even if an integral Ib appears in several amplitudes. Due to the large
number of integrals and crossings, it is impractical to store the full set of numerical values
B

(n2)
bc , even for just a single finite-field point per computing thread.2 Instead, after eval-

uating the coefficients B(n2)
bc , we immediately multiply by A(n1)

b for all amplitudesM and
we only store running totals of

∑
bA

(n1)
b B

(n2)
bc .

3 Results

Following the approach described in the previous section, in this work we calculate in ana-
lytical form the two helicities eq. (2.22) of the finite remainder for the process qq̄ → γγγ in
the ’t Hooft-Veltman scheme. In this work we have not included any non-planar contribu-
tions i.e. we work in the approximation eq. (2.20). Factoring out the phase-dependent part
of the leading order amplitude we write the reconstructed finite remainder for the helicity
h̄+ defined in eq. (2.22) as:

F h̄+ =F h̄+(0)
(

1+ αs
4πCFR

h̄+(1)+
(
αs
4π

)2(
N2
cRh̄+(N2

c )+CFnfRh̄+(CFnf )
)

+O(α3
s)
)
. (3.1)

2We use a multi-core computing cluster. Each computing thread is assigned independent finite-field
points and evaluates all the amplitudes at the assigned points, one point at time.
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For the helicity h̄− the tree-level amplitude vanishes and we write

F h̄− = F̃ h̄−
(
αs
4πCFR

h̄−(1)+
(
αs
4π

)2(
N2
cRh̄−(N2

c )+CFnfRh̄−(CFnf )
)

+O(α3
s)
)
. (3.2)

The functions Rh̄(i), i = (1, N2
c , CFnf ), have the following structure

Rh̄(i) =
∑
e

rh̄(i)
e te . (3.3)

They are independent of the specific phase choices made in the construction of the external
wave-functions. The coefficients rh̄(i)

e appearing in eq. (3.3) are rational functions of the
parity-even invariants sij and are linear functions of tr5. The explicit expressions for the
functions Rh̄(i), as well as for the tree-level amplitude F h̄+(0) and for the phase-dependent
factor F̃ h̄− can be found in electronic form in the ancillary files accompanying the arXiv
submission of this article.

We have checked that the above result agrees numerically with our previous calculation
performed in ref. [33]. This comparison does not include the terms ∼ nf since those were not
computed in ref. [33]. Given the two calculations were performed with almost completely
independent methods this represents a strong check on the correctness of eqs. (3.1), (3.2).
Since one of the main objectives of the present work is to document the calculation of
the two-loop amplitude used in ref. [33], we will next explain in some detail how the two
calculational approaches differ from each other.

Ref. [33] computed directly the squared amplitude, while in this work we compute the
helicity amplitudes and the squared amplitude is obtained by squaring and crossing them
numerically. Ref. [33] used the polygon functional basis of ref. [47] while in the present
work we use the basis of ref. [59]. The main difference between the two functional bases
was explained in the previous section. Our calculation in ref. [33] was fully analytic while
the current calculation uses finite-field numeric evaluation and reconstruction techniques to
obtain the rational coefficients. Besides the differences already mentioned, the two results
differ significantly as far as evaluation times are concerned. The main reason for this
is the difference in evaluation times and numerical precision between the two functional
bases. The larger size of the result in ref. [33] is immaterial given the time needed for the
evaluation of the most complicated functions in that basis.

We have also checked that our results eqs. (3.1), (3.2) agree with the results in ref. [78].
Since we have computed a different helicity combination relative to the helicities published
in ref. [78], a direct analytic comparison between the two is complicated by the fact crossing
of external legs is required. We have analytically checked most structures which are simple
enough to cross, while the complete expressions (for each helicity and color factor) have
been compared numerically with high numerical precision (30 digits) and full agreement
between the two calculations has been found in all cases. There are certain differences
in the way the present calculation and the one in ref. [78] were performed that make the
agreement between the two calculations highly nontrivial. First, the generation of diagrams
is based on different approaches. Furthermore, in this work we use the analytic solutions
of the IBP equations from ref. [43] while ref. [78] solves the IBP equations numerically for
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each point in which the amplitude is evaluated and being reconstructed. Most importantly,
in this work we use an alternative approach to the projection of helicity amplitudes which
is very different from the one employed in ref. [78].

4 Conclusion

In this work we calculate the planar contributions to the two-loop helicity amplitude for
the process qq̄ → γγγ. The result is presented in fully analytic form and is available for
download in electronic form with the arXiv submission of this paper. This result, written
in an alternative form, was used in the first NNLO calculation of a 2→ 3 LHC process [33].

The helicity amplitudes are expressed in terms of the functional basis of ref. [59] which
allows fast and efficient numerical evaluation of the amplitudes. These functions’ speed of
evaluation is sufficiently high to allow the direct use of this amplitude in the calculation of
NNLO cross-sections without the need for intermediate interpolation.

In our calculation we have utilized Chen’s recently proposed approach [79] for the effi-
cient projection of helicity amplitudes in multileg/multiloop processes. We have found the
approach very easy to implement and use especially since it does not involve investigations
of tensor bases that grow with the number of loops.

We have found complete agreement between our calculation and the recent independent
calculation of the same amplitude in ref. [78]. Such an agreement represents a highly non-
trivial check on both calculations given they use very different computational approaches.

Our calculation is derived from an automated framework we have created for the
calculation of generic two-loop massless 5-point gauge theory amplitudes. We hope it will
prove suitable for many other potential applications.

Acknowledgments

We acknowledge helpful discussions with Long Chen about the helicity projection method of
ref. [79] and with Fabian Lange and Jonas Klappert on the use of the library FireFly [85].
The work of M.C. was supported by the Deutsche Forschungsgemeinschaft under grant
396021762 - TRR 257. The research of H.C., A.M. and R.P. has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 Research
and Innovation Programme (grant agreement no. 683211). A.M. was also supported by
the U.K. STFC grants ST/L002760/1 and ST/K004883/1. The research of H.C. has also
received funding under the ERC grant agreement 804394. A.M. acknowledges the use of
the DiRAC Cumulus HPC facility under Grant No. PPSP226.

A Renormalization constants

The UV renormalisation constant of the quark wave function through order O(α2
s) reads

Zq = 1 +
(
αs
4π

)2 (
CFTF

(
−5

6 + 1
ε

))
, (A.1)
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while the renormalization constant Zαs = Z2
g up to power αs (higher powers are not

required since the tree-level amplitude for pp→ γγγ has a zero power of αs) is given by

Zg = 1 + 1
ε

(
αs
4π

)4(nl + 1)TF − 11CA
6 . (A.2)

The contribution from heavy flavours is not considered in this work, therefore we have
Zq = 1 and the term (nl + 1) term in Zg reads nl.

For the IR renormalization of the amplitude for the process qq̄ → γγγ the color-space
matrix Z is needed. Through order O(α2

s) it is given by

Z = 1 +
(
αs
4π

)(
−2CF

ε2 −
2CF lµ + 3CF

ε

)

+
(
αs
4π

)2(2C2
F

ε4 + CF (11CA + 8CF lµ + 12CF − 4nlTF )
2ε3

+
CF

(
6lµ(11CA + 18CF − 4nlTF ) + 2CA(9ζ2 + 16) + 36CF l2µ + 81CF − 16nlTF

)
18ε2

+ CF (12lµ(CA(18ζ2 − 67) + 20nlTF ) + CA(1404ζ3 − 594ζ2 − 961)− 1296CF ζ3
108ε

+ 648CF ζ2 − 81CF + 216nlTF ζ2 + 260nlTF )
108ε

)
,

(A.3)

with the abbreviation lµ = log
(
−µ2/s12

)
.
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