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1 Introduction

The availability of highly precise experimental data collected in the LHC Run II demands

to push forward the accuracy frontier at the theoretical side. In the context of perturba-

tive QCD, higher-order corrections have been computed for a large variety of processes,

reaching even N3LO accuracy in some cases. In consequence, some contributions, that were

considered sub-leading long time ago, are starting to compete with QCD effects and might

be crucial to compare theoretical predictions with experimental data.

Besides the substantial work accomplished in the perturbative sector, it is essential to

reach the same level of accuracy on the non-perturbative side, i.e., on the parton distribu-

tion functions (PDFs). The calculation of the NNLO corrections to the splitting functions

performed in [1–4] and the development of modern parton distribution analysis [5–10] al-

lows to achieve the required precision in QCD.

Since α2
S ∼ α, NLO ElectroWeak (EW) corrections compete with NNLO QCD contri-

butions. As a result, an accurate description for many observables requires the inclusion

of the corresponding EW effects, which might account for a few percent level correction.

Recent work has been performed on the PDF sector to incorporate the EW effect (the

dominant QED terms) in the evolution equations [11–13]. The appearance of the photon

and the leptonic densities is the first main modification in the evolution of PDFs due to the

inclusion of QED corrections. The EW corrections to PDFs need to be carefully studied

for precise predictions at the LHC, as concluded from modern analysis performed up to

NNLO in QCD and LO in QED. In fact, it was shown that the corrections induced are

non negligible and, moreover, become crucial at higher energies [14–17].

Heretofore, the evolution of parton densities was performed using only LO QED ker-

nels. Recently, we presented the calculation of the NLO combined QCD-QED contributions

(i.e., O(ααS)) to the evolution kernels [18]. Also, one-loop corrections to double [19–22]

and triple [23–25] collinear splitting functions with photons have been computed. With
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the improvement of accuracy as the main motivation, we present for the first time, the

expressions for the Altarelli-Parisi (AP) splitting functions [26] to O(α2) that completes

the full set of two-loop kernels. Following the algorithmic procedure developed in ref. [18],

we make use of the diagram-by-diagram classification available in the original NLO QCD

results presented in refs. [27–29] and, then, we modified consistently their color structure

to account for the gluon-photon replacement. In this case, we explicitly concentrate on

the QED corrections, without including those arising from Weak bosons, which only be-

come relevant for very extreme kinematical conditions, where their masses are neglected in

comparison to other scales involved in the process.

The structure of the paper is as follows. In section 2 we recall the evolution equations

for the different distributions and the corresponding kernels, introducing the notation re-

quired to present our results. Also, we present there the constraints from sum rules that

determine the behaviour of splitting kernels in the end-point region (i.e. x = 1). In sec-

tion 3 we summarize the algorithm that we use to obtain the QED corrections to the

splitting functions and present the corresponding kernels. Using these formulae, we study

the changes introduced in the AP kernels by both O(α2) and O(ααS), in section 4. Finally,

conclusions are given in section 5.

2 Evolution equations and definitions

In the context of combined QCD-QED contributions, it is mandatory to take into account

lepton distributions. In ref. [18], we computed the O(ααS) contributions to the AP kernels

and we showed that leptons decouple from the QCD sector at that accuracy. Thus, in

that case, we neglected lepton distributions. Moreover, this simplification remains true for

O(ααnS) because the quark-lepton mixing appears starting at O(α2). Therefore, here we

follow the path established in ref. [30] and obtain the exact set of evolution equations for

the combined QCD-QED model in a proper basis.

As usual, the first step consists in writing down the evolution equations for quark,

lepton, gluon and photon distributions. These equations are obtained starting from those

available in ref. [18] by adding lepton distributions and the corresponding AP kernels, Pij .

Using the standard definition for the convolution operator, i.e.

(f ⊗ g)(x) =

∫ 1

x

dy

y
f

(
x

y

)
g(y) , (2.1)

and introducing t = ln
(
µ2
)

as the evolution variable, we have

dg

dt
=
∑
f

Pgf ⊗ f +
∑
f

Pgf̄ ⊗ f̄ + Pgg ⊗ g + Pgγ ⊗ γ , (2.2)

dγ

dt
=
∑
f

Pγf ⊗ f +
∑
f

Pγf̄ ⊗ f̄ + Pγg ⊗ g + Pγγ ⊗ γ , (2.3)
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dqi
dt

=
∑
f

Pqif ⊗ f +
∑
f

Pqif̄ ⊗ f̄ + Pqig ⊗ g + Pqiγ ⊗ γ , (2.4)

dli
dt

=
∑
f

Plif ⊗ f +
∑
f

Plif̄ ⊗ f̄ + Plig ⊗ g + Pliγ ⊗ γ , (2.5)

and similarly for antiparticles by using charge conjugation invariance. Here the sum over

fermions f runs over all the active flavours of quarks (nF ) and leptons (nL). In the previous

formulae, µ represents the factorization scale.

Along this work we will present the expressions for the splitting functions including

QCD and QED corrections. Thus, we expand them according to

Pij = aS P
(1,0)
ij + aP

(0,1)
ij + a2

S P
(2,0)
ij + aS aP

(1,1)
ij + a2 P

(0,2)
ij + . . . , (2.6)

where the upper indices indicate the (QCD,QED) order of the calculation, while

aS ≡
αS

2π
, a ≡ α

2π
, (2.7)

allow to set the standard normalization of the splitting functions.

The presence of electromagnetic interactions introduces a charge dependence in the

splitting functions. Moreover, due to higher-order QED corrections, a mixing among lep-

tons and QCD partons might take place, which leads to more complicated evolution equa-

tions. In fact, in the most general case, eqs. (2.2)–(2.5) constitute a system of 20 × 20

coupled first-order differential equations. However, notable simplifications are achieved at

each order of the truncated expansion by imposing physical constraints. For instance, at

O(ααnS), the kernels depend on the electric charge of the initiating fermions (up or down),

such that in general P
(1,n)
q ∼ e2

q . As we will show later, at O(α2), the charge content of

the Pql kernels becomes non trivial due to the exchange of a pair of photons.

The quark splitting functions are decomposed as

Pqi qk = δik P
V
qq + PSqq , (2.8)

Pqi q̄k = δik P
V
qq̄ + PSqq̄ , (2.9)

P±
q = P Vqq ± P Vqq̄ , (2.10)

which act as a definition of P Vqq and P Vqq̄ , i.e. the non-singlet components. In a completely

analogous way, we write

Pli lk = δik P
V
ll + PSll , (2.11)

Pli l̄k = δik P
V
ll̄ + PSll̄ , (2.12)

P±
l = P Vll ± P Vll̄ , (2.13)

for the lepton kernels. For mixed lepton-quark splittings we use PSlq ≡ Plq to simplify the

notation.

The canonical basis of distributions is given by

Bc = {u, ū, . . . , t, t̄, e, ē, . . . , τ, τ̄ , g, γ} , (2.14)
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when considering the full charged-fermion content of the Standard Model. Working with

a reduced amount of fermions simply involves removing them from the previous basis. As

explained in ref. [30], Bc is not the optimal choice to reduce the mixing among the different

parton distributions in the evolution system. Thus, for nF = 5 active flavours it is more

suitable to work with the following set:

B = {uv, dv, sv, cv, bv, ev, µv, τv,∆uc,∆ds,∆sb,∆
l
2,∆UD,∆

l
3,Σ,Σ

l, g, γ} , (2.15)

where

qv = qi − q̄i , (2.16)

lv = li − l̄i , (2.17)

are the valence distributions, whilst

∆uc = u+ ū− c− c̄ , (2.18)

∆ds = d+ d̄− s− s̄ , (2.19)

∆sb = s+ s̄− b− b̄ , (2.20)

∆l
2 = e+ ē− µ− µ̄ , (2.21)

∆UD = u+ ū+ c+ c̄− d− d̄− s− s̄− b− b̄ , (2.22)

∆l
3 = e+ ē+ µ+ µ̄− 2(τ + τ̄) , (2.23)

Σ =

nF∑
i=1

(qi + q̄i) , (2.24)

Σl =

nL∑
i=1

(li + l̄i) , (2.25)

are the remaining combinations (gluons and photons are treated separately). To include

the top distribution in case of a six flavour analysis, it is necessary to introduce the elements

{tv,∆ct} and to extend the definitions of ∆UD and Σ.

As we mentioned before, QED interactions introduce a classification of the different

fermions according to the absolute value of their electromagnetic (EM) charges. Thus, there

are three possible fermionic sectors: up-like quarks (u and eu = 2/3), down-like quarks (d

and ed = 1/3) and leptons (l with el = 1). Particles inside each sector are indistinguishable

by QCD-QED interactions. Also, it is useful to define

∆PSfF ≡ PSfF − PSfF̄ , (2.26)

P̄SfF ≡ PSfF + PSfF̄ , (2.27)

where f and F denote the possible fermion subgroups (u, d or l). Notice that in the context

of QCD-QED, it might occur that Plq 6= Pql due to higher-order contributions. However,

at O(α2), they are the same and the equality can be used to achieve further simplifications.

Moreover, at this order, it is verified that

∆PSfF ≡ 0 , (2.28)

due to charge conjugation invariance.
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In the most general case, the corresponding QCD-QED combined evolution equations

for the distributions in the optimized basis are given by:

dqvi
dt

= P−
qi ⊗ qvi +

nF∑
j=1

∆PSqiqj ⊗ qvj + ∆PSqil ⊗

 nL∑
j=1

lvj

 , (2.29)

dlvi
dt

= P−
l ⊗ lvi +

nF∑
j=1

∆PSlqj ⊗ qvj + ∆PSll ⊗

 nL∑
j=1

lvj

 , (2.30)

for valence distributions,

dΣ

dt
=
P+
u + P+

d

2
⊗ Σ +

P+
u − P+

d

2
⊗∆UD +

nuP̄
S
uu + ndP̄

S
dd + (nu + nd)P̄

S
ud

2
⊗ Σ

+
nuP̄

S
uu − ndP̄Sdd − (nu − nd)P̄Sud

2
⊗∆UD +

(
nuP̄

S
ul + ndP̄

S
dl

)
⊗ Σl

+2(nuPug + ndPdg)⊗ g + 2(nuPuγ + ndPdγ)⊗ γ , (2.31)

dΣl

dt
= nL

P̄Slu + P̄Sld
2

⊗ Σ + nL
P̄Slu − P̄Sld

2
⊗∆UD +

(
P+
l + nLP̄

S
ll

)
⊗ Σl

+2nL(Plg ⊗ g + Plγ ⊗ γ) , (2.32)

for the singlets and

d{∆uc,∆ct}
dt

= P+
u ⊗ {∆uc,∆ct} , (2.33)

d{∆ds,∆sb}
dt

= P+
d ⊗ {∆ds,∆sb} , (2.34)

d∆l
2

dt
= P+

l ⊗∆l
2 , (2.35)

d∆UD

dt
=
P+
u + P+

d

2
⊗∆UD +

P+
u − P+

d

2
⊗ Σ +

nuP̄
S
uu − ndP̄Sdd + (nu − nd)P̄Sud

2
⊗ Σ

+
nuP̄

S
uu + ndP̄

S
dd − (nu + nd)P̄

S
ud

2
⊗∆UD +

(
nuP̄

S
ul − ndP̄Sdl

)
⊗ Σl

+2(nuPug − ndPdg)⊗ g + 2(nuPuγ − ndPdγ)⊗ γ , (2.36)

d∆l
3

dt
= P+

l ⊗∆l
3 , (2.37)

for the remaining fermionic distributions. Here nu(nd) refers to the active number of u(d)

type-quarks, respectively (nF = nu + nd), and nL is the number of leptons under consid-

eration. It is worth noticing that only ∆ij and ∆l
i decouple from the other distributions.

Besides that, if we restrict to O(ααS), we recover the equations presented in ref. [18].

At O(α2), the splitting kernels are charge dependent but ∆PS ≡ 0. Thus, in that case,

eqs. (2.29) and (2.30) become

dqvi
dt

= P−
qi ⊗ qvi , (2.38)

dlvi
dt

= P−
l ⊗ lvi , (2.39)
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and

P̄Sij ≡ 2PSij , PSlq ≡ PSql . (2.40)

Moreover, if we only allow QED interactions, all splitting kernels with gluons vanish and

the gluon distribution is decoupled from the other ones.

2.1 Constraints from sum rules

On one side, QCD-QED interactions preserve the fermion number. In particular, this

implies that splitting kernels must fulfil∫ 1

0
dxP−

f = 0 , (2.41)

because the factorization scale µ is arbitrary. On the other hand, the arbitrariness of µ

also implies that the momentum of the proton is conserved during the evolution. Using

the parton model, we have

0 =
dP

dt
=

∫ 1

0
dxx

dg
dt

+
dγ

dt
+
∑
f

(
df

dt
+
df̄

dt

) , (2.42)

where the sum is over all the possible fermion flavours (both quarks and leptons). If we

express eq. (2.42) by using the optimized basis, we impose its validity in each component.

The non-trivial constraints are:

• Gluon and photon components,∫ 1

0
dxx (2ndPdg + 2nuPug + 2nLPlg + Pγg + Pgg) = 0 , (2.43)∫ 1

0
dxx (2ndPdγ + 2nuPuγ + 2nLPlγ + Pgγ + Pγγ) = 0 ; (2.44)

• ∆UD component,∫ 1

0
dxx

(
P+
u − P+

d

2
+ nL

P̄Slu − P̄Sld
2

+
nuP̄

S
uu − ndP̄Sdd

2
−

(nu − nd)P̄Sud
2

+
Pgu − Pgd

2
+
Pγu − Pγd

2

)
= 0 , (2.45)

• and, finally, the singlet components (Σ and Σl, respectively),∫ 1

0
dxx

(
P+
u + P+

d

2
+ nL

P̄Slu + P̄Sld
2

+
nuP̄

S
uu + ndP̄

S
dd

2
+
nF P̄

S
ud

2

+
Pgu + Pgd

2
+
Pγu + Pγd

2

)
= 0 , (2.46)∫ 1

0
dxx

(
nuP̄

S
ul + ndP̄

S
dl + nLP̄

S
ll + P+

l + Pgl + Pγl
)

= 0 . (2.47)

In the following sections, we will use these equations to provide a strict check of the

calculation and, at the same time, fix the value of the splitting kernels in the end-point

x = 1.
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3 Splitting kernels at O(α2)

Let’s start by recalling some well-known results for the lowest order splitting functions. At

O(αS), only QCD partons are involved [26]; thus,

P (1,0)
qq (x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
= CF

[
pqq(x) +

3

2
δ(1− x)

]
,

P (1,0)
qg (x) = TR

[
x2 + (1− x)2

]
= TR pqg(x) ,

P (1,0)
gq (x) = CF

[
1 + (1− x)2

x

]
= CF pgq(x) ,

P (1,0)
gg (x) = 2CA

[
x

(1− x)+
+

1− x
x

+ x(1− x)

]
+
β0

2
δ(1− x) , (3.1)

with β0 = 11NC−4nFTR
3 and the plus distribution defined as∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx

f(x)− f(1)

1− x
, (3.2)

for any regular test function f . As usual, the normalization of the fundamental represen-

tation is set to TR = 1/2 and

CA = NC , CF =
N2
C − 1

2NC
, (3.3)

are the SU(NC) group factors. In particular, for QCD (NC = 3), we have CA = 3 and

CF = 4/3. Notice that these expressions provide a definition for the color-stripped splitting

functions pij , which will be used to simplify the presentation of higher-order corrections.

At O(α), splitting processes can be described by replacing the color factors in P
(1,0)
ij with

the corresponding EM charges. In this way, we have [30]

P
(0,1)
ff (x) = e2

f

[
pqq(x) +

3

2
δ(1− x)

]
,

P
(0,1)
fγ (x) = e2

f pqg(x) ,

P
(0,1)
γf (x) = e2

f pgq(x) ,

P (0,1)
γγ (x) = −2

3

∑
f

e2
f δ(1− x) , (3.4)

where f denotes any fermion (quark or lepton) with its corresponding EM charge ef , and

∑
f

eaf = NC

nF∑
j=1

eaqj +

nL∑
j=1

ealj , (3.5)

is the sum over fermion charges, taking into account that quark-photon interactions are

degenerate due to color degrees of freedom (NC).

In order to obtain the pure two-loop QED corrections P
(0,2)
ij , we follow the ideas de-

picted in ref. [18]. We start from the results on the two-loop QCD anomalous dimensions
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in the light-cone gauge, originally performed for the non-singlet component by Curci, Fur-

manski and Petronzio in ref. [27] and extended to the singlet case in refs. [28, 29].1 Then we

take the corresponding Abelian limit, which involves replacing each gluon by a photon [32].

This automatically avoids the presence of diagrams with non-Abelian vertices (at least in

pure QED). The last step consists in replacing the original color structure with the one

obtained after the double replacement g → γ, and multiplying by the EM charge of the

fermions involved in the process.

However, as anticipated in section 2, lepton distributions enter in the evolution of the

system at O(α2), which forces us to compute also lepton-quark and lepton-photon kernels

at this order. The procedure is completely analogous to the one described before.

There is a subtlety related with the presence of quark loops in pure QCD results. In

that case, gluons couple in the same way to all quark flavours, originating a factor nF .

Once we replace gluons with photons, virtual leptons are also allowed inside the loop.

Both for leptons and quarks, the QED coupling is proportional to their EM charges. In

consequence, the replacement

nF →
∑
f

e2
f , (3.6)

has to be implemented in all the contributions arising from quark loops in the pure QCD

kernels.

Another subtle point that we must carefully treat is the presence of massive EW

bosons. As we mentioned before, we neglect their contribution in this work. This is due to

the fact that their mass is kept strictly non-vanishing, thus acting as an IR-regulator. In

other terms, IR-singular diagrams for processes involving heavy EW bosons can always be

treated by making use of QCD-QED splitting functions and factorizing the massive particle

into the hard scattering subprocess.

So, let’s present the explicit results. In first place, kernels involving gluons vanish at

this order; hence,

P
(0,2)
fg = 0 , P

(0,2)
gf = 0 , P (0,2)

γg = 0 ,

P (0,2)
gγ = 0 , P (0,2)

gg = 0 . (3.7)

Then, we consider those kernels which involve quarks and photons,

P (0,2)
qγ =

CA e
4
q

2

{
4− 9x− (1− 4x)ln (x)− (1− 2x)ln2 (x) + 4ln (1− x)

+pqg(x)

[
2ln2

(
1− x
x

)
− 4ln

(
1− x
x

)
− 2π2

3
+ 10

]}
, (3.8)

P (0,2)
γq = e4

q

[
−
(
3ln (1− x) + ln2 (1− x)

)
pgq(x) +

(
2 +

7

2
x

)
ln (x)−

(
1− x

2

)
ln2 (x)

−2xln (1−x)− 7

2
x− 5

2

]
−e2

q

∑
f

e2
f

[4
3
x+pgq(x)

(
20

9
+

4

3
ln (1−x)

)]
, (3.9)

1For a complete review of the previous developments in the computation of higher-order corrections to

the splitting kernels and the anomalous dimension, see ref. [31] and the references therein.

– 8 –



J
H
E
P
1
0
(
2
0
1
6
)
0
5
6

P V (0,2)
qq = −e4

q

[(
2ln (x) ln (1− x) +

3

2
ln (x)

)
pqq(x) +

3 + 7x

2
ln (x)

+
1 + x

2
ln2 (x) + 5(1− x) +

(
π2

2
− 3

8
− 6ζ3

)
δ(1− x)

]

−e2
q

∑
f

e2
f

[4
3

(1−x)+pqq(x)

(
2

3
ln (x)+

10

9

)
+

(
2π2

9
+

1

6

)
δ(1−x)

]
, (3.10)

P
V (0,2)
qq̄ = e4

q [4(1− x) + 2(1 + x)ln (x) + 2pqq(−x)S2(x)] , (3.11)

P
S(0,2)
qQ = P

S(0,2)

qQ̄
= CA e

2
q e

2
Q ps(x) , (3.12)

where {q,Q} denote different quark flavours and we defined the function

ps(x) =
20

9x
− 2 + 6x− 56

9
x2 +

(
1 + 5x+

8

3
x2

)
ln (x)− (1 + x)ln2 (x) , (3.13)

which appears in all the higher-order corrections to the singlet components. The function

S2(x) is given by [28, 33]

S2(x) =

∫ 1
1+x

x
1+x

dz

z
ln

(
1− z
z

)
=

ln2 (x)

2
− ζ2 − 2Li2 (−x)− 2ln (x) ln (1 + x) .

In these formulae, ζn is the Riemann zeta function, which verifies ζ2 = π2/6 and ζ3 ≈
1.202057.

In an analogous way, splitting functions with leptons and photons are given by

P
(0,2)
lγ =

e4
l

CA e4
q

P (0,2)
qγ , (3.14)

P
(0,2)
γl = e4

l

[
−(3ln (1− x) + ln2 (1− x))pgq(x) +

(
2 +

7

2
x

)
ln (x)−

(
1− x

2

)
ln2 (x)

−2xln (1−x)− 7

2
x− 5

2

]
−e2

l

∑
f

e2
f

[4
3
x+pgq(x)

(
20

9
+

4

3
ln (1−x)

)]
, (3.15)

P
V (0,2)
ll = −e4

l

[(
2ln (x) ln (1− x) +

3

2
ln (x)

)
pqq(x) +

3 + 7x

2
ln (x)

+
1 + x

2
ln2 (x) + 5(1− x) +

(
π2

2
− 3

8
− 6ζ3

)
δ(1− x)

]

−e2
l

∑
f

e2
f

[4
3

(1−x)+pqq(x)

(
2

3
ln (x)+

10

9

)
+

(
2π2

9
+

1

6

)
δ(1−x)

]
, (3.16)

P
V (0,2)

ll̄
=
e4
l

e4
q

P
V (0,2)
qq̄ , (3.17)

P
S(0,2)
lL = P

S(0,2)

lL̄
= e2

l e
2
L ps(x) . (3.18)

Mixed quark-lepton evolution kernels are given by

P
S(0,2)
lq = P

S(0,2)
lq̄ = e2

l e
2
q ps(x) , (3.19)

P
S(0,2)
ql = P

S(0,2)

ql̄
= CA e

2
l e

2
q ps(x) , (3.20)
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Figure 1. K factors for the qq splitting functions (%). We separate among u (solid lines) and d

(dashed lines) quarks to study the EM charge effects, and also among the different perturbative

orders. Notice that α2
S terms are dominant (they are suppressed by a factor 103 in this plot) and

they exhibit almost the same behaviour for both u and d quarks.

and we notice that they share the same functional dependence, with the exception of the

global normalization (influenced by the average over the quantum numbers of the initial

particle). Finally, for the photon splitting kernel we have

P (0,2)
γγ =

∑
f

e4
f

[−16 + 8x+
20

3
x2 +

4

3x
− (6 + 10x)ln (x)

− 2(1 + x)ln2 (x)− δ(1− x)

]
, (3.21)

that, at this order, includes both real and virtual corrections, in contrast with O(ααS)

contributions [18].

4 Phenomenological impact of QED corrections

According to the expansion shown in eq. (2.6), the weight of higher-order corrections is

suppressed by powers of α and αS. In fact, working at µ = MZ , we have a = 1.2434×10−3

and aS = 1.8860 × 10−2. Thus, we anticipate that QED contributions to the AP kernels

are small compared to pure QCD kernels. However, it might still happen that their effects

become magnified due to the specific shape of the different PDFs. For this reason, we

perform a study of the QCD and QED contributions to the splitting kernels to anticipate

the possible consequences in the evolution of the PDFs.

Let’s start with the analysis of the pure quark kernels Pqq. We define the ratio

K
(i,j)
ab = aiS a

j P
(i,j)
ab (x)

PLO
ab (x)

, (4.1)
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Figure 2. K factors for the qg (left) and gq (right) splitting functions (%). We include O(α2
S) and

O(ααS) contributions, and we also distinguish according to the EM charge of the involved quark;

solid lines are used for u quarks, whilst d quarks are displayed with dashed lines. The O(α2
S) term

is dominant, and we suppress it by a factor 103 in order to improve the graphical presentation.

where PLO
ab (x) is the contribution to the evolution kernel at the lowest order in α and αS.

Notice that

PLO
ab = aS P

(1,0)
ab + aP

(0,1)
ab , (4.2)

i.e. PLO
ab is not necessarily the lowest order contribution in only one of the couplings. We

extract the O(α2
S) contributions from refs. [27, 28] and the O(ααS) ones from ref. [18]; the

resulting plot is given in figure 1. We distinguish there among quarks belonging to the

up and down sector, respectively. As expected, deviations arising from QED corrections

for u quarks turn out to be bigger than those for d quarks, since they are proportional to

e2
q . P

(2,0)
qq terms are dominant in both cases; they represent a O(10%) correction, at least.

However, the other corrections are of the same order of magnitude; approximately ±0.04%.

Except from the singular behaviour in the limit x→ 0, there is a positive enhancement of

P
(1,1)
qq for x ≈ 0.10− 0.15 and a negative one for x ≈ 0.75− 0.80.

A similar analysis can be performed for Pqg and Pgq (figure 2). Pure QCD contributions

to the splittings involving gluons are dominant against mixed QCD-QED ones; in any case,

these contributions become increasingly relevant in the low x region. Since gluon PDFs

are magnified in that region, we expect a non-negligible effect in the evolution. The small

EM charge separation observed in the Pqg kernel for α2 correction originates from the

normalization of the K factor via eq. (4.2).

On the other hand, kernels involving a photon receive larger QED corrections, as

observed for Pqγ and Pγq (figure 3). Mixed O(ααS) QCD-QED contributions can reach

the 20% level for Pqγ , while the two-loop QED terms modify the photon initiated kernel

by up to 2% at small x. Furthermore, kernels involving leptons provide a non-trivial

modification of QCD PDFs at O(α2). In figure 4 we plot the K factors for Pll, Plγ and Pγl,

respectively. Again, corrections reach the 2% level for the photon initiated kernels that

can produce non-negligible effects to the photon distribution in a global analysis.
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Figure 3. K factors for the qγ (left) and γq (right) splitting functions (%). α2 and ααS terms

are included, with the last one being the dominant contribution. The EM charge distinction is

enhanced in P
(i,j)
qγ splitting, around x ≈ 0.65. Mixed QCD-QED contributions are suppresed by a

factor 10 to improve the visibility in the plot.
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Figure 4. K factors for the O(α2) corrections to the splitting functions involving leptons. In the

range 0.1 ≤ x ≤ 0.95, these contributions represent less than 2%; they become more sizable near

x = 0 (for K
(0,2)
lγ and K

(0,2)
ll ) and x = 1 (for K

(0,2)
lγ and K

(0,2)
γl ).

5 Conclusions

In this paper, we have presented for the first time explicit expressions for the Altarelli-Parisi

splitting kernels to O(α2), completing the computation of the two-loop kernels needed to

study the evolution of parton distributions to the precision achievable at the LHC. The full

set of kernels includes those related to both photon and leptonic densities, the latest being

allowed to mix in the evolution with parton distributions, mixing that starts at two-loops

in QED.
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Figure 5. K factors in the low-x region. We plot the O(α2
S), O(ααS) and O(α2) corrections to

the mixed QCD-QED splitting functions . In the first line, we considered Kqg (left), Kgq (center)

and Kqq (right). In the second one, we show Kqγ (left), Kγq (center) and the O(α2) corrections to

the kernels involving leptons (right).

We have obtained the corresponding kernels from the well-known NLO QCD correc-

tions to the splitting functions, after carefully applying a well-defined algorithm to take

the Abelian limit of the pure QCD expressions.

Finally, we have performed a phenomenological analysis to study the implications of

these corrections in the splitting functions. We find that two-loop corrections are negligible

for the pure quark kernels, but become sizable for Pqg and Pgq at small x values (see

figure 5). The effect of QED corrections turns out to generate O(2%) corrections for the

splitting functions initiated by photons, which will alter the shape and size of the photon

and leptonic distribution functions in a global analysis.
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