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Abstract

In a general two-machine n-job scheduling problem, it is assumed that
every possible sequence of jobs can be executed, so that whichever best served
a given measure can be selected. This paper considers two more restricted
cases in which certain orderings are prohibited, either by technological
constraints or by externally imposed policy. In the first case, some of the
decisions of a schedule have already been made and the schedule must be
completed without altering what has been decided. In the second case, jobs
are grouped into disjoint subsets within which a job order is specified, but
which may be preempted between jobs. For ecach of these two cases, a rule is
given for determining the sequence in which jobs are to be processed on the

machines in order to minimize the total elapsed time.

1. Introduction

Bellman [1] and Johnson [5] considered a problem involving the scheduling
of n jobs on two machines. In their formulation, we are given two machines,
I and II, and a set of n jobs. Also given are the processing times (including

any set-up or tear-down times), Ai and Bi’ for each job Z on machines I and II

respectively. Each machine can handle only one job at a time and each job
must be processed through machine I and then machine II. Johnson gave a
simple decision rule for the optimal scheduling so that the total elapsed time
is minimum,

Mitten [5, 6] treated a scheduling problem which is similar to
the Bellman-Johnson problem. In his model, associated with each job 7 is

processing times, Ai and Bi on machines I and II respectively, and a start-lag
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Di (20) and a stop-lag Ei (>20). The start-lag is defined to be the
minimum time which must elapse between starting job < on machine I and
starting it on machine II, while the stop-lag is defined to be the minimum
time which must elapse between completing job < on machine I and completing
it on machine II. He gave a decision rule to obtain the sequence in which
the jobs are to be processed on the machines, using the same sequence for both
machines, in order to minimize the total elapsed time.

Johnson [4] considered a more difficult general case, where different job
sequences are allowed for the two machines. He gave a necessary condition for
a reversal of order of consecutive jobs %, J on machine I to J, 7 on machine

IT in a pair of mutually optimal sequences (SI, SII)’ where SI and SII are

the optimal sequences on machines I and IT respectively. He also gave a
sufficient condition under certain restrictions.

We remark that the Mitten-Johnson problem with Di = Ai and Eé = Bi
reduces to the Bellman-Johnson problem.

In all the preceding papers, it is assumed that every possible sequence
of the jobs can be executed, so that whichever best served a given measure can
be selected. In this paper, we consider situations in which certain orderings
are prohibited, either by technological constraints or by externally imposed

policy.

2. String Problems

In the Bellman-Johnson two-machine scheduling problem, we consider
a situation, in which some of the decisions of a schedule have already been
made and in which we have the task of completing the schedule without altering
what has been decided. In general, suppose that the original = jobs have been
grouped into w disjoint subsets of jobs called strings. Assume that the
membership of each string is fixed, that the order of jobs within each string
is fixed, and that once started an entire string must be processed to be

completed. We denote a string by Ii = (ul, a s ani) which indicates

2’

that jobs a, o > Oy, Must be processed without interruption according

2,
to this order. In this section, we give a method to obtain a string sequence
which minimizes the total elapsed time.

Let AE and Bz denote the total processing times of the string Ii on

machines I and II respectively. Assuming that only the string Ii is processed,
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let ¢, be the total elapsed time of the string. Under the same assumption,
let a, and bi be the total idle times of the string on machines II and I

respectively. If A(Z, J) is the processing time of the j-th job in the string

Ii on machine I and B(Z, j) is the corresponding time on machine II, then it

is obvious that

7.,
7
A% = ) A6, D,
7 .
J=1
",
7
B% = 2 B(i, j)’
1 .
J=1
",
U 7
c; = max { J4aE, H + ) BE, )1,
l1<ux<n., j=1 J=u
= 7
U u-1
a.=c¢, - B% = max { JAG, ) - 1 BE, >0
T 7 7 . . .
1 <u<n, g=1 Jg=1
=" ="
and
n. n.
7 7
= - * = 2 7 - ) /
bi c, - A% max { 'Z B(Z, J) ‘ ) 4@, §) ¥ >o.
luzgn, g=u J=u+l

Lemma 1. For a string problem, it suffices to consider the schedules in
which the total idle time, on machine II, of each string is put before the
start of the first job in the string.

Proof. If the total idle time, on machine II, of a string is put before
the start of the first job in the string, and so, jobs in the string are
processed successively on machine II, then the completion-time of the last job
in the string does not increase while those of the other jobs in the string
may increase. Hence, starting times of the jobs which belong to other strings
do not increase. Therefore, the total elapsed time does not increase even if
the total idle time, on machine II, of each string is put before the first job

in the string.

If the total idle time, on machine II, of each string is put before the

start of the first job in the string and the corresponding time on machine I
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is put after the end of the last job in the string, then string Ii is neither
started on machine II sooner than ai time units after it was started on
machine I, nor finished on machine II sooner than bi time units after it was

finished on machine I. Thus, the string problem reduces to the Mitten-Johnson
problem with w jobs. In the reduced problem, associated with each job < which
corresponds to string Ii in the original string problem is processing times AE
and Bz, on machines I and II respectively, and the start-lag a and the
stop-lag bi'
Let M. = max (a. - A%, b. - B%) and let S! and S!_ be the sequences of
T 7 7 7 1 I IT
strings on machines I and II respectively. The following lemma can be proved

in the same manner as a theorem of Johnson [4].

Lemma 2. For a string problem, a nccessary condition for a reversal of

order of consecutive strings Ii’ Ij on machine I to Ij’ Ii on machine II in

a pair of mutually optimal sequences (S!, SiI) is that
M. > M, + max (4%, B*).
T dJ J J

This is also a sufficient condition provided string I is not reversed with

its preceding string on machine I and string Ij is not reversed with its

following string on machine II.

Theorem 1. An optimal ordering for a string problem is given by the

following rule. String Ii precedes string Ij if
min (ai, bj) < min (aj, bi)'

If there is equality, either ordering is optimal, provided it is consistent
with all the definite preferences.
Proof. As noted previously, a string problem reduces to the Mitten-

Johnson problem. Since

ni u-1
a. - A* = b, - B* = - min { ) AE, §) + ) B, §) ¥ <o,
7 7 7 7 . . =
1l <u n, J=u+l J=1

we have
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M. =max (a. - 4%, b. - B%) <0
Z 7 7 7 A

and

i

M. + max (4%, B%*) = max (a. - A%, b, - B%) + max (4%, B¥)
7 7 Z 7 7 7 7 7 7

[t}

max (ai, bi) >0,

and thus, Mi < M3 + max (A}, B;) for any ©7 and j. Therefore, from Lemma 2,

it suffices to consider the sequences in which orderings are identical for

both machines. Since AE + Mi =a. and Bz + Mi = bi’ the theorem is apparent

by a theorem of Mitten [6]. This terminates our proof.

3. Relations between Strings
In this section, we prove relations between strings.

For strings Ii and Ij’ Ii >—Ij, Iifv Ij and Ii "> Ij represent

min (ai, bj) < min (aj, bi)’

min (ai, bj) min (aj, bi)

and

min (ai, bj) < min (aj, bi)’

respectively. We remark that the relation »> is transitive.

For strings Ii = (ul, Oy voe s ani) and Ij = (Bl, 82, cee an), we
denote a string (al, Gps wev s O 81, 82, e an) by (Ii’ Ij)’
For strings Il’ I2 and 13, we put I4 = (Il, Iz) and I5 = (Iz, 13). It

should be noted that

a; - bi = A; - Bz for all <,
a, = max (a, a; +a, - b)),
ag = max (az, a, * az - bz),
b4 = max (b1 + b2 -y bz),
bs = max (b2 + bS - ags bs],
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and

a. - b_ =

c 5 =a, - b2 +a, - Db

3 3

Lemma 3. Let I,» I, and I be strings. If I » I, » I, then
(Il, IZ) > IS and I1 boa (IZ, IS)'

Proof. We prove (Il, I2) Ve IS’ i.e.,
(N min (a4, bS) < min (az, b4).

Since I1 > I2 > 13, we have

min (al, bz] < min (az, bl)

and
min (az, bg) < min (as, b2).

Case 1. bS < Ay bz.

Then b3 < a, and b3 < bz ;:b4 so that b3 < min (a,, b4).
Case 2. a; < a,, bl and Ay < g, bz.

Then we get

a, = max (al, a, + a, - bl) < max (al, a2) =a, < Ay
and a, ;:az < b2 ;=b4. Thus, we obtain a < min (as, b4).

The proof of I1 »> (IZ, IS) is similar. This terminates our proof.

Lemma 4. Let Il’ I2 and I3 be strings. If Il~< I2 and (Il, IZ)-< IS’
3)°

Proof. It suffices to show

then Il-< (12, I

(2) min (as, bl) < min (al, bs).

Since Il‘< I2 and (Il, 12)—< 13, we get
min (az, bl) < min (al, bz)

and
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min (a3, b4) < min (a4, b.).

3
Case 1. bl Laps s b2 and b4 S ags s bg°
Then bl <a and bl ;bz __<:b4 ;bs ;bs so that bl < min (al, bs).
Case 2. a, < ay, bl’ bz and b4 S Ags Oy bs.
.Then we get
bS ;:bs 3:b4 = max (bl + b2 - Ay, bz) > max (bl, bz) g=b1
and
a, - bl >a - bl *a, - b2 =a, - b4 > 0.
Hence, (2) is proved.
Case 3. bl <ap, a,, bz and Gp S dys bS’ b4.
Then bl <ay and
bl §:b2 < max (bz, bS) < max (b2 + b3 - G bs] = bs.
Hence, we have bl < min (al, bs).
Case 4. a, < dy; bl, bz and a, < a,, bS’ b4
Then bs - ag = b2 - a, * b3 - G, 2 0. If a ;=b1’ then we get (2). If
a < bl’ then
ag = max (az, a, * dg - bz) < max (az, as) < max (al, a4) =a,
= max (a;, a; *+a, - bl) < max (a;, a2) =a.

Hence, (2) is proved.

This terminates our proof.

The same type of proof as above establishes

Corollary 1. Let Il’ 12 and 13 be strings. If Il—< (12, 13) and IZ~< IS’

then (Il’ Iz)-< IS'

4. Chain Problems

In this section, we consider a more general situation in which directly-
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precedes relationships are given between certain pairs of jobs such that a
given job has at most one predecessor and at most one successor. Thus, origi-
nal jobs are partitioned into disjoint subsets called chains within which a
job order is specified, while interruptions between jobs are allowed. Let a

chain Ci = {ul, o s ani} denote the relation that jobs R

2}
must be processed according to this order, while preemption between these jobs
is admissible. In what follows, we give a method to obtain a job sequence
which minimizes the total elapsed time under the constraint that original =

jobs be partitioned into w chains, with nys 7 n, as the numbers of

g
jobs in the corresponding chains.

If a chain Ci = {al, o s a”i} is divided in such a manner that all

2)
the constraints of the order to be processed are satisfied, then the division

is called a division of the chain Ci' If {(al, Oy ne s as), (&s+1’ o

R uk), e (uZ+1, T TOTERER um), cee (au+1, O os e s ani)} is a

division of a chain Ci’ then each (o , am) is said to be a sub-

1417 %142

chain of Ci' For simplicity, we denote a division of a chain by {(Il), (IZ),
s (Ij), cee (Iq)}, where each Ij is a subchain. For subchains Ij and

Ik’ Ij >Ik, Ijr\.— I;,< and Ij - Ik denote Ij >Ik, Ijm— Ik and Ij > Ik’

respectively, regarding Ij and Ik as strings.

We call a subchain (uz+1, 7,00 > Oy Gy s , am) an elementary
subchain if and only if (uZ+1, O ns ooe s at) < (at+1, Oy, , qm] for
any subdivision {(uz+1, g ns +oe s at), (at+1, Oy yno s am)} of the

subchain. We call a division of a chain an elementary division of the chain

if and only if all the subchains in the division are elementary subchains.

For example, {(al), (az), cee (“ni)} is an elementary division of the chain
{ul, Oy ven s ani}.

Theorem 2. Let {(Il), (12), e, (Ij)’ (Ij+1)’ e, (Iq)} be an elemen-
tary division of a chain. If Ij~< Ij+1’ then {(Il), (12), cee (Ij_l),

(Ij’ Ij+1)’ (Ij+2)’ s (Iq)} is also an elementary division of the chain.

Proof. Putting Ij = (az+1, Ay ps o s ak) and Ij+1 = (uk+1, Upypr *oe

um), we consider a subdivision {(uz+1, Uy ns wee s at)’ (at+1, Oy yns , am)}
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of the subchain (Ij’ I ). By assumption, we have Ij~< I.

. If t <k, then
J+1

g+l

since Ij is an elementary subchain we get (az+1, Ogpgr toe at)—< (at+1’

s ak). Thus, it follows from Lemma 4 that (o

Gy yn 141° %gun o at)<<

(ut+1, OUpyns woe 5 Ogs Qg s wvn s um). If ¢ > k, then by the similar argu-

ment, we get the same conclusion. If ¢ = k, then obviously (az+1, Ogpns tor >

at)-< (at+l’ Uypns coe am]. Hence, ) is an elementary subchain.

(Ij’ Ij+1

Since all other subchains are elementary subchains, we get the desired result.
In what follows, T(S) denotes the total elapsed time under a schedule S.

Lemma 5. 1If Ij-< Ij then for any strings J., J, and JS’ one of the

+1’ 1’ 72
relations:
STUAED, @), (), (1,0, UGN
and
Q) THE, Gy, (1), U, G

S TAED, (1), (3, (L), G)D

is satisfied.

Proof. Since Ef4<1j+1’ one of (i) Ij »> J2 and J2-< Ij+l’ (i1) Ij-< J2

and J2 > Ij+1 and (iii) Ij-< J2 < Ij+1 is satisfied. 1In case (i), (3)

holds. In case (ii), (4) holds. And in case (iii), (3) and (4) hold.

Theorem 3. Let I* be an elementary subchain. If I* is partitioned into

{(Ll), (Lz), cee (LZ)}, then for any set of Z+1 strings Jl’ J2’ e JZ+1’

one of the relations:
THWEY, 9, (), Gg), - s G, DD
TEWED, @), G, @), o s (), @), (T, 0D

fiA

and
THED, G, n s (), (%), Ty, PP
<TAWD, @), ), @), «ov s (), @), Ty, D
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is satisfied.
Proof. The proof proceeds by the induction on IZ. For 7 = 2, the theorenm

-

is a direct consequence of Lemma 5. Assuming that the theorem is proved for

7 = m-1, we consider the case 7 = m. If Ly > L, N Ly B L,1» L.
then it follows from Lemma 3 that (Ll, L2, S Lm—l) > Lm. This contra-
dicts the assumption that I* = (Ll, L2, N T Lm) is an elementary
subchain. Hence, there exists a k such that Lk—< Lk+1' For the k, we put
s, = (L), @)y (3, (L), v, (), g, ) (), (I,
Upp)s (pyn)s e s 00, (L), (O, DY,
82 = {(Jl), (Ll)) (Jz)’ (LZ)’ eee (JZ(): (Lk)9 (Lk*‘l)’ (Jk+1)’
Upn)s Wpn)s e s (30, (L), (3, ),
53 = {(J1)9 (Ll)’ (J2)> (Lz)s LA ] (Jk)) (Lk), (Jk+1)> (Lk'l-l),
Upeg)s (gyds oo s (305 (L), (3, 0%
S, = (LU, Ty oov s (3, (I9), G, 1))
and
S¢ = {(Jl), (I*), (Jz)’ (JS)’ cee s (Jm+1)}-

By Lemma 5, one of T(Sl) i:T(Sg) and T(Sz) é:T(Sg) holds. By the induction

hypothesis, one of T(S4)

fin

T(Sl) and T(SS)

A

T(Sl) holds and one of T(S4):;
T(SZ) and T(Ss) §:T(Sz) holds. Therefore, it follows that one of the relations

T(S4) §=T(83) and T(SS) ;:T(SS) is satisfied. This terminates our proof.

Let {(Il), (12), e (Iq)} be an elementary division of a chain. We

call the division an optimal division of the chain if and only if Ilk} I, >

S Rq-1>>' Iq. An optimal division of a chain {ul, o S uni} is
given in the following fashion:
Step 1. Let {(al), (uz), e, (ani)} be an initial elementary division. Go

to Step 2.
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Step 2. For the current elementary division {(Il), (12], ey (Ij)? (Ij+1)’
i i . . i i . ... G
, (Iq)}, find subchains IJ and IJ+1 which satisfy IJ-( IJ+1 )

to Step 3. If there are no such chains, then the current elementary
division is an optimal division.

Step 3. Make up an elementary division {(Il), (IZ), e (Ij_l), (Ij, Ij+l)’

(T...), ..., (Iq]}. Return to Step 3.

J+2

The following theorem gives a method to obtain an optimal sequence for

a chain problem.

Theorem 4. 1If all the chains in a chain problem are divided into optimal
divisions, then the optimal sequences for the string problem given by regard-
ing all the subchains in the optimal divisions as strings are optimal
sequences for the original chain problem.

Proof. Let S* be an optimal sequence for the string problem regarding

all the subchains in the optimal divisions of chains Cl’ C2, e Cw as

strings and let S be an optimal sequence for the chain problem. By Theorem 3,
there is a sequence Sl’ with T(S) ;=T(Sl)’ which is feasible for the chain
problem and in which all the subchains in the optimal division of Cl are
processed successively. Similarly, there is a feasible sequence S2 for the
chain problem in which all the subchains in the optimal divisions of C1 and C2
are processed successively such that T(Sl) ;:T(S2). Thus, it follows that
there is a sequence Sw, with T(S) ;:T(Sw), which is feasible for the chain
problem and in which all the subchains in the optimal divisions of chains Cl’
C2, cos s Cw are processed successively. Hence, Sw is feasible for the string
problem so that T(S) ;:T(Sw) > T(S*). On the other hand, since S* is feasible

for the chain problem, we get T(S) < T(S*). Therefore, we obtain T(S) = T(S*),

and hence, S* is optimal for the chain problem. This terminates our proof.

5. Examples

In this section, we give two breaf examples which illustrate some of
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the results in the preceding sections.
Example 1. Consider three strings I1 = (1, 2, 3, 4, 5, 6), 12 = (7, 8,
9, 10, 11) and 13 = (12, 13, 14). For each job 7, the processing times Ai and

Bi on machines I and II are given in Table 1. The total idle times for I1 are

Table 1. The processing times of the jobs

7 1 2 3 4 5 6 7

4. 6 3 7 ) 1 6 1
7

B. 3 S 2 6 7 S5 3
7

7 8 9 10 11 12 13 14

A, 3 7 5 8 3 4 6
7

B, 2 6 1 4 5 7 2
1

U u-1
“T 1 ;3"; 6 { @ZlAi ) ileﬁ bo
and
6 6
b, = . <m2$; } { iZuBi - i=g+1Ai b= 11

The total idle times for I, on machines II and I are 12 and 4, respectively,

2
i.e.,
a, = 12 and b2 = 4,
The total idle times for 13 on machines II and I are 3 and 4, respectively,
i.e.,
az = 3 and b3 = 4,

For the string problem, Theorem 1 gives an optimal sequence {(13), (Il), [12)}.

The total elapsed time for the sequence is 69 time units.
Example 2. In Example 1, let us suppose that I.,, I, and I, are chains.

It is easily seen that {(1, 2, 3, 4, 5), (6)}, {(7), (8, 9), (10, 11)} and
{(12), (13), (14)} are optimal divisions of the chains Il’ 12 and 13, respec-
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tively. For each of these subchains, Table 2 gives the total idle times a and
b, on machines II and I, respectively. We read, from Table 2, that {(7), (12),
(13), (1, 2, 3, 4, 5, (8, 9, (6), (10, 11), (14)} is an optimal sequence for

the chain problem. The total elapsed time for the sequence is 67 time units.

Table 2, The total idle times of the subchains

|

subchain (1,2,3,4,5) (6) (7) (8,9) (10,11) (12) (13) (14)

a 11 6 1 8 12 3 4 6
b 12 5 3 6 4 5 7 2
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