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                                Abstract

     In a  general  two-machine  n-job  seheduling  problem, it is assumed  
that

every  possible  sequence  of  jobs can  be executed,  so  that  whichever  
best

 
served

a  given  rneasure  can  be selected.  This paper  considers  two  more  restricted

cases  in which  certain  orderings  are  prohibited,  either  by  technological

constraints  or  by  externally  imposed  policy. rn the  first case,  some  of  the

decisions  of  a  schedu!e  have  already  been  rnade  and  the schedule  must  be

completed  without  altering  what  has  been  decided.  In the  second  
case,

 jobs

are  grouped  into disjoint  subsets  within  which  a  job order  is specified,  
but

which  may  be preempted  between  jobs. For  each  of  these  two  cases,  
a
 
rule

 
is

given  foT deteTmining  the  sequence  in which  jobs are  to be processed  
on

 
the

machines  in order  to  minimize  the  total  elapsed  time.

'

1. Introduction

     Bellman  [1] and  Johnson  [S] considered  a  problern involving  the  
scheduling

of  n  jobs on  two  machines.  In their  formulation,  we  are  given  two  
machines,

I and  II,  and  a  set  of  n  jobs. Also  given  are  the processing  times  (including

                                      .,
 for each  job t on  machines  I and  II

any  set-up  or  tear-down  times),  Ai  and  Bt

Tespectively.  Each  machine  can  handle  only  one  job at  a  time  
and

 
each

 job

must  be precessed  thTeuglt  machine  I and  then  machine  II. Johnson
 gave 

a

simple  decis ±on  rule  for the  optirnal  scheduling  so  that  the  total  
elapsed

 
tirne

is minimum.

     Mitten  [S, 6] treated  a scheduling  problem  which  is similar  
to

the  Bellman-Johnson  problem.  In his model,  associated  with  each  job t is

processing  times,  Ai  and  Bt  on  rnachines  I and  II respectively,
 

and
 
a
 

start-lag

                                     1
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Dt

 ClO)  and  a stop-lag  Et  ClO).  The  start-lag  is defined  to be the

   
s-  - -

 
mimmum

 
time

 
which

 must  elapse  between  starting  job i on  maehine  I and

  
starting

 it on  machine  II,  while  the  stop-lag  is defined  to be the  minimurn

 
tirne

 
which

 
must

 
elapse

 between  completing  job i on  machine  I and  completing

 
it

 
on

 
machine

 II. He  gave a  decision rule  to obtain  the  sequence  in which

 
the

 jobs aTe
 
to

 be processed on  the maehines,  using  the  same  sequence  for  both

 
machines,

 in order  to  minimize  the  total  elapsed  time.

      
Johnson

 [4] considered  a  more  difficult general  case,  where  different  job

 
sequences

 
are

 
allowed

 for the  two  machines.  I.Ie gave  a  necessary  condition  foT

 
a
 
reversal

 of  order  of  consecutive  jobs i, J' on  machine  I to J', a on  machine

 
II
 
in
 
a
 
pair

 
of

 
mutually

 
optimal

 sequences  CSIs SII), where  SI and  SII are

 
the

 
optimal

 
sequences

 on  machines  I and  II respectively.  He also  gave a

 sufficient  condition  undeT  eertain  restrietions.

      We remark  that  the  Mitten-Johnson  problem  with  D. =  A.  and  E.  =  B.
                                                   zz  tz

 reduces  to  the  Bellman-Johnson  problem.

      
In

 
all

 
the

 preceding  papers,  it is assumed  that  every  possible  sequence

 
of

 
the

 jobs can  be  executed,  so  that  whichever  best served  a  given  measure  ean

 
be

 
selected.

 
In

 
this

 paper,  we  consider  situations  in which  eertain  orderings

 
are

 prohibited, either
 by technological  constraints  or  by externally  imposed

 policy.

 2. String Problems

     
In

 the  Beliman-Johnson  two-machine  scheduling  problem,  we  consider

a
 
situation,

 
in

 
which

 some  of  the  decisions of  a  schedule  have already  been
made

 
and

 
in

 
which

 
we

 have  the  task  of  completing  the  schedule  without  altering

what
 
has

 been deeided.  In general,  suppose  that  the  original  n  jobs have  been
grouped  into w  disj'oint subsets  of  jobs called  strings.  Assume  that  the
membership

 
of

 
each

 
string

 is fixed,  that  the  ordier  of  jobs within  each  string

is
 
fixed,

 
and

 that  onee  started  an  entire  string  must  be processed to be
completed.

 
IVe

 
denote

 
a
 

string
 by Ii 

=
 Cor1, or2, ...  , ctni)  wltich  indicates

that
 jobs ct1, cr2,  ･･e ,  ant  must  be processed  vJithout  interruption  aceording

to
 
this

 
oTder.

 
In

 
this

 section,  we  give a  method  to obtain  a string  sequence

whieh  minimizes  the  total  elapsed  time.

     
Let

 
AE

 
and

 
BS

 
denote

 the total  processing  times  of  the  string  I. on
                                                                 T

machines
 
I
 
and

 
II
 

respectively.
 Assuning  that  only  the  string  It is processed,
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let e.  be the total  elapsed  time  of  the  string.  Under  the  same  assumption,
    tlet

 a.  and  h. be the  total  idle times  of  the  string  on  machines  II and  I
    t t

respectively.  If A(t,  g'} is the  processing  time  of  the  g'-th job in  the  string

I. on  machine  I and  BCi, g') is the  corresponding  time  on  machine  II,  then  it
 tis

 obvious  that

               
ni

         
A;
 

=

 
,.E,A

 
(a･

 
g')･

               
ni

               EB(a, J'),         BS  =

          t
              g'=1

                                       n.
                          u z

                 max  { ZA(i, g') +  2BCi, g') },         e.  =

          
Z
 lsusni  .rt'=1 g'=U

                                    u  u-I

         
at

 
'

 
ea

 
-

 
B;
 

=i

 gM[IXg .i  giiA 
(t,･J')

 
-

 g.E.iB(a} 
ti)
 
}'O

and

                                    n.  n.
                                     z z

         
ht
 

"

 % 
-

 
A;
 

=1

 sMiiXs .i{  g･.i..B(t' 
g')
 
-

 g･--E.IL(t' 
J')
 
}'

 
O'

     Lemma i. For  a  string  problem, it suffices  to  eonsider  the  schedules  in

which  the  total  idle  tinie, on  machine  II, of  each  string  is put  before the

start  of  the  first job in the  gtring.

     Proof. If the  total  idle  time, on  machine  II,  of  a  string  is put before

the  start  of  the first job in the string,  and  so,  jobs in the  string  are

proeessed  successively  on  machine  II, then  the  coxpletion-time  of  the  la$t job
in the  string  does  not  increase  while  those  of  the  other  jobs in  the  string

rnay  increase.  Hence,  starting  times  of  the  jobs which  belong  to  other  Strings

do not  increase.  Therefore,  the  total  elapsed  time  does  not  increase  even  if

the total  idle time,  on  machine  H,  of  each  string  is  put  before  the  fiTst job

in the  string.

     If the total  idle  time,  on  machine  II, of  each  string  is  put  before  the

staTt  of  the fiTst  job in the  string  and  the  corresponding  time  on  machine  I
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is put  after  the  end  of  the  last job in the string,  then string  Ii is neither

          started  on  machine  II  sooner  than  a.  time  units  after  it was  started  on
                                            t

          machine  I, nor  finished  on  machine  II sooner  than  b. time  units  after  it was
                                                           z

          finished  on  machine  I. Thus, the  string  problem  reduces  to  the  Mitten-Johnson

          problem  with  w  jobs. In the  reduced  problem,  associated  with  each  job t which

          
correspondS  to  string  Ii in the  original  string  problem  is processing  times  A;

          and  B;, on  machines  I and  II respectively,  and  the  start-lag  ai  and  the

          stop-iag  bi･

               Let 
Mt  

=
 max  (ai -

 AE,  bt  
-
 B;)  and  let Si and  Sh,  be  the  sequences  of

          strings  on  machines  I and  II respectively.  The  fellowing  lemma  can  be proved

          in the same  manner  as  a  theorem  of  Johnson  [4].

               Lemma 2. For  a  string  problem,  a  necessary  condition  for a  reversal  of

          
order

 
of

 
consecutive

 
strings

 
It,

 
Ig.

 
on

 
machine

 
I
 
to

 
Ig.,

 
It

 
on

 
maehine

 
II

 
in

          a  pair of  rnutuaUy  optima!  sequences  (Si, Sil) is that

                               M. >  M.  +  max  (A ".,  B".).
                                tg                                              gg

          This
 
is

 
also

 
a
 sufficient  

condition
 provided  string  

Ii
 
is

 not  
reversed

 
with

          its preceding string  on  maehine  I and  string  I. is not  reversed  with  its
                                                      g
          following  string  on  machine  II.
                                            '

               Theorem 1. An  optimal  ordering  for  a  string  problem  is given  by the

          
following

 
rule.

 
String

 
Ii

 precedes  
string

 
Ig･

 
i'f

                             min  (a., b.) <  min  Ca., h.).
                                   tg                                                  gt

          If  there  is equality,  either  ordering  is  optimal,  provided  it is consistent

          with  all  the  definite  preferences.

               Proof. As  noted  previously,  a  string  problem  reduces  to  the  Mitten-

          Johnson  problem.  Since

                                                  n.
                                                   t  u-1

                  ai'-  A5  
=

 hi - B; =
 

-min
 { E Aci, g') +

 2B(i, g') }.<.! o,

                                       Su  .<L n.  g'"-"u+1 g'=1                                     1
                                       

-
 

･--
 z

          we  have

                                                                      NII-Electionic  
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        M. =  max  (a. - Art, b. - BE)  sO
                           Z T-                  tz         t

and

        Mi +
 max  (A2, Bg)

 
=
 max  Cai -

 
A5,

 
bi

 
-
 
B;)

 
+
 
max

 CA5, BS)

                          =  max  (a., b.) >  O,
                                 lt

and  thus,  M.  <  M.+  max  (AE, Bt) for any  i and  g'. Therefore,  from  Lemma  2,
                       gg          tg

it suffices  to consider  the  sequences  in which  orderings  are  identical  for

both  machines.  Since  Ark +  M.  =  a.  and  Bt  +  M.  =  b., the  theorem  is apparent
                    ztz  ztt

by a  theorem  of  Mitten  [6]. This  terminates  our  proof.

3. Relations between Strings

    In this  section,  we  prove relations  between  strings.

    For strings  
It

 
and

 
Ig.,

 
Ia

 >- Ig., Iatv
 
Ig.

 
and

 
Ii

 
>>

 
Ig.

 
represent

         min  Cai, bg･)
 s. min  (ag･, 

ba),

         
min

 (ai, bg･)
 

=min

 {ag･, 
foi]

and

         
min

 Cat, hg･)
 

<min
 (ag･, 

bt),
   'respectively.

 We  remark  that  the  relation  >>L is transitive.

    For  strings  Ii =
 (ul, ct2, -･･ , ant)  and  

Ig･
 
--
 (Bl, S2, ･･･

 , Bng･), We

denote  a  string  (ct1, or2, ･･･  , ctni,  Bl, B2, ･･･
 , Bng･) bY

 (Ii, Ig･),

    For strings  Il, I2 and  I3, we  put I4 
:

 CII, I2) and  Is =
 CI2, I3)･

 
It

should  be noted  that

         a.-h.=At-B8  for  all  i,
          zttt

         a4  
=
 max  (al, al  

+
 a2  

-
 bl),

         as  
=

 max  (a2, a2  
+
 a3  

-
 b2),

         b4 
=

 max  (bl +
 b2 

'
 a2,  b2],

         hs 
=
 max  (fo2 +

 h3 
-
 a3,  h3),

         a4-b4=ai-hi+a2-b2
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 and

          
as

 
-
 hs =

 a2  
-
 h2 

+
 a3  

-
 b3･

     
Lemma

 
3.

 
Let

 
Il,

 
I2

 
and

 
I3

 
be

 strings.  If Il )S>' I

 (Il, 
I2)

 >i)' 
Is

 
and

 
Il

 >>' CI2, I3)･

     
Proof.

 
We

 prove  {Il, I2)
 >>- I3, i･e･,

 (1) min
 Ca4, b3)

 
<min

 Ca3, b,P･

Since Il >>" I2 >> I3, we  have

          min  (ai, b2)
 

<
 min  Ca2, bi)

and

          
min

 Ca2, b3) <
 min  (a3, h2)-

case
 
1.

 h3 <
 a3,  b2･

  
Then

 
h3<a3

 and  b3 <h2
 sh4  so  that  h3 <  min  (a3, b

case
 
2.

 
al

 
<
 a2,  hl and

 a2  
<
 a3,  h2･

  Then  we  get

     
a4

 
=

 
max

 Cal, al
 

÷

 
a2

 
-
 
bl)

 s 
max

 (al, a2)  
=
 a2  

<

  anda  <a  <b  <

                2 ...  
b4.

 
Thus,

 we  obtain  a4  
<
 min  Ca3,       4 

--
 2

The
 proof of  Il >>' CI2, I3) is similar.  This terminates

     
Lemma

 
4.

 
Let

 
Il,

 
I2

 
and

 I3 be strings･  If  il"< I2

then  
IIK

 CI2, I3)'

     Proof. It suffices  to show

(2) min
 (as, ib1) £ min  Cal, bs)･

Since
 
IIK

 
I2

 
and

 CII, I2]
 
-<

 I3, we  get

         
min

 Ca2, bl) £ min  (al, h2)

and

2 >> I3,

4).

a3

b4)'

our

and

then

proof.

CII, I2)K
 I3,
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                  min  ca3, b4) gmin  (a4, b3)･

         case  1. bl s ai,  a2,  b2 and  b4 .<,. a3,  
a4,

 
h3.

           Then  bi lai  and  hi gb2  .<..b4 g'fo3 .<-r fos so
 that bi lmin  (ai, hs)･

         case 2+ a2  sai,  bi, h2 and  b4 la3, a4,  
b3･

           Then  we  get

              bs .>Tm ib3lh4  
=

 max  (bi +
 fo2-a2,  b2) lmax  Cbi, h2)

 l. bi

           and

              ai-hilai-bi+a2-h2=a4-b4lO･

           Hence,  C2) is proved.

         case 3- bi Eai, a2,  b2 and  a3  5. a4,  
b3,

 
b4･

           Then  hl £  al  
and

              foi g b2 s max  Ch2, b3) t-T max  (b2 +
 b3 

-
 a3,  

h3)
 

=

 
hs･

           Hence,  we  haye  hl g min  (al, bs)･

          case  4. a2  sai,  bi, b2 and  a3  5a4,  
fo3,

 
h4a

           Then bs "
 as  

=
 h2 -

 a2  
+
 h3 - a3  Il. O･ if

 
al

 lhi,  
then

 
we

 get C2).
 

if

           a  <b                   then
                 l'            1

              as  
=
 max  (a2, a2  

+
 a3  

-b2)
 E. max  Ca2, a3)

 Smax  Cal, a4)
 

=

 
a4

                 =  max  (al, al  
+
 a2  

-
 bl) s. max  (al, a2)

 
=

 
al･

           Henee,  (2) is proved.

          This  terminates  our  proof.

              The  same  type  of  proof  as  above  establishes

              Corollary I. Let  Il, I2  and  I3 be strings.  If  Il-<  {I2, I3)
 

and
 
I2-`<

 
I3,

          then (Il, I2)K  I3･

                                      '

          4. Chain Problems

               In  this  section,  we  eonsider  a  more  general  situation  in which  directly-

                                                                  NII-Electionic  
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precedes  relationships  are  given  between certain  pairs  of  jobs such  that  a

given  job has at  most  one  predecessor  and  at  most  one  successor.  Thus,  origi-

nal  jobs are  partitioned  into disjoint  subsets  called  chains  within  which  a

job order  is specified,  while  interruptions  between  jobs are  allowed.  Let  a

chain  Ct 
=
 {or1, or2, ... , ctnt}  denote  the relation  that  jobs or1, a2,  ... , ant

must  be processed  according  to  this  order,  while  preemption  between  these  jobs
is admissible.  In what  follows,  we  giye  a  method  to  Dbtain  a job sequence

which  minimizes  the  total  elapsed  time  under  the  constTaint  that  original  n

jobs be partitioned  
into

 
w
 
chains,

 with  nl,  n2,  ... , nw  as  the  numbers  of

jobs in the corresponding  chains.

     
If

 
a
 

chain
 Ci =

 {al, ct2, ･･.  , ctnt}  is dividied in such  a  manner  that  all

the  constraints  of  the  orcler  to  be processed aTe  satisfied,  then  the  division

is
 
called

 
a
 
division

 
of

 
the

 
chain

 
Ct･

 
If

 {Corl, 
or2,

 
･･･

 , 
as),

 Cas+1' ors+2'

...
 , 

ak),
 
...

 , (az+1, orz+2,
 
･･･

 , am),  ･･･ , (au+I, ctu+2,  .., , ctni)}  is a

division
 
of

 
a
 

chain
 Ci, then

 each  Corz.1, ctz+2,  ...  , am)  is said  to  be a  sub-

chain
 
of

 
Ca.

 
For

 
simplicity,

 
we

 denote a  division  of  a  chain  by  {CII), CI2),

.-･
 , (Ig･), 

.`.
 , CIq)}, where

 each  
Ig.

 is a subchain.  For subchains  Ig. and

Ik,
 
Ig.

 7Ik, 
Ig･

 
rv

 
Ik

 
and

 
IJ･

 >? Ik denote  Ig･ >- Ik, Ig. 
A-

 Ik and  Ig. >> Ik,

respectively,
 

regarding
 
IJ･

 
and

 
Ik

 
as

 
strings･

     
We

 
call

 
a
 

subchain
 Cctz.1, ctz+2,  ... , ort,  ctt+1,  -.. , ctm)  an  elementary

subchain
 
if

 
and

 
only

 
if

 Cctz.1, 
orz.2,

 
･･･

 , ort) 
"<

 (at.1, at+2,  '･' , orm)  fOr

any  subdivision  {Ccrz+i, orz.2,  ･･･ , ort),  (ort+i, ctt+2,  ･･･ , ctm)}  Of  the

subchain.  We  call  a  division  of  a  chain  an  elementary  division  of  the  chain

if and  only  if all  the  subchains  in the  division  are  elementary  subchains.

For  example,  {Cct1), Cct2), ... , (ctni)} is an  elementary  division  of  the  chain

{al, or2, ･･･  , ctnt}･

     
Theorem

 
2.
 

Let
 {CII), (I2), ...

 , (Ig.), (Ig..1), ... ,  CI,?]} be an  elemen-

taTy
 
division

 
of

 
a
 
chain.

 
If

 
Ig--"<

 
Ig･.1,

 
then

 {(Il), (I2), -'' , (Ig'Hl),

CIr
 
IJ'

÷ 1), CIg･+2), 
･･･

 , (Iq)] is
 
also

 
an

 
elernentary

 
division

 
of

 
the

 
chain.

     
Proof.

 
Putting

 
Ig.

 
--'
 (az.1, ctz.2,

 
i･･

 , ork) and  Ig･.1 
=

 (ctk.1, "k+2,  ''' ,

orm),
 

we
 

consider
 
a
 
subdivision

 {Corz+I, 
orz+2,

 
･･･

 , ort),  (at+1, at+2'  ''' ' ctm)}

                                                             NII-Electionic  
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of

 
the

 
subchain

 CIj, Ig..1).
 

By
 
assumption,

 
we

 
have

 
Ig.--<

 Ig..1. If t <
 k, then

         
since

 
Ig.

 
is

 
an

 
elementary

 subchain  we  get  Corl+1, ctz+2,  ･･･ , ort)  
-`<

 Cat+1,

         
ctt.2,

 
...

 , 
ak).

 
Thus,

 
it

 
follows

 from Lermna 4 that  Cal+1, crl+2,  ･･･ , ctt)-･<

         Cctt+1' at+2,  '''  , ak,  ork+i,  ･.+  , um)･  If t > k, then  by the  similaT  argu-

        
ment,

 
we

 get the
 

same
 conclusion.  If t =

 k, then  obViouSIY  (orz+1, ctz.2s  ･･.  ,

         
at)

 
'<

 Cctt+1, 
ort+2,

 
･･.

 , am)･  HenCe,  (Ig･, Ig･.I) is an  elementary  subchain.

         Since all  other  subehains  are  elementary  subchains,  we  get the  desired  result.

             In  what  follows,  T(S)  denetes the  total elapsed  time  under  a  schedule  S.

             Lemma  5. If  I.-<  I,
                          g g+1, 

then
 
for

 
any

 strings  Jl, J2
 

and
 J3, one  of  the

        relations:

         (3) 
T({CJI),

 (Ig'), (Ig'+1)' CJ2)' (J3)})

                        #T({CJI), (Ig'), (J2)' (Ig'+1)' (J3)})

        and

         (4) 
TC{CJI),

 CJ2), CIg'), CJg'+1), CJ3)})

                . sT({(Ji), Cib･), CJ2), (ig･.i), CJ3)})

        is satisfied,

             
Preef.

 
Since

 
Ig.KIg･.1,

 
one

 
of

 Ci) rJ･
 >>p J2 and

 
J2-<

 
Ig-.1,

 (ii) Ig･K
 J2

        
and

 
J2

 >>' Ig-.1 and
 (iii) Ig･K

 J2 
-d<

 Ig..1 is satisfied.  In case  (i), C3)

        helds.  In case  (ii), C4) holds.  And  in case  Ciii), C3) and  (4) hold.

             Theorem 3. Let I" be an  elementaTy  subchain.  If I' is partitioned  into

        {CLI), (L2), ...  , CLz)}, then  for  any  set･  of  Z+1 strings  Jl, J2, ･･･  , Jz.1,

        one  of  the  relations:

                  TC{(Jl),  (I'), (J2), (J3), ･･･  , CJz.1)})

                        E T({(Jl},  (Ll), (J2), (L2), ･''  , (Jz), (Lz), (Jz+1)})

        and

                  TC{(Jl),  CJ2), ...  , CJz), (It), (Jz.1)})

                        sT({CJI),  (Ll), (J2), CL2), ･･･ , CJz), (Lz), (Jz.1)})
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is satisfied.

     Proof. The  proof  proceeds  b>r the  induction on  Z. For  Z =  2, the  theorem

is a  direct  consequenee  of  Lemma  5. Assuming  that  the theorem  is proved  for

Z=  m-1,  we  consider  the case  l=  m･ If  Ll >>' L2 >>' L3 >>- ･･･ >> Lm+l >>' Lm,

then  it follows  from  Lemma  3 that  CLI, L2, ... , Lm-1) >>F Lm. Thjs contra-

dicts
 the  assumption  that  I" =

 (Ll, L2,
 ... , 

Lm"l,
 
Lm)

 is an  elementary

subchain.  Hence,  there  exists  a  k such  that  Lk-< Lk.1. For  the  k, we  put

         Sl =
 {CJI), CLI), CJ2}, CL2), ... , CJk), (Jk.1), (Lk), CLk.1),

                       CJk+2)' (Lk+2)' ''' ' CJm)' (Lm), (Jm+P},

          S2 
={(Jz),

 CLI], (J2), (L2), ･･･ , (Jk), {Lk), CLk.1), (Jk.P,

                       CJk+2}' (Lk+2]' -'' ' (Jm)' CLm)' (JnT+1)]'

          S3 
=

 {{Jl), (Ll), CJ2), (L2), ...
 , (Jk), CLk), CJk.l), CLk.1},

                       Cjk+2)) (Lk+2}' d'' ' (Jm)' (Lrrr)' {Jm+1)}'

          S4 
=

 {CJI), CJ2)s ･+e  , CJ.), (I'), (J..1)}

and

          Ss 
=

 {CJI), CI"), (J2), CJ3), i･i , (J..1)}･

By
 
Lemma

 S, one  of  
TCSI)

 .<mTT(S3)  
and

 
T(S2)

 gTCS3)  
holds.

 
By

 
the

 
induction

hypothesis,  ene  of  TCS4)  s. T(Sl)  and  TCSs)  s. T(Sl) holds  and  one  of  T(S4) g

T(S2)  and  T(Ss)  g TCS2)  holds.  Therefore,  it follows  that  one  of  the  relations

T(S4) S. TCS3) and  T(Ss) ;s. TCS3) is satisfied.  This terminates  our  proof.

     
Let

 {(Il}, (I2), ･･`
 , (Iq)} be

 
an

 
elementary

 
division

 
of

 
a
 

chain.
 

we

call  the  division  an  optimal  division  of  the  chain  if and  only  if Il E>b I2 >)'

... >> Iq-1 >> Iq.
 

An
 

optimal
 
division

 
of

 
a
 

chain
 {or1, a2,

 
･･･

 ,  
ctni}

 
iS

given in the  following  fashion:

Step 1･ Let {(or1), (ct2), ... , (ctni)} be an  initial  elementar>r  diyision.  Go

         to  Step  2.
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step

 
2.

 
For

 
the

 
current

 
elementar}r

 
division

 {CII), CI2), -･･
 , CIJ･), (Ig'+1),

                
...

 , CIq)}, find
 subchains  Ig- and  Ig･.1 WhiCh  satiSfy  Ig-< Ig･.1･ GO

                to  Step  3. If  there  are  no  such  chains,  then  the  current  elementary

                division  is an  optimal  division.

       Step  3.
                

Make
 
up

 
an

 
elementary

 
division

 {(Il), (I2), i･･
 , (Ig'-1), CIg', Ig'.1),

                (IJ'.2), 
･･･

 , CIq)}t Return  to  Step 3.

            The  following  theorem  gives  a  method  to  obtain  an  optimal  sequence  for

       a  chain  problem.

            Theorem 4. If  all  the  chains  in a chain  problem  are  divided  into  optimal

       divisions,  then  the  optirnal  sequences  for the  string  problem  given  by regard-

       ing  all  the  subchains  in the  optimal  divisions  as  stTings  are  optimal

       sequences  for the  original  chain  problem.

            Proof. Let S"  be  an  optimal  sequence  for the  string  problem  regarding

       
all

 
the

 
subchains

 
in

 
the

 
optimal

 divisions  of  chains  Cl, C2, ･･- , Cw  aS

       strings  and  let S be  an  eptimal  sequence  for  the  chain  problem.  By Theorem  3,

       
there

 
is

 
a
 sequence  Sl, with  TCS) l. TCSI),  which  is feasible  for the  chain

       problem  and  in which  all  the  subchains  in the  optimal  division  of  C, are
                                                                           -

       processed  successively.  Similarly,  there  is a  feasible  sequence  S7 for  the

       
chain

 problem  
in

 
which

 
all

 the  subchains  in the  optimal  diyisions  of  Cl and  C2

       
are

 processed  successively  such  that  TCSI) l. TCS2).  Thus,  it follows  that

       there  
is

 a  sequence  Sw, with  T(S)  l  TCSw),  which  is  feasible  for  the  chain

       problem 
and

 
in

 
which

 
all

 the  subchains  in the  optimal  divisions of  chains  Cl,

       
C2,

 
.o.

 , 
Cw

 
are

 processed  successively.  Hence,  Sen is feasible  for  the  string

       problem  so  that  TCS) lT(Sw)  kTCS").  On the  other  hand,  since  S' is feasible

       for the  chain  problem, we  get T(S)  s  TCS").  Therefore,  we  obtain  TCS)  =  T(S"),

       and  hence,  S" is optimal  for  the  ehain  problern. This  terminates  our  proof.

       5. Examples

            In  this  section,  we  give  two  breaf  examples  which  illustrate some  of
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         the  results  in the  preceding sections.

              Example  1. Consider  three  strings  Il =
 Cl

         9, !O, 11) and  I3 =

 (12, 13, 14). For each  job

         B. on  machines  I and  II  are  given  in Table  1.
          z

                         Table  1. The  proeessiRg  times

,2

 i'

The

 of

, 3, 4, 5, 6), I2 =
 (7, 8,

the  processing times  Ai  and

 total  idle  times  
for

 
Il

 
are

 the  jobs

a l 2 3 4 5 6 7

A. 6 3 7 5 1 6 1
tB.

3 5 2 6 7 5 3
z

i 8 9 IO 11 12 13 14

A. 3 7 5 8 3 4 6
tB.

2 6 1 4 5 7 2
z

11 on  both  machines,  i.e.,

                          u  u-1

         
al
 

=

 
1
 
.MZX.

 6 
{
 iilAi 

--
 iZ.IBi 

}
 

=

 
11

and

                          6 6

         
Z)1
 

=

 
1
 

.M:X.
 
6
 
{
 

2iuBi)
 
-
 
2.Il.IAi)

 
}
 

=

 
11T

The  total  idle times  for  I2 on  machines  II and
 
I
 

are
 
12

 
and

 
4,

 
respectively,

i.e.,

         a2=12  and  
b2=4.

The  total  idle times  for I3 on  machines  II and  I are  3 and  4, respectively,

.z.e.,

         a3  
=3

 and  b3=4.

For  the  string  problem, Theorem  1 gives  an  optimal  sequence  {(I3], CII), CI2)}･

The  total  elapsed  time  for  the  sequence  is 69 time  units.

   
･Example

 2. In Example  1, let  us  suppose  that  Il,  I2 and  I3 are
 chains･

It is easily  seen  that  {(1, 2, 3, 4, S), C6)}, {C7), C8, 9), (10, ll)}  and

{C12), (13), C14)} are  optimal  divisions  of  the  chains  Il, I2
 
and

 
I3,

 
respec-
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tively.  For  each  of  these  subchains,  Tab],e  2 gives  the  total  idle times  a  and

b, on  machines  II  and  I, respectively.  We  read,  from  Table  2, that  {C7), {12),

{13), (1, 2, 3, 4, 5), (8, 9),  C6), CIO, ll),  C14)} is an  optimal  sequence  for

the  ehain  problem.  The  total  elapsed  time  for the  sequence  is 67 time  units.

              Table  2. The  total  idle  times  of  the  subchains

subchai.nCl,2,3,4,S)(6)(7)C8,9)CIO,11)(12)(13)(14)

a

b

11

12

6

5

1

3

8

6

12

4

3

5

4

7

6

2
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