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Two-Magnon Resonant Raman Scattering in MnF2 

Nabil M. Amer, Tai-chang Chiang, and Y. R. Shen 
Department of Physics, UniveEsity of California, and 

Inorganic Materials Research Division, 
Lawrence Berkeley Laboratory, Berkeley, California 94720 

ABSTRACT 

We have studied two-magn~n resonant Raman scattering in 

MnF2 around the magnon sidebands. The resonant scattering 

involves a different physical mechanism than the non-resonant 

case and leads to a number of new results. A simple theoreti-

cal description explains the experimental observations 

successfully. 
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Resonant Raman scattering (RRS) has so far been limited to semi-

1 conductors. We report here the first investigation on RRS in a mag-

netically ordered crystal, e.g., MnF
2 

in the antiferromagnetic phase. 

Because of space limitation, we shall discuss only RRS by two magnons 

in MnF 2 in some detail. 
. 2 

The magnon spectrum of the antiferromagnetic MnF2 is well known. 

The optical properties of MnF2 has also been well studied, especially 

3-5 those involving magnons. There is a set of sharp absorption lines 

-1 around 18450 em (see Fig. 1) arising from transitions within the 

6 6 4 4 . 3 A1g( s) + T1g( G) man1fold. Lines e1 and e2 are due to creation of 

E
1 

and E2 excitons respectively via direct magnetic-dipole transitions 

while lines cr
1

, rr
1

, and cr 2 are the corresponding magnon sidebands. In 

5 the luminescence spectrum, direct and magnon-assisted recombinations 

of the E1 excitons give rise to the elL and cr
1
L (TilL) luminescence lines 

respectively. 

6-8 The Raman spectrum of MnF2 has also been thoroughly studied. 

It consists of four phonon modes and one two-magnon line. No one-magnon 

line has yet been observed. We are interested in the changes of the 

Raman and lum~nescence spectrum when the excitation scans through the 

absorption lines in Fig. 1. 

Theoretically, the peak position and the cross-section of the two-

magnon line for excitation near crl' Til' and cr2 lines can be obtained 

4 6 7 following, for example, Loudon's derivation. ' ' The spin Hamiltonian 

·is of the form (unless specified, we use the notations of Ref. 6) 

H 
s 

(1) 
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where c~~ = A~~ + B~~ 
~J ~J 

aS <gi+g.tl erslgi+vit><gi+vitlvexl~itgj+><~itgj+leralgitgi+> 
Aij= L J (E -hw ) (E ...hw~) 
· ~,v v s ~ 

+ 11 similar terms 

In the above equations, <g.l is the ground state of the ith Mn ion, <~I 
l. 

and <vi are the allowed excited states with energies E and Ev respectively, 
~ 

and <el is either the E1 or the E2 excitonic state with its energy denoted 

by·hwE. The magnon frequency is wm. The quantities E~ and E~ represent 

the a component of the exciting field and the S component of thescattered 

field respectively, and V and V are respectively the direct and exchange ex 

terms of the Coulomb interaction. From Eq. (1) we find for the two-magnon 

Raman eross-section,. 

(2) 

where aaS and baS are constant coefficients if we assume the matrix elements 

-+ -+ 
in Eq. (1) are constant and faS(k) is a function of k. Since the baS 

term is obtained from higher-order perturbation than the aaS term, the 

former should be negligible in comparison with the latter unless the 

excitation frequency is close to one of the magnon sidebands, i.e., 

-+ 
w~-~+wm(k). Near such a resonance, if we use the approximation 

lx+trl-~no(x)/f, we can write 
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with 

The total two-magnon Raman cross-section is then given by 

whe~e (craS)R ~ [(dcraS(w~-ws = 2w~-2wE)/dws]NR. 

Equation (3b) shows that at resonance, if (dcraS/dws)R > (dcraS/dws)NR' 

the peak position of the two-magnon line is determined by 

(3) 

(3a) 

(4) 

(5) 

The above results are easy to understand physically since the resonant 

part can be considered as due to a magnon-assisted absorption immediately 

followed by a magnon-assisted emission. 

-1 A cw dye laser with a linewidth of 0.2 em was used as the excita-

ti.on source and the sample was iuunersed i.n superfluid He at 1.6°K. The 

luminescence spectrum was essentially identical to those reported in the 

literature but with less impurity lines, none in the range between 18340 

-1 and 18440 em , except the one (denoted by I in Fig. 2) overlapping with 



0 0 

5 the a 11 line •. 

u 
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Our results on resonance fluorescence (RF) and RRS by phonons in 

MnF2 will be reported elsewhere. Here, we discuss only RRS by two mag­

, nons. We found that the two-magnon line showed a resonance enhancement 

at the magnon sidebands but not at the e1 and e2 exciton lines, just as we 

expected. Figure 2 shows a set of two-magnon Raman spectra at several 

different excitation frequencies around a 1 and a2 • It is seen that the 

two-magnon line (denoted by M) varies in frequency with w~. Deep in reso­

nance, the line is considerably sharper (limited by instrument resolution 

in Fig. 2). When w~ falls in the region where a1 and a
2 

overlap, two two­

magnon lines show up, due to simultaneous resonances in a
1 

and a
2 

with two 

different sets of magnon modes involved. We have plotted the Raman peak 

shift of the two-magnon line as a function of w~ in Fig. 3(a), and the 

corresponding Raman cross-section axy (corrected for absorption) vs w~ in 

Fig. 3(b). The same results for a are given in Fig. 4. xz 
The results of Figs. 3 and 4 agree well with our earlier description. 

When (daa~/dws)R > (daa~/dws)NR' the Raman shift should obey Eq. (5). 

We find that we can indeed fit that portion of the data by Eq. (5} 

assuming ~(k) is independent of k .. This is shown by the straight lines 

in Figs. 3(a) and 4(a). IXhe·:values .oL.constant wE deduced from the fit, 

-1 
for RRS near a

1
, a

2
, and Til peaks respectively, are ~(a1) = 18420.7 em , 

-1 -1 
~(a2 ) = 18429.5 em , and wE(TI1) = 18405 em • If a 1 (TI1) and a2 are 

indeed magnon sidebands of e
1 

and e2 and if the assumption of dispersionless 

..... 
~(k) is correct, then ~(a1) and wE(TI1) should be equal to the frequency 

of the e
1 

absorption peak and wE(a2) to the frequency of the e2 peak. The 

observed e
1 

and e
2 

lines are at wel = 18419.5 cm-l and we2 = 18436.5 cm-
1

• 
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The agreement between wE(cr1) and wel is within the experimental uncertainty, 

supporting the previous suggestion that the dispersi~n of the E1 exciton 

-1 5 -1 is less than 0.5 em . There is a discrepancy of 7 em between wE(cr2) 

and we2 . This indicates that the E2 exciton has a negative dispersion 

-1 
of 7 em from the zone center to the zone edge, in agreement with ~he 

-1 3 
6. 2 em estimate of Sell et al. The fact that the data can still be 

fitted by a straight line suggests a negligible dispersion of E2 near 

-1 the zone edge. There is a big discrepancy of 14.5 em between ~(n1) 

and wel' Since we know E1 is nearly dispersionless, this makes us suspect 

that n1 is not a magnon sideband of E1 but of a lower-energy excitonic 

state. However, no such state has been found in absorption. Similar 

3 difficulty exists in the interpretation of the n1 absorption band. Sell 

3 -1 ·et al. have found that the observed n1 peak is shifted by about -9 em 

from the predicted position. 

The rest of the data in Figs. 3(a) and 4(a) can be interpreted 

qualitatively as follows. On the low-energy side of a magnon sideband, 

when (dcra8/dws)NR becomes more and more dominant over (dcraS/dws)R, the 

two-magnon line gradually changes into its off-resonance lineshape and 

the Raman peak shift moves towards the off-resonance value. On the high-

energy side close to the peak of a magnon sideband, the resonance enhance- . 

ment of those two~magnon modes near the zone edge still dominates (con-

sider Eq. (2) with finite damping constants), leaving the peak position of 

the two-magnon line more or less unchanged. 

We have also found that Eq. (4) describes the observed two-magnon 

resonance Raman enhancement near magnon sidebands quite well. In Figs. 

3(b) and 4(b), the theoretical curves are obtained from Eq. (4) using 
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the experimental line'sh;ape of (dcra.S/dws)NR and with (cra.S)R normalized to 

its peak va•l·lJ.e~ The discrepancy between theory and experiment is probably 

a result of the o-function approximation in the theor.etical derivation. 

In summary, we have observed two-magnon RRS in MnF2 around the 

magnon sidebands. The mechanism for the two-magnon RRS is different 

from that for the non-resonant case. With a given excitation frequency 

w~, it selects a particular set of two-magnon modes to be most strongly 

resonantly enhanced. Consequently, because of the presence of magnon 

dispersion, the two-magnon line shifts in frequency as w~ varies, and 

two two-magnon lines show up when simultaneous resonance with two magnon 

sidebands occurs. The resonance enhancement agrees quite well with a 

simple theoretical descritpion. 

We are indebted to Professor Y. Petroff for his technical help. 

This work was supported by the U.S. Energy Research and Development 

Administration. 
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FIGURE CAPTIONS 

Fig. 1. 
' -1 Absorption spectrum of MnF 2 at 1.6K between 18400 and 18500 em 

The solid and the dashed curves are for polarizations 1 and II to the 

c-axis respectively. The inset is a sketch of the relevant energy levels. 

Fig. 2. Two-magnon Raman spectra (denoted by M) at several different exci-

tation frequencies w£. Peaks I and cr1L correspond to impurity and 

magnon-assisted luminescence lines respectively. 

Fig. 3. (a) Two-magnon Raman shift and (b) Two-magnon Raman cross-section as 

a function of the excitation frequency w£. The exciting and the 

scattering radiation are polarized along y and x respectively (x,yl c). 

Fig. 4 (a) Two-magnon Raman shift and (b) Two-magnon Raman cross-section 

as a function of the excitation frequency w£. The exciting and the 

scattering radiations are polarized along z and x respectively (Xlc 

and zll c). 
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