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Abstract—1In this paper, we consider two abstract market
models for designing demand response to match power supply
and shape power demand, respectively. We characterize the
resulting equilibria in competitive as well as oligopolistic markets,
and propose distributed demand response algorithms to achieve
the equilibria. The models serve as a starting point to include
the appliance-level details and constraints for designing practical
demand response schemes for smart power grids.

I. INTRODUCTION

The usual practice in power networks is to match supply to
demand. This is challenging because demand is highly time-
varying. The utility company or generator needs to provision
enough generation, transmission and distribution capacities for
peak demand rather than the average. As a result, the power
network has a low load factor and is underutilized most of
the time, which is very costly. For example, the US national
load factor is about 55%, and 10% of generation and 25% of
distribution facilities are used less than 400 hours per year, i.e.,
5% of the time [1]. Shaping the demand to reduce the peak
and smooth the variation can greatly improve power system
efficiency and yield huge savings.

An alternative strategy improving efficiency and reducing
cost is to match the supply. As the proportion of renewable
sources such as solar and wind power steadily rises, power
supply will also become highly time-varying. Matching the
supply will become a more effective and common way to
improve power system efficiency and reduce cost [2].

In this paper, we consider two abstract market models for
designing demand response to match the supply and shape the
demand, respectively. Specifically, in section III, we consider a
situation where there is an inelastic supply deficit (or surplus)
on electricity, and study a supply function bidding scheme for
allocating load shedding (or load increasing) among different
customers/users to match the supply. Each customer submits a
parameterized “supply” function to the utility company, which
will decide on a market-clearing price based on the bids of
customers, and is committed to shed (or increase) its load
according to its bid and the market-clearing price [3]. We show
that in a competitive market where customers are price taking,
the system achieves an efficient equilibrium that maximizes
the social welfare. In an oligopolistic market where customers
are price anticipating and strategic, the system achieves a
unique Nash equilibrium that maximizes another additive,
global objective function. Based on these optimization prob-
lem characterizations of the market equilibria, we propose
iterative, distributed supply function bidding schemes for the
demand response to achieve the equilibria.

In section IV, we consider a situation where power supply is
elastic, but customers are subjected to realtime spot prices and

will shift (and sometimes reduce) their demands accordingly.
Each customer has a lower bound as well as an upper bound
on the total electricity demand over a day. The customer
will allocate its power usage for different times, so as to
maximize its aggregate net utilities over a day. We show
that when customers are price taking, the system achieves
an efficient equilibrium that maximizes social welfare. When
customers are price anticipating and strategic, the system
achieves a unique Nash equilibrium that maximizes another
global objective function. Again, based on the optimization
problem characterizations of the market equilibria, we propose
distributed algorithms for demand shaping to achieve the
equilibria.

The aforementioned demand response schemes require
timely two-way communications between the customers and
the utility company and even direct communications between
the customers. They also require certain computing capabil-
ity of the customers. These communication and computing
capabilities will become norm in future smart grids [1].
With the integration of state-of-the-art communication and
computing technologies, future power systems will become
more intelligent, more open, more autonomous, and with much
greater user participation. Our demand response schemes are
intended to apply in exactly such smart power grids.

II. RELATED WORK

There exists a huge amount of work on market models for
various aspects of power networks. We briefly discuss those
works that are directly relevant to this paper.

The supply function equilibrium model has been widely
used in the analysis of markets in many industries. It assumes
that each supplier submits a supply function to an auctioneer,
who will set a uniform market clearing price. In a seminal
paper [3], Klemperer and Meyer study the supply function
equilibrium and give conditions for the existence and the
uniqueness of the Nash equilibrium in supply functions under
uncertain demand, and show that the equilibria are contained
in a range of prices and allocations between the Cournot and
the Bertrand equilibria.

The most notable application of the supply function equi-
librium model is to the wholesale electricity markets, see, e.g.,
[4], [5], [6], [7], [8]. In this paper, instead of applying it
to the electricity supply side, we apply the supply function
equilibrium concept to pricing and allocation on the demand
side to match the electricity supply, with a special form
of parameterized supply functions that can enable a simple
implementation of the iterative supply function bidding as an
effective demand response scheme in power networks.

The model studied in section IV-B is a straightforward
extension of the competitive equilibrium models for the power
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network, see, e.g., [9]. In addition to trading off the costs
and utilities among different customers, we also consider
trading off the costs and utilities over time, which incentivizes
customers to shift their electricity usage.

III. DEMAND RESPONSE: MATCHING THE SUPPLY

In this section we consider a situation where there is a
supply “deficit” or “surplus” on electricity. The deficit can
be due to a decrease in power generation from, e.g., a wind or
solar farm because of a change to worse weather condition, or
an increase in power demand because of, e.g., a hot weather.
The surplus can be due to an increase in power generation
from, e.g., a wind or solar farm because of a change to better
weather condition, or a decrease in power demand at, e.g., the
late night time. We assume that it is very costly to increase the
power supply in the case of a deficit or decrease the supply
in the case of a surplus, i.e., the power supply is inelastic.
If we have good estimation of electricity deficit or surplus
(e.g., an hour ahead or a day ahead), we can match the supply
by customers/users shedding or increasing their loads. In the
following we focus on the case with a supply deficit and
consider a bidding scheme for the demand response. The case
with a supply surplus can be handled in the same way.

A. System Model

Consider a power network with a set IV of customers/users'
that are served by one utility company (or generator). Associ-
ated with each customer 7 € N is a load g; that it is willing to
shed in a demand response system. We assume that the total
load shed needs to meet a specific amount d > 0 of electricity
supply deficit, i.e.,

Y gi=d (1)
Assume that customer ¢ incurs a cost (or disutility) C;(g;)
when it sheds a load of ¢;. We assume that cost function C;(-)
is continuous, increasing, strictly convex, and with C;(0) = 0.

We consider a market mechanism for the load shedding
allocation, based on supply function bidding [3]. For simplicity
of implementation of the demand response scheme, we assume
that each customer’s “supply” function (for load shedding) is
parameterized by a single parameter b; > 0, 7 € N, and takes
the form of

qi(bi,p) = bip, i € N. @)

The supply function ¢;(b;,p) gives the amount of load cus-
tomer ¢ is committed to shed when the price is p. The utility
company will choose a price p that clears the market, i.e.,

> ailbi,p) = > bip=d, €)
from which we get
d
p(b) = S b )

Here b = (b1, b2, -+ ,bn)), the supply function profile.

'Here a customer/user can be a single residential or commercial customer,
or represent a group of customers that acts as a single demand response entity.

Remark: Supply function as a strategic variable allows to
adapt better to changing market conditions (such as uncertain
demand) than does a simple commitment to a fixed price
or quantity [3]. This is one reason we use supply function
bidding, as we will further study demand response under un-
certain power network conditions. The other motivation to use
supply function is to respect practical informational constraints
in the power network. A customer might not want to reveal
its cost function because of incentive or security concerns, or
the cost function may require a high description complexity,
which means more communication/computation. A properly-
chosen parameterized supply function “controls” information
revelation while demands less communication/computation.

B. Optimal demand response

In this subsection, we consider a competitive market where
customers are price taking. Given price p, each customer ¢
maximizes its net revenue

pqi(bi, p) — Ci(qi(bi, p)), (5)

max
b; >0

where the first term is the customer ¢’s revenue when it sheds
a load of ¢;(b;,p) at a price of p and the second term is the
cost incurred.

1) Competitive equilibrium: We now analyze the equilib-
rium of the demand response system. A competitive equilib-
rium for the demand response system is defined as a tuple
{(b:)ien,p}, such that

(Ci(qi(bivq)) —p)(bi — bi) >

ZQi(me)

Theorem 1: There exists a unique competitive equilibrium
for the demand response system. Moreover, the equilibrium is
efficient, i.e., it maximizes the social welfare:

0, Vb; >0, ©6)
d. (7

max Z —Ci(q:) ®)
s.t. Z g =d. ©)

Proof: From equations (61)-(7), we have
(Cilgs) =)@ —ai) > 0, Vg >0,

Z qi = d.

This is just the optimality condition of optimization problem
(8)-(9) [10]. The uniqueness of the equilibrium follows from
the fact that problem (8)-(9) and its dual are strictly convex.
|
2) Iterative supply function bidding: The social welfare
problem (8)-(9) can be easily solved by the dual gradient
algorithm [10]. This suggests an iterative, distributed supply
function bidding scheme for demand response that achieves
the market equilibrium.
At k-th iteration:
« Upon receiving price p(k) announced by the utility com-
pany over a communication network, each customer ¢
updates its supply function, i.e., b;(k), according to
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and submits it to the utility company over the communi-
cation network. Here ‘+” denotes the projection onto R,
the set of nonnegative real numbers.

o Upon gathering bids b;(k) from customers, the utility
company updates the price according to

RONICI R

and announces the price p(k + 1) to the customers over
the communication network. Here v > 0 is a constant
stepsize.

When « is small enough, the above algorithm converges
[10]. The scheme requires only light communication and
computation, and will converge in short time with modern
communication and computing technologies even for a very
large network. The utility company and customers jointly
run the market (i.e., the iterative bidding scheme) to find
equilibrium price and allocation before the actual action of
load shedding. The equilibrium price will be a market-clearing
price, and the actual load shedding is “supplied” according to
this price.

plk+1) = (11)

C. Strategic demand response

In this subsection, we consider an oligopoly market where
customers know that price p is set according to (4) and are
strategic. Denote the supply function for all customers but ¢
by b_i = (b17 bg, s ,b,j_l, bi+1, ce 7bu\”) and write (b“ b_1)
for the supply function profile b. Each customer ¢ chooses b;
that maximizes

wi(bi,b—i) = p(b)ai(p(d),b;) — Ci(q:(p(d),b:))
& b,
B (ZJ bj)2 Cl(zj' bj). (12

This defines a demand response game among customers.

1) Game-theoretic equilibrium: We now analyze the equi-
librium of the demand response game. The solution concept we
use is the Nash equilibrium [11]. A supply function profile b*
is a Nash equilibrium if, for all customers ¢ € N, u;(b},b* ;) >
u;(b;, b* ;) for all b; > 0. We see that the Nash equilibrium
is a set of strategies for which no player has an incentive to
change unilaterally.

Lemma 2: If b* is a Nash equilibrium of the demand
response game, then > j2ib; >0 forany i € N.

Proof: We prove the result by contradiction. Suppose
that it does not hold, and without loss of generality, assume
that E i J = 0 for a customer 7. Then, the payoff for the
customer ¢ is u,; (b}, b* ;) = 0 if b = 0, and u,(b},b* ;) =
d?/by — Ci(d) if by > 0. We see that when b} = 0, the
customer ¢ has an incentive to increase it, and when b; > 0
the customer has an incentive to decrease it. Hence, there is
no Nash equilibrium with 3., b7 = 0. |

The above Lemma also implies that at the Nash equilibrium
at least two customers have b; > 0.

Let B_j =} ;,;b;. We have
Qui(bisb-) _ P(Boi—b) __dB.i ., db
b,  (Boi+b)® (Boi+b:)? “B_it+b
d2 B_i — bl B—z d
~ (Boi+bi)? [B,i yy d C; (m)] (13)

The first term in the square bracket is strictly decreasing in
b; and the second term is strictly increasing in b;. So, if
E=01(0) > 1. ui(bi,b_;) < 0 for all b;, and b; = 0
maximizes the customer ¢ payoff wu;(b;,b_;) for the given
b_;. 1 B*' 0) < 1, a(z u; (b, b ) = 0 only at one
point b; > 0. Furthermore, note that 3 ul(O b_;) > 0 and
a?” u;(B_;,b_;) < 0. So, this point b; maximizes the customer
i payoff w,;(b;,b_;) for the given b_;. Thus, at the Nash
equilibrium for the demand response game, b* satisfies

b0, (14)
¢ B;i /(0) > 1; and otherwise,

B*, —b; Bi, dby —

By 4 O, ) =0 "

Lemma 3: If b* is a Nash equilibrium of the demand
response game, then b < B*, = Zj# bi for any ¢ € N,
i.e., each customer will shed a load of less than d/2 at the
equilibrium.

Proof: The result holds when b = 0. Note that the
second term on the left hand side of equation (15) is positive.
So the first term must be positive as well, which requires
B*, > b;. ]

The following result follows directly from Lemma 3.

Corollary 4: No Nash equilibrium exists when |[N| = 2.

Theorem 5: Assume |N| > 2. The demand response game
has a unique Nash equilibrium. Moreover, the equlibrium
solves the following convex optimization problem:

o X Z —Di(q:) (16)
s.t. Zqi =d, an
with
Di(gi) = 1+ —L )Ci(q:) 7/% L Ciw)dar. (18)
i\qi) = d— 2q1 i\ o (d— 2:31)2 (3 (3 7.
Proof: First, note that
Di(q;) = (1 + d— 2q )Ci(q:), (19)

which is a positive, strictly increasing function in b; € [0, d/2).
So, D;(g;) is a strictly convex function in [0,d/2). Thus, the
optimization problem (16)-(17) is a strictly convex problem
and has a unique solution. Based on the optimality condition
[10] and after a bit mathematical manipulation, the unique
solution ¢* is determined by

* qi o .
Y@ = d @
p* > 0. (22)

Second, note that the Nash equilibrium condition (14)-(15)
can be written compactly as

d By
B*,+b; B, —b;

db;
B*; +b;

( Ci( —b;) <0, Vb

) (bi 23
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Recall that the (Nash) equilibrium price p* = d/>", b}
and (Nash) equilibrium allocation ¢ = bfp*. We can write
equation (23) as

b )\cl(g))(bip” —¢f) < 0.

T 24)

(" —(1+

Note that at the Nash equilibrium, p* > 0 since ZZ by >0
by Lemma 2, and b; is arbitrary. So, the above equation is
equivalent to equation (20). Thus, the Nash equilibrium of
the demand response game satisfies the optimality condition
(20)-(22), and solves the optimization problem (16)-(17). The
existence and uniqueness of the Nash equilibrium follows from
the fact that problem (16)-(17) admits a unique optimum. M

Suppose that there are n customers with g7 > 0 at the
Nash equilibrium. By Lemma 3, n > 3. There exists at least
one customer j such that D(q;) = p* and ¢; < d/n. Thus,
p* < (14 75)Cj(d/n) < M, where M = max; Dj(d/n) <
max; D/(d/3). Let h = max;(D})~1(M), we have ¢ < h
for all ¢ € N. Quantities h — d/|N| and h — d/n can be
seen as measures of the heterogeneity in the system. For a
homogeneous system where customers have the same disutility
function, both measures equal zero. We can show that the Nash
equilibrium price p* < (1+h/(d—2h))p, where p is the price
at competitive equilibrium discussed in last subsection.

Remark: Theorem 5 can be seen as reverse-engineering
from the game-theoretic equilibrium into a global optimization
problem.

2) Iterative supply function bidding: By Theorem 5, we can
solve the Nash equilibrium of the demand response game by
solving convex optimization problem (16)-(17). This suggests
the following iterative supply function bidding scheme to
achieve the market equilibrium.

At k-th iteration:

« Upon receiving price p(k) announced by the utility com-
pany over the communication network, each customer ¢
updates its supply function, i.e., b;(k), according to

bi(k) = [Mﬁ, (25)

and submits it to the utility company over the communi-
cation network.

o Upon gathering bids b;(k) from customers, the utility
company updates the price according to

pk+1) = [p(k) - ’Y(Z bi(k)p(k) — d)] ", (26)

and announces price p(k + 1) to customers over the
communication network.

Note that the distributed convergence to the Nash equilib-
rium is a difficult problem in general, because of informational
constraints in the system. Here we involve the utility company
in mediating strategic interaction among customers, see equa-
tion (26), in order to achieve the equilibrium in a distributed
manner. The strategic action of the customer is also partially
encapsulated in equation (25).

IV. DEMAND RESPONSE: SHAPING THE DEMAND

In this section, we consider demand shaping by subjecting
customers to realtime spot prices and incentivizing them to
shift or even reduce their loads. In the following we study a
utility optimization model, based on which propose distributed
algorithms for demand shaping.

A. System Model

Consider a power network with a set /N of customers/users
that are served by one utility company (or generator). Asso-
ciated with each customer ¢ € N is its power load ¢;(t) at
time t.> We assume that each customer i has a minimum total
power requirementT in a day?

dat)>Q, i€N, @7
t=1
corresponding to, e.g., basic daily routines; and a maximum
total power requirement in a day

T

> a(t) < Qi i€N, (28)
t=1

corresponding to, e.g., the total energy usage for a comfortable
life style.

Assume that each customer 4 attains a utility U, (g;, t) when
its power draw is g; at time ¢. The time-dependent utility
models a general situation where the customer may have
different power requirements at different times. We assume
that U;(g;,t) as a function of ¢; is continuously differentiable,
strictly concave, increasing, with the curvatures bounded away
from zero.

On the supply side, we assume that the utility company has
a time-dependent cost of C'(Q,t) when it supplies power () at
time ¢t. The time-dependent cost function models a situation
where energy generation cost might be different at different
times. For example, when renewable energy such as solar
is presented, the cost may depend on weather conditions,
and a sunny hour may reduce the demand on power from
a traditional power plant and result in a lower cost. The
modeling of the cost function is an active research issue. Here
we assume that the cost function C(Q,t) as a function of @
is strictly convex, with a positive, increasing marginal cost.

We assume that the objective of the utility company is to
maximize its net revenue. Given price p(t), it plans on its
supply so as to solve the following maximization problem:*

Jax. ;Q(t)p(w = C(Q:(1), ), 29)
whose solution takes a simple form
C'(Q),t) =p(t), teT. (30)

Note that the supply must equal the demand in the power
network. So, the price (p(t))ier should settle down at a point
that clears the market

2Note that we redefine the notation. In this section ¢; denotes the load of
customer 4, while in section III g; denotes the amount of load that customer
1 is willing to shed.

3Each day is divided into T timeslots of equal duration, indexed by ¢ €
T= {1927 7|T‘}

4Our focus in this paper is on the demand side. We thus do not consider
possible strategic behaviors of the utility company or generator.
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teT.

i€EN

€29

B. Optimal demand response

In this subsection, we consider a competitive market where
customers are price taking. Given realtime spot price p(t),
customer ¢ allocates its energy usage to maximize its aggregate
net utility subject to constraints (27)-(28):

Jmax, teZT Ui(gi(t),1) — as(t)p(t) (32)
st Y a(t)>Q, i€N (33)
teT B
D @) < Qi i€N. (34)
teT

The above model captures two of the essential elements
of demand response: realtime pricing and demand shifting.
Demand shifting is achieved through optimizing over a certain
period of time.

1) Competitive equilibrium: By introducing Lagrange mul-
tiplier \; > 0 and Xi > 0 for constraints (33) and (34)
respectively, the optimal ¢(t) of the problem (32)-(34) is
determined by the following conditions

Ui(qi(t),t) =pt) + Xi — A;, iEN, t €T, (35)
T

2(Q, - Z ¢i(t)) =0, i € N, (36)

Z(h ~Q;)=0, i€ N. (37)

When ); > 0, i.e, constraint (33) is tight, the customer would
equivalently pay a higher price than it should, in order to meet
the minimum demand on power. When X; > 0, i.e, constraint
(34) is tight, the customer would equivalently pay a lower price
than it should, which can happen when the utility company
subsidizes the customer to encourage electricity consumption.

A competitive equilibrium for the demand response system
is defined as a triple {(q:(t))ien ter, (Q(t))ter, (P(t))ter}
that satisfies (35)-(37) and (30)-(31).

Theorem 6: There exists a unique competitive equilibrium
for the demand response system. Moreover, the equilibrium is
efficient, i.e., it maximizes the social welfare:

Jmax 30 U0, - C a0} 68
teT ieN iEN
T
s.t. Z qi(t) > Q, i€EN (39)
i;l
Z%(ﬂﬁ@i, i€ N. (40)

Proof: Pluggtilzllg equations (30) and (31) into equations
(35)- (37) we get

U;( ZqZ )\—)\l,zeN teT,
T
@, =Y a(t) =0, i€N,
t=1
T
Z —Q;)=0, 1€ N,

which is just the optimality conditions for the social welfare
problem. The uniqueness of equilibrium comes from the fact
that the social welfare problem and its dual are strictly convex.

|

2) Distributed algorithm: The social welfare problem (38)-

(40) suggests a distributed algorithm to compute the market
equilibrium, based on the gradient algorithm [10].

At k-th iteration:

o The utility company collects demands (¢F(t))ier from
each customer 7 over the communication network, cal-
culates the total demand (Q¥(t));er and the associated
marginal cost

pi(t) =

and announces (p*(t)):e7 to customers over the commu-
nication network.

o Each customer 7 updates its demand ¢¥(¢) after receiving
the update on price p*(t), according to

= (@ (t) + 1 (Uig’ (), 1) — p" (D)),

where where v > 0 is a constant stepsize, and ‘s;” denotes
projection onto the set .S; specified by constraints (27)-
(28). The projection operation is easy to do, as constraints
(27)-(28) are local to customers.

When ~ is small enough, the above algorithm converges
[10]. The utility company and customers jointly run the market
(i.e., the above distributed algorithm) to decide on power loads
and supply for each time t.

C'(QF(t),t), teT, (41)

ST

q; (42)

C. Strategic demand response

In this subsection, we consider an oligopoly market where
customers know marginal cost (or supply curve) of the utility
company and are strategic. We can model demand response
problem as a game among customers: Given other customer

power loads (q—;(t))ter = {(q;(t))ter,j € N/{i}}, each
customer ¢ chooses qi(t) that maximizes
C'(Q it

> uilai(t) = Uit
i€N

teT teT

subject to constraints (27)-(28).

1) Game-theoretic equilibrium: We now analyze the equi-
librium of the demand response game. Note that the marginal
cost C'(+) is positive and increasing by assumption. Thus,
customer 4’s payoff >, ., u;(qi(t),q—:(t)) is concave in
(gi(t))ter- So, at the Nash equilibrium, (g} (t)):cr satisfies

Y D -

—ai(t , (43)

; (1)) <0, (gi(t))rer € Si. (44)

Theorem 7: The demand response game has a unique Nash
equilibrium. Moreover, it solves the convex problem:

max Y {) Ui(a(t),t) —a()C' (O a:(t),t)} (45
(1) teT ieN ieN
T
s.t. > ait) > Q, ieN (46)
t;l
Y ailt)<Qi €N 7
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Proof: 1t is straightforward to check that the objective
(45) is strictly concave, and the Nash equilibrium condition
(44) is the optimality condition (variational inequality) for the
convex problem (45)-(47). The theorem follows. |

2) Distributed algorithm: The above optimization problem

characterization of the Nash equilibrium suggests a distributed
algorithm to compute the equilibrium.

At k-th iteration:

o Customers exchange information on their demands
(¢¥(t))ter over the communication network. Each cus-
tomer 7 then calculates the total demand (Q*(t));er and
updates its demand ¢¥(t), according to

') = 1o’ () +(Ule (1)) = O QN (1), 1)
" (6)C"(@Q" (1), )],

where v > 0 is a constant stepsize.

(48)

Customers need to communicate with each other to jointly
run the above algorithm to decide on their power usage at each
time ¢. Note that we could also involve the utility company
in mediating strategic interaction among customers, as in
subsection III-C.2.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to comple-
ment the analysis in previous sections. We consider a simple
power network with 10 customers that join in the demand
response system. Due to the page limit, we will only report
results on iterative supply function bidding proposed in section
III. We assume that each customer ¢ has a cost function
Ci(qi) = a;q; + h;q? with a; > 0 and h; > 0. The electricity
supply deficit is normalized to be 100, and the values for
parameters a; and h; used to obtain numerical results are
randomly drawn from [1,2] and [2, 6], respectively.

Figure 1 shows the evolution of the price and 5 customers’
supply functions with stepsize v = 0.02 for optimal supply
function bidding and for strategic supply function bidding,
respectively. We see that the price and supply functions
approach the market equilibrium quickly.

In order to study the impact of different choices of the
stepsize on the convergence of the algorithms, we have run
simulations with different stepsizes. We found that the smaller
the stepsize, the slower the convergence, and the larger the
stepsize, the faster the convergence but the system may only
approach to within a certain neighborhood of the equilibrium,
which is a general characteristic of any gradient based method.
In practice, the utility company can first choose large stepsizes
to ensure fast convergence, and subsequently reduce the step-
sizes once the price starts oscillating around some mean value.

VI. CONCLUSION

We have studied two market models for demand response
in power networks. We characterize the resulting equilibria
in competitive as well as oligopolistic markets, and propose
distributed demand response schemes and algorithms to match
electricity supply and to shape electricity demand accordingly.

As further research steps, we are characterizing efficiency
loss of the game-theoretic equilibria. We will also search
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Fig. 1.  Price and supply function evolution of optimal supply function

bidding (upper panels) and strategic supply function bidding (lower panels)
for demand response.

for other forms of parameterized supply functions that are
more “expressive” while admit tractable analysis. As there
are various uncertainties in power networks, e.g., it may be
difficult to estimate or predict the power generation from the
solar or wind farm precisely, we will study demand response
under uncertain power network conditions.

This paper serves as a starting point for designing practical
demand response schemes and algorithms for smart power
grids. We will further bring in the detailed dynamics and realis-
tic constraints of demand response appliances. We expect that
these new constraints will not change the general structure of
our models (in terms of, e.g, equilibrium characterization, and
distributed decomposition structure, etc), but they will lead to
higher communication overhead and computing complexity as
we come to the scheduling of individual electronic appliances.
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