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Abstract: In this paper, two meshless methods have been 
introduced to solve some nonlinear problems arising in 
engineering and applied sciences. These two methods in-
clude the operational matrix Bernstein polynomials and 
the operational matrix with Chebyshev polynomials. They 
provide an approximate solution by converting the nonlin-
ear di�erential equation into a system of nonlinear alge-
braic equations, which is solved by using Mathematica® 

10. Four applications, which are the well-known nonlin-
ear problems: the magnetohydrodynamic squeezing �uid, 
the Je�ery-Hamel �ow, the straight �n problem and the 
Falkner-Skan equation are presented and solved using 
the proposed methods. To illustrate the accuracy and ef-
�ciency of the proposed methods, the maximum error re-
mainder is calculated. The results shown that the pro-
posed methods are accurate, reliable, time saving and ef-
fective. In addition, the approximate solutions are com-
pared with the fourth order Runge-Kutta method (RK4) 
achieving good agreements.

Keywords: nonlinear di�erential equations; approximate 
solution; Bernstein polynomials; Chebyshev polynomi-
als; magnetohydrodynamic squeezing �uid; Je�ery-Hamel 
�ow

1 Introduction
Nonlinear ordinary di�erential equations (NODE) play a 
signi�cant role in all branches of science and engineering. 
Many material events can be formulated by the di�erential
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equation. These types of equations appear in a wide range
of problems including, but not limited to, �uid mechan-
ics, chemical matters, electricity and electronics. There-
fore, the need for reliable and e�ective method to solve
this kind of equation has become a very important require-
ment [1].

Orthogonal functions and polynomials are instru-
ments extremely helpful in approximation theory and nu-
merical analysis [2].The main feature of this technique is
to simplify the solution by converting the equation into
a system of algebraic equations. Accordingly, simplifying
these problems substantially, and approximate the un-
known function by using the polynomial series and then
using the operational matrices to get rid of the integration
and di�erentiation.

In the last few years, there was much research done
by using the Bernstein polynomials. Bernstein polynomi-
als were introduced in [2], which are used to solve the dif-
ferential equations. In Ref. [3] authors proposed the collo-
cation method by Bernstein polynomials to solve the vari-
ational problems. Also, Alshbool et al. presented the ap-
proximate solution of singular nonlinear di�erential equa-
tions by using a collocationmethod and Bernstein polyno-
mials [4]. Moreover, the Bernstein polynomials have been
successfully employed for a class of boundary value prob-
lems [5]. In addition, Khataybeh et al. havesolved directly
third- order ODEs by using the Bernstein operational ma-
trices method [6].

On the other hand, there are several works dealing
with the use of the Chebyshev operational matrix method.
Sharma et al. have implemented the Chebyshev opera-
tional method to solve Lane-Emden problem [7]. Also,
Öztür was studied the solution of the system of di�eren-
tial equations by using the Chebyshev operational ma-
trix method. Rajeev and Raigar have used a numerical ap-
proach based on the Chebyshev wavelets operational ma-
trix to solve Stefan problem [9]. Recently, Hashemizadeh,
and Mahmoudi have used shifted Chebyshev operational
matrix to solve the Physiology problems [10].
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The main objective of this paper is to implement two meshless methods the operational matrices methods based
on Bernstein polynomials and the Chebyshev polynomials to solve some NODE that appear in engineering and applied
sciences.

This paper has been organized as follows: In Section 2 the Bernstein polynomials and their operational matrices
are introduced. In Section 3 the �rst kind shifted Chebyshev polynomials and their operational matrices are consid-
ered. In Section 4, some nonlinear problems will be introduced and solved by using the proposed methods. Finally, the
conclusion will be given in Section 5.

2 Bernstein polynomials
The nth degree of Bernstein Polynomials on the interval [0, 1] are de�ned by [11]:

Bi,n (x) =
(
n
i

)
xi(1 − x)n−i , 0 ≤ i ≤ n, (1)

where (
n
i

)
= n!
i! (n − i)! .

There are n + 1, nth degree Bernstein Polynomials. For mathematical convenience, the equation Bi,n (x) = 0 if i <
0 or n < i is often used. These polynomials have many useful and important properties making it bene�cial, some of
these properties in the following list [11]
(a) Positivity property:

Bi,n (x) > 0 for all i = 0, 1, . . . , n and all x ∈ [0, 1] .
(b) Unity partition property

n∑
i=0

Bi,n (x) =
n−1∑
i=0

Bi,n−1 (x) = . . . =
1∑
i=0

Bi,1 (x) = 1.

(c) Recursion’s relation property:

Bi,n (x) = (1 − x) Bi,n−1 (x) + xBi−1,n−1 (x) .

It is easily to approximate any polynomial of degree n to the form of linear combination as given below,

y(x) =
n∑
i=0

CiBi,n(x) = CTΦ(x), (2)

where CT = [C0, C1, . . . , Cn] and Φ(x) = [B0,n , B1,n , . . . , Bn,n]T
Also, we couldmake the disintegration of the vectorΦ(x) as amultiplication of a squarematrix of size (n+1)×(n+1)

and vector (n + 1) × 1 i.e. Φ(x) = AX, where

X =


1
x
x2
...
xn

 (3)

De�ne vector Ai+1

Ai+1 =

 i−times︷ ︸︸ ︷
0, 0, . . . , 0, (−1)0

(
n
i

)
, (−1)1

(
n
i

)(
n − i
1

)
, . . . , (−1)n−i

(
n
i

)(
n − i
n − i

)
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for i = 0, 1, . . . , n.

Now if we de�ne (n + 1) × (n + 1)matrix A such that A =


A1
A2
...

An+1

, we obtain

A =



(−1)0
(
n
0

)
(−1)1

(
n
0

)(
n − 0
1

)
. . . (−1)n−0

(
n
0

)(
n − 0
n − 0

)

0 (−1)0
(
n
i

)
. . . (−1)n−i

(
n
i

)(
n − i
n − i

)
...

... . . . ...

0 0 . . . (−1)0
(
n
n

)


(n+1)×(n+1)

(4)

The matrix A is an upper triangular matrix and |A| =∏n
i=0

(
n
i

)
, so that A is an invertible matrix.

2.1 Operational matrix of product for Bernstein polynomials

In Section 2, we obtain a clear formula for the Bernstein polynomials of n-th degree, now let us introduce the operational
matrix of product.

Let D is an (n + 1) × (n + 1) operational matrix of the derivative, then

d
dx ϕ (x) = Dϕ (x) , 0 ≤ x ≤ 1 (5)

The matrix D is given by D = AσA−1, where σ is (n + 1) × (n)matrix [2]

σ =


0 0 0 . . . 0
1 0 0 . . . 0
0 2 0 . . . 0
...

...
... . . . 0

0 0 0 . . . n

 (6)

Equation (5) can be written for higher derivative as follows

dn
dxn ϕ (x) = (D)nϕ (x) where n = 1, 2, . . . (7)

Now, we can use this operational matrix to solve the equation by approximate the unknown function y(x) as y (x) =
CTΦ(x) and we have

y
′
(x) = CTD Φ(x), y

′′
(x) = CT(D)2Φ(x), . . . , y(n)(x) = CT(D)nΦ(x). (8)

This approximation is applied to all conditions of the equation as well.
We select the Chebyshev roots as the collocation node,

xi =
1
2

(
cos
[
i · π
n

]
+ 1
)
, i = 0, 1, . . . , n − j where j = n − 1 (9)

Wewill change the unknown functions and their derivatives using Eqs. (2) and (8), and then replace the nodes in its.
The resulting were compensated in the NODE to obtain a system of algebraic equations that we so resolve by computer
programs such as Mathematica or MATLAB. The convergent analysis of this method was illustrated by [2].
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3 First kind Chebyshev polynomials
and the operational matrices

The shifted Chebyshev polynomials (the �rst kind) Pn(x)
of degree n is de�ned by [12]

Pn (x) =
n∑
k=0

(−1)n−k22k (n + k − 1)!
(n − k)! (2k)! (x)

k . (10)

The unknown function y(x) ∈ L2[0, 1] can be approxi-
mated as the form

y (x) =
∞∑
i=0

ciPi(x) (11)

where ci =
〈
y (x) , Pi(x)

〉
= (2 i + 1)

∫ 1
0 y (x) Pi (x) dx i =

0, 1, . . .
In general, we consider only the �rst (n+1)-terms of the
shifted Chebyshev polynomials. Hence, we write

y (x) =
n∑
i=0

ciPi(x) = CTΦ(x) (12)

where CT = [c0, c1, . . ., cn] and Φ (x) =
[P0(x), P1(x), . . . , Pn(x)]T

Currently, we consider the derivative of the vector
Φ (x) by

d
dx ϕ (x) = D*ϕ (x) (13)

whereD* is (n + 1)× (n + 1)operationalmatrix of derivative
given by

D* =
4 i
ηj

j = i − k
{
k = 1, 3, 5, . . . , n − 1 if n is even
k = 1, 3, 5, . . . , n if n is odd

0 otherwise
(14)

where η0 = 2 and ηk = 1 for k ≥ 1 [7].
If n is even the matrix D* de�ned as fallows

D* =



0 0 0 0 . . . 0 0
2 0 0 0 . . . 0 0
0 8 0 0 . . . 0 0
6 0 12 0 . . . 0 0
0 16 0 16 . . . 0 0
...

...
...

... . . . 0 0
2n − 2 0 4n − 4 0 . . . 0 0
0 4n 0 4n . . . 4n 0


(15a)

Also, if n is odd then k=1,3,5,. . . , n and the matrix D* can
be written as

D* =



0 0 0 0 . . . 0 0
2 0 0 0 . . . 0 0
0 8 0 0 . . . 0 0
6 0 12 0 . . . 0 0
0 16 0 16 . . . 0 0
...

...
...

... . . . 0 0
0 4n − 4 0 4n − 4 . . . 0 0
2n 0 4n 0 . . . 4n 0


(15b)

By using Eq. (13), we can write the n-th derivative as

dn
dxn ϕ (x) =

(
D*
)n
ϕ (x) . (16)

Thus, the operational matrix can be applied to solve
the NODE by approximate the unknown function y (x) =
CTΦ(x) and their derivatives by

y
′
(x) = CTD*Φ(x), y′′(x) = CT(D*)2Φ(x), . . . ,

y(n)(x) = CT(D*)nΦ(x). (17)

We will replace unknown functions and derivatives
using Eqs. (12) and (17), and then they are compensated
in NODE and their conditions, we then assign the contract
in these equations to obtain a system of nonlinear equa-
tions (n + 1) which can be solved using by the computer
programs Mathematica or MATLAB to get the coe�cients
of vector CT .

4 Test problems
In this section, the Bernstein and Chebyshev operational
matricesmethodswill be implemented to solve someprob-
lems of NODEs that appear in engineering and applied sci-
ences.

4.1 Magnetohydrodynamic (MHD)
squeezing fluid flow

The squeezing �uid �ow in a porous medium with mag-
netic �eld in�uence shows in Figure 1 has the governing
equations [13]:

∇.W = 0,

ρ DW = ∇.T + (J × B) + r. (18)
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whereW is the velocity vector, J the electric current density
and B = B0 +b is the total magnetic �eld and B0, b are the
imposed and induced magnetic �elds, respectively.

T = −pI+µA is the Cauchy stress tensorwithA = ∇W+
(∇W)t and r is the Darcy’s resistance.

The MHD force J × B can be written as follows:

J × B = −σB20W.

Suppose that the magnetic �eld is enforced along z-
axis and the plates are non conducting. For small velocity
w, the gap distance 2L between the panels slowly changes
over time t so that it can be used as a constant.

For axial symmetry, the componentsW for the present
case areW = (wr , 0, wz). If the generalized pressure given
by P = ρ

(
w2
r + w2

z
)
+ p and the �ow are steady then the

Navier-Stokes Eq. (18) can be written as
∂P
∂r − ρ

(
∂wz
∂r −

∂wr
∂z

)
wz

= −
[
µ ∂∂z

(
∂wz
∂r −

∂wr
∂z

)
+
(µ
k + σB20

)
wr
]
, (19)

∂P
∂z − ρ

(
∂wz
∂r −

∂wr
∂z

)
wr

= −µr
∂
∂r

[
r
(
∂wz
∂r −

∂wr
∂z

)]
− µκ wz . (20)

Using the transformation ψ (r , z ) = r2f (z) [14], elim-
inating the pressure P from Eqs. (19) and (20), we get

f iv (z) −
(
1
k + σB

2
0
µ

)
f
′′
(z) + 2 ρµ f

′′′
(z) = 0, (21)

with boundary conditions

f (0) = 0, f
′′
(0) = 0, f (L) = ν

2 , f
′
(L) = 0. (22)

Using the following dimensionless parameters

F* = 2f
v , z* = z

L , R = ρhvµ , m = L

√
1
k + σB

2
0
µ . (23)

and omitting the (*) then the Eqs. (21) and (22) become

F iv (z) − m2F
′′
(z) + RF(z)F

′′′
(z) = 0, (24)

F (0) = 0, F
′′
(0) = 0, F (1) = 1, F

′
(1) = 0. (25)

In our work, we take m = R = 1.

4.1.1 Solving the MHD squeezing fluid by Bernstein and
Chebyshev operational matrices methods

The two meshless methods will be applied to solve the
�rst problem by using the Bernstein and �rst kind shifted
Chebyshev operational matrices.

Figure 1: Geometry of the flow [13]

The �rst step, let us write the function F(z) and its
derivatives as matrices by using Eqs. (2) and (8), for the
Bernstein polynomial, we get

CT(D)4 Φ (z)−m2CT(D )2Φ (z)+RCTΦ (z) CT(D )3Φ (z) = 0,

CTΦ (0) = 0, CT(D )2Φ (0) = 0,
CTΦ (1) = 1, CTD Φ (1) = 0. (26)

Also, by using the Eqs. (12) and (17) for the Chebyshev
polynomial, we obtain

CT
(
D*
)4
Φ (z) − m2CT

(
D*
)2
Φ (z)

+ RCTΦ (z) CT
(
D*
)3
Φ (z) = 0,

CTΦ (0) = 0, CT
(
D*
)2
Φ (0) = 0,

CTΦ (1) = 1, CTD* Φ (1) = 0. (27)

To �nd the values of the unknown coe�cients CT =
[c0, c1, . . ., cn]we get the algebraic system by substitute
the collocation nodes in Eq. (9) into Eq. (26) or Eq. (27) and
solve it.

The following approximate polynomial for this prob-
lem when n = 12, R = 1, m = 1, will be obtained:
• By using Bernstein polynomial operational matrices

F (z) ≈ 0 + 1.50812717z − 0.51862906z3

− 0.000017601z4 + 0.013252656z5 − 0.000225471z6

− 0.002559665z7 − 0.0006791969z8 + 0.001103192z9

− 0.0004403875z10 + 0.000074039z11

− 0.000005673z12

• By using shifted Chebyshev polynomial operational
matrices
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F (z) ≈ 1.973460121 × 10−11 + 1.50812716z
+ 1.93756 × 10−7z2 − 0.51863211z3

+ 0.0000071323z4 + 0.01313555z5

+ 0.0001217442z6 − 0.003225565z7

+ 0.00015101z8 + 0.000445903z9 − 0.0001310256z10

In order to inspect the accuracy for the solution obtained
by suggested methods for Eq. (24), we calculate the maxi-
mal error remainder MERn since the exact solution is un-
known.

The error remainder function for MHD squeezing �uid
can be de�ned as follows

ERn (z) = F iv (z) − F
′′
(z) + F (z) F

′′′
(z) , (28)

and the MERn is

MERn =
max

0 ≤ z ≤ 1 |ERn (z)| (29)

Figure 2 shows that the logarithmic plots for MERn
of the approximate solution obtained by the methods of
Bernstein andChebyshevoperationalmatriceswhich indi-
cate the e�ciency of these methods. In Figure 2 we taken
n=6,7,8,9,10,11, we can see the e�ciency by increasing n,
the errors will be decreasing, this can be described in both
cases.

Moreover, Figure 2 presents the method of the opera-
tional matrix which depends on Bernstein polynomial is
more e�ective than the Chebyshev polynomial.

Figure 2: Logarithmic plots for the MERn for versus n for MHD
squeezing fluid problem

Further numerical investigation can be made, a nu-
merical comparison has beenmade between the solutions
obtained the suggested methods and the Range- Kutta
(RK4) method when n = 12. This comparison is illustrated
in Figure 3, it can be seen a good agreements between the
approximate solutions and RK4.

Figure 3: The comparison of the solutions for MHD squeezing fluid
problem when n=12, R=1, m=1.

4.2 Je�ery- Hamel fluid flow

The �ow between two nonparallel walls is one of the most
important problems in �uid mechanics because of the
wide range of applications [15].

The governing equations for the Je�ery-Hamel �ow
incompressible viscous �uid that is present at the inter-
section of two rigid, nonparallel plane walls; angle be-
tween walls is 2α. Flow is supposed to be purely radial
and symmetric. Thus the velocity �eld can be denoted by
V = [ur , 0, 0]where ur = u(r, θ) is the velocity along radial
direction, see Figure 4 [16].

The continuity and Navier-Stokes equations in the po-
lar coordinates can be written as follows

ρ
r
∂
∂r
(
ru(r, θ)

)
= 0 (30)

u (r, θ) ∂u (r, θ)∂r = −1ρ
∂p
∂r

+ ν
[
∂2u (r, θ)
∂r2 + 1

r
∂u (r, θ)
∂r + 1

r2
∂2u (r, θ)
∂θ2

− u (r, θ)r2

]
− σB

2
0

ρr2 u(r, θ), (31)

− 1
ρr
∂p
∂r +

2ν
r2
∂u(r, θ)
∂θ = 0. (32)

where B0 represents the electromagnetic induction and
σ, p , ρ, v are the conductivity of the �uid, pressure gra-
dient, constant density of �uid and kinematic viscosity re-
spectively.

We can written Eq.(30) as the form

f (θ) = r u (r, θ) (33)

Dimensionless parameters are de�ned by [15]

F (η) = f (θ)
fmax

, where η = θ
α . (34)



250 | M. A. Al-Jawary and G. H. Ibraheem, Two meshless methods for solving nonlinear di�erential equations

By eliminating pressure terms from Eqs. (31) and (32)
and using the formulations in Eqs. (33) and (34), we obtain
a third- order di�erential equation:

F
′′′
(η) + 2 αReF (η) F

′
(η) + (4 − Ha) α2F

′
(η) = 0, (35)

with the boundary conditions as bellow

F (0) = 1, F
′
(0) = 0, F (1) = 0. (36)

where the Reynolds number Re = α Umax
ν , and Ha2 = σB20

ρv
is the square of the Hartmann number.

Figure 4: The geometry of the problem [16]

4.2.1 Solving Je�ery–Hamel fluid flow by Bernstein and
Chebyshev operational matrix methods

The procedures for the methods of the operational matri-
ces based onBernstein andChebyshevpolynomials canbe
applied to solve the Eq. (35) with boundary conditions Eq.
(36).

Replace the F (η) and its derivatives as matrices by us-
ing Eqs. (2) and (8), for the Bernstein polynomial, we get

CT(D)3 Φ (η) + 2 αRe CTΦ (η) CTDΦ (η)
+ (4 − Ha)α2CTDΦ (η) = 0,

CTΦ (0) = 1, CTDΦ (0) = 0, CTΦ (1) = 0. (37)
If we use the Eqs. (12) and (17) for the Chebyshev poly-

nomial, we obtain

CT
(
D*
)3
Φ (η) + 2 αRe CTΦ (η) CTD*Φ (η)

+ (4 − Ha)α2CTD*Φ (η) = 0,

CTΦ (0) = 1, CTD*Φ (0) = 0, CTΦ (1) = 0. (38)
Calculate the values of CT = [c0, c1, . . ., cn] by solv-

ing the algebraic system obtained by substitute the collo-
cation nodes on the Eqs. (37) and (38).

The following approximate polynomial for this prob-
lem when n = 12, α = 5◦, Re = 10, Ha = 0 will be ob-
tained
• By using Bernstein polynomial operational matrices

F(η) ≈ 1. − 1.125974388η2 + 0.000001614788η3

+ 0.1666094857η4 + 0.00008832969η5

− 0.047086414η6 + 0.000926031η7

+ 0.00557524719η8 + 0.00234250455η9

− 0.0035943983η10 + 0.00129205η11

− 0.000180064η12

• By using shifted Chebyshev polynomial operational
matrices

F(η) ≈ 1.0000000000214 − 6.174114950 × 10−9η
− 1.125974093223η2 − 0.0000038895835η3

+ 0.1666625548η4 − 0.0002135427176η5

− 0.0459979297696η6 − 0.001657455901η7

+ 0.0096655287955η8 − 0.0019346791089η9

− 0.000758100206η10 + 0.00021161307η11

To examine the accuracy of the obtained approximate so-
lution by using the Bernstein and Chebyshev polynomi-
als with operational matrices to solve this problem, we de-
�ned the maximal error remainder MERn as the form

ERn (η) = F
′′′
(η) + 2 αReF (η) F

′
(η) + (4 − Ha) α2F

′
(η) ,
(39)

and the MERn is

MERn =
max

0 ≤ η ≤ 1 |ERn (η)| . (40)

Figure 5 illustrates that the logarithmic plots forMERn
of the approximate solution gotten by solving this prob-
lem by using the operational matrixmethods based on the
Bernstein or Chebyshevpolynomialswhich indicate the ef-
�ciency of thesemethods. The values of nhas been consid-
ered n=4 to 11, the e�ciency has been seen by the errors
will be decreasing when n increasing.

In additional, numerical comparison between the so-
lutions calculated by the suggested methods and the RK4
method when n = 12. This comparison is presented in Fig-
ure 6, the good agreements between the approximate so-
lutions and RK4 can be clearly seen.
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Figure 5: Logarithmic plots for the MERn for versus n for Je�ery–
Hamel fluid flow

Figure 6: The comparison of the solutions for Je�ery–Hamel fluid
flow when n = 12, α = 5◦ , Re = 10, Ha = 0

4.3 Straight �n problem

Nonlinear �n problems are important in engineering and
applied sciences because of their applications and the
wide uses in the di�erent �eld of science and technol-
ogy [17].

The 1D straight �n is presented in this form

S ddx

(
k (T) dTdx

)
− ph (T − Ta) = 0, (41)

where k(T) is the temperature with heat transfer coe�-
cient or the thermal conductivity, T is the distribution of
the heat on the �n, S is some arbitrary constant area (cross-
sectional), L is the �n length, p is the perimeter, h repre-
sents the heat transfer coe�cient, Ta and Tb are tempera-
tures of base surface and surrounding �uid, in a respective
way, see Figure 7 [17].

The thermal conductivity of the �n material is as-
sumed to be a linear function of temperature as

k (T) = ka (1 + γ (T − Ta)) , (42)

where ka is the thermal �n conductivity at Ta and γ is a pa-
rameter without dimensions which represented the vari-
ance in the temperature conductivity [18].

u = T − Ta
Tb − Ta

, x = y
b , β = γ (Tb − Ta) , µ2 =

hpL2
kaS

u.
(43)

The nonlinear equation of the straight energy de-
scribed as a balance of �ns extending to the surface un-
der the in�uencewas obtained by temperature-dependent
thermal conductivity.

u
′′
(x) + βu (x) u

′′
(x) + β

(
u

′
(x)
)2
− µ2u (x) = 0, (44)

with boundary conditions:

u
′
(0) = 0, u (1) = 1, and u(0) = a, (45)

where u is anunknown functionwhich represents the tem-
perature without dimensions, µ the parameter of the ther-
mal �n, β parameter of the thermal conductivity, a is a pa-
rameter can be evaluated, see [19].

Figure 7: Geometry of the straight �n [17]

4.3.1 Solving straight �n problem by Bernstein and
Chebyshev operational matrices methods

The operational matrices based on Bernstein and Cheby-
shev polynomials can be applied to solve the Eq. (44) with
boundary conditions Eq. (45).

We will replace the unknown function u (x) and their
di�erentials as an operational matrices form, Eqs. (2) and
(8) will be used for the Bernstein polynomial, we get

CT(D)2 Φ (x) + βCTΦ (x) CT(D)2Φ (x)

+ β (CTDΦ (x))
2 − µ2CTΦ (x) = 0,

CTΦ (1) = 1, CTDΦ (0) = 1, CTΦ (0) = a. (46)

Eqs. (12) and (17) for the Chebyshev polynomial can be
used in Eqs. (44) and (45), we obtain

CT
(
D*
)2
Φ (x) + βCTΦ (x) CT

(
D*
)2
Φ (x) + β (CTD*Φ (x))

2
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− µ2CTΦ (x) = 0,

CTΦ (1) = 1, CTD*Φ (0) = 1, CTΦ (0) = a. (47)

The algebraic system obtained by substitute the collo-
cation nodes on the Eqs. (46) and (47).

The following approximate polynomial for this prob-
lem when n=11, β = −0.1, µ = 0.4, a = 0.917606, the
value of a is taking from [19].
• By using Bernstein polynomial operational matrices

u(x) ≈ 0.917606 + 1.7763568394 × 10−15x
+ 0.0808250335659x2 + 2.62673438555 × 10−10x3

+ 0.001546176x4 + 1.7047113942 × 10−8x5

+ 0.000022781048x6 + 1.1997076398 × 10−7x7

+ 2.541537469 × 10−7x8 + 1.16053797 × 10−7x9

− 4.0269924284 × 10−8x10 + 8.872746093 × 10−9x11

• By using shifted Chebyshev polynomial operational
matrices

u(x) ≈ 0.9176059999846772
+ 1.950476985273456 × 10−9x
+ 0.08082499289875175x2

+ 3.225241157699642 × 10−7x3

+ 0.0015449278011654942x4

+ 0.000002626330338109295x5

+ 0.000019813454762065937x6

+ 0.000001782631253763988x7

To examine the accuracy of the obtained approximate so-
lution by using the Bernstein and Chebyshev polynomi-
als with operational matrices to solve this problem, we de-
�ned the maximal error remainder MERn as the form

ERn (x) = u
′′
(x)+βu (x) u

′′
(x)+β

(
u

′
(x)
)2
−µ2u (x) , (48)

and the MERn is

MERn =
max

0 ≤ x ≤ 1 |ERn (x)| (49)

The logarithmicplots forMERn of the approximate so-
lution has been shown in Figure 8 by solved this problem
using the operational matrix methods for both Bernstein
and Chebyshev polynomials which indicate the e�ciency
of these methods. The values of n has been presented in
Figure 8, we taken n=4 till 10, the e�ciency has been seen

by the errors will be decreasing when n increasing. Also, it
can be seen clearly the error of using the Bernstein polyno-
mial is less thanusing theChebyshevpolynomial this indi-
cates the operational matrix method with Bernstein poly-
nomial provides better accuracy.

Figure 8: Logarithmic plots for the MERn for versus n for straight �n
problem

Also, the numerical comparison between the solu-
tions calculated by the suggested methods and the RK4
method when n = 11 is given in Figure 9. The good agree-
ments between the approximate solutions and RK4 can be
noticed.

Figure 9: The comparison of the solutions for Straight Fin Problem
when n=11, β = −0.1, µ = 0.4, a = 0.917606.

4.4 The Falkner-Skan equation

The Falkner-Skan equation is classi�ed as one of the non-
linear ordinary di�erential equations of the third order
which has a large number of applications, such as in-
sulation materials, glass applications and polymer stud-
ies [20].

The Falkner-Skan equation represents in the study of
laminar boundary layers displaying similarity. The prob-
lem is given by

y
′′′
(x) + y (x) y

′′
(x) + β

[
ϵ2 −

(
y′(x)

)2] = 0, (50)
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with boundary conditions as the following:

y (0) = 0, y′ (0) = 1 − ϵ, y′ (∞) = ϵ. (51)

where β is the pressure gradient parameter and ϵ is veloc-
ity ratio parameter.

When β = 0, Eq (50) is called the Blasius, when β =
1, Eq. (50) is called the Hiemenz �ow problem and when
β = 1

2 , Eq. (50) represent to the Homann �ow problem.
To solve this problem we can �nd the numerical value

of the missing boundary conditions by using the Padé ap-
proximate method. For more details see [21].

Thus, the boundary conditions become

y (0) = 0, y′ (0) = 1 − ϵ, y
′′
(0) = a. (52)

We will use the value of a = − 0. 832666 as given in [21].

4.4.1 Solving Falkner-Skan equation by Bernstein and
Chebyshev operational matrices methods

The operational matrices based on Bernstein and Cheby-
shev polynomials will be used to solve the Eq. (50) with
boundary conditions represented in Eq. (52).

The unknown function y (x) and their di�erentials
have been exchanged as an operational matrices form,
Eqs. (2) and (8) for theBernstein polynomial has beenused
to get equations as the form follows

CT(D)3 Φ (x) + CTΦ (x) CT(D)2Φ (x)

+ β
[
∈ 2 −

(
CTDΦ (x)

)2]
= 0,

CTΦ (0) = 0, CTDΦ (0) = 1 − ϵ, CT(D)2Φ (0) = a (53)

Eqs. (12) and (17) for the Chebyshev polynomial can be
used in Eqs.(50) and (52), we obtain

CT
(
D*
)3
Φ (x) + CTΦ (x) CT

(
D*
)2
Φ (x)

+ β
[
∈ 2 −

(
CTD*Φ (x)

)2]
= 0,

CTΦ (0) = 0, CTD*Φ (0) = 1 − ϵ, CT
(
D*
)2
Φ (0) = a.

(54)
The algebraic system has been achieved by substitut-

ing the collocation nodes on the Eqs. (53) and (54).
We consider n= 4 to 12 in this problem. If n = 12, β =

0.5, ∈ = 0.1, a = −0. 832666, (for calculate the value
of a, see [21]) the following approximate polynomial has
been gotten

• By using Bernstein polynomial operational matrices

y (x) ≈ 0.89999999999x
− 0.41633299999999807x2

+ 0.06666667128520487x3

− 4.104200002075231 × 10−8x4

− 0.0029997785484283668x5

+ 0.00046182400910765864x6

+ 0.0001628731071718903x7

− 0.00007702244352003618x8

+ 0.000004539459496299969x9

+ 0.000005072552994533908x10

− 0.000001637857849345891x11

+ 1.70446526226442 × 10−7x12

• By using shifted Chebyshev polynomial operational
matrices

y (x) ≈ 9.04174260000537 × 10−11

+ 0.8999999853077153x
− 0.41633260693889024x2

+ 0.06666261954320185x3

+ 0.00002086400995171111x4

− 0.0030602804620039276x5

+ 0.0005641848447672726x6

+ 0.0000635987207972879x7

− 0.00002869443212259562x8

To check the accuracy of the gotten approximate solution
by using the Bernstein or Chebyshev polynomials with op-
erationalmatrices to solve this problem, themaximal error
remainder MERn has been de�ned as the form

ERn (x) = y
′′′
(x) + y (x) y

′′
(x) + β

[
ϵ2 −

(
y′(x)

)2] , (55)

and the MERn is

MERn =
max

0 ≤ x ≤ 1 |ERn (x)| (56)

The logarithmic plots forMERn of the approximate so-
lution by solved this problem by using the operationalma-
trix methods based on the Bernstein or Chebyshev poly-
nomials have been given in Figure 10 which indicates the
e�ciency of these methods. We can see the e�ciency for
these methods when n is increasing, the errors reminders
are decreasing. Moreover, the operational matrix method
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Figure 10: Logarithmic plots for the MERn for versus n for Falkner-
Skan problem

Figure 11: The comparison of the solutions Falkner-Skan problem
when n = 12, β = 0.5, ∈ = 0.1, a = −0. 832666.

based on the Bernstein polynomial provides better accu-
racy.

In addition, the comparison numerically between the
solutions calculated by the suggested methods and the
RK4 method when n=12, has been presented in Figure 11.
Furthermore, the good agreements between the approxi-
mate solutions and RK4 can be seen clearly.

Also, we have calculated the run time of the proposed
methods and RK4. It can be seen from Table 1 that running
time for the proposed methods are faster compared to the
RK4 method in seconds.

Table 1: The comparison of run time between the proposed methods
and RK4 per seconds

 

 Time of RK4 Time of 
Bernstein for 

N=5 

Time of Chebyshev 
for N=5 

MHD squeezing 
fluidproblem 

0.36 0.297 0.265 

Jeffery –Hamel fluid flow 0.36 0.344 0.343 
Straight Fin Problem 0.343 0.312 0.313 
Falkner-Skan problem 0.328 0.297 0.265 

 

5 Conclusion
In this paper, the methods of operational matrices based
on the two di�erent types of Bernstein and Chebyshev
polynomials to solve several problems containing NODEs
have been used. Mentioned problems arise in engineering
and applied sciences. Each problem has been solved and
an approximate solution has been obtained by approxi-
mate the unknown function by the polynomial series and
uses the operational matrices to eliminate of the di�eren-
tiation from the equation. Moreover, the problems have
been solved numerically by using the RK4method to com-
pare the numerical result with the approximate solutions
and the compatibility was good among them. Further-
more, both methods have provided a good accuracy, how-
ever, the operational matrix method based on the Bern-
stein polynomial provides better accuracy.Mathematica®
10 software has been used for calculations on this study.
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