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1 Introduction

The study of multi-meson systems is an interesting problem as they are universal in various

physical processes. An example of this is the B → K∗(→ Kπ)µ+µ− decay that is induced

by the flavor-changing neutral current. Such a process is highly suppressed in the Standard

Model (SM), and thus sensitive to physics beyond the Standard Model (BSM). As a result

it offers a large number of observables to test the SM ranging from differential decay widths

and polarizations to a full analysis of angular distributions of the final-state particles. Re-

cent experimental studies have led to some hints for moderate deviations from the SM [1–3].

Note that this process is in fact a four-body decay since the K∗ meson is reconstructed from

theKπ final state. Therefore, to handle such decay processes, the narrow-width approxima-

tion is usually assumed in phenomenological studies. However, this assumption may lead to

sizable systematic uncertainties as it captures only part of the Kπ final-state interactions.

To solve this problem, one should use a complete factorization analysis that can sys-

tematically separate the low-energy final-state interaction from the short-ranged weak tran-

sition. In semi-leptonic processes like B →M1M2ℓ
+ℓ−, the final two-meson state decouples

from the leptons to a good approximation. Thus, it is guaranteed by the Watson-Madigal

theorem [4, 5] that the phase of the hadronic transition matrix element is equal to the phase

of M1M2 elastic scattering below the first inelastic threshold. More explicitly, as pointed

out, e.g., in ref. [6], the decay matrix element is proportional to a two-meson form factor,

〈M1M2|q̄(0)Γq(0)|0〉 , (1.1)

where the Dirac matrices Γ = 1, γµ, σµν correspond to the scalar, vector, and antisym-

metric tensor currents, respectively. The choice depends on whether M1 and M2 are in

relatively S-wave or P -wave. The relation between vacuum-to-two-meson form factors as in

eq. (1.1) and those appearing in heavy-meson decays can occasionally be sharpened based

on chiral-symmetry relations [7].

One of the standard approach to calculating these two-meson form factors is using

chiral perturbation theory (ChPT), which is a low-energy effective theory of quantum

chromodynamics (QCD) that describes the interaction among light mesons and baryons.

The next-to-leading-order (NLO) ChPT calculation for the ππ scalar form factor was firstly

given in ref. [8]. Its two-loop representation and some unitarization schemes were discussed
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in ref. [9]. After that, refs. [10, 11] performed more complete studies of the scalar form

factors in unitarized chiral perturbation theory (uChPT), where the results of the NLO

ChPT were extended to a higher energy scale around 1 GeV, which was realized by involving

the channel coupling between the ππ and the KK̄ systems to impose unitarity constraints

on the form factors. The reconstruction of the scalar ππ and KK̄ form factors based on a

Muskhelishvili-Omnès representation, relying on phenomenological phase shift input, has

by now a long history [12–16], which includes several dedicated applications in the context

of BSM physics searches [17–20]. Extensions beyond 1 GeV with a new formalism including

further inelastic channels were discussed in ref. [21]. Studies of the πη isovector scalar form

factor (also coupled to KK̄) are much rarer [7, 22, 23], largely due to far less experimental

information on πη scattering. The Kπ, Kη scalar form factors up to 2 GeV were given

in refs. [24–27] with a coupled-channel dispersive analysis. The two-meson vector form

factors for Kπ were first derived in ChPT [28], while it was mostly obtained by fitting

to the data of semi-leptonic τ decays in refs. [29–31]. There is a number of works for

the pion vector form factor based on the Omnès dispersive representation [32–41], ChPT

calculations [9, 42–44], a model based on analyticity [45], and in the large-Nc limit [46].

Throughout the present study, we will work in the isospin limit, although also isospin-

violating scalar and vector form factors have been studied in uChPT or using dispersive

methods, such as in the context of a0–f0 mixing [47] or for studies of second-class currents

in τ -decays [48, 49].

Unlike the scalar and vector cases, naturally the coupling with the antisymmetric ten-

sor current does not exist in the SM and conventional ChPT (the energy-momentum tensor

is symmetric, and has been built into ChPT up to NLO [50, 51]). However, in terms of

the research for BSM physics, for example in the Standard Model Effective Field Theory

(SMEFT), a number of high-dimensional operators including the tensor current are neces-

sary. Besides the conventional ChPT Lagrangian, additional terms with an antisymmetric

(antisymmetric is implicit in the following discussion of the tensor part) tensor source was

first given in ref. [52], which is crucial to calculating the tensor form factors. Recently,

dispersive analyses of tensor form factors in specific channels (ππ [53], πK [54], and for the

nucleon [55]) have been carried out.

In this work, we will perform a study of all three kinds of two-meson form factors based

on uChPT and dispersion relations. Section 2 gives a brief introduction to ChPT and its

unitarization, where we will discuss how unitarized meson-meson scattering amplitudes

can be obtained by the inverse amplitude method (IAM). The coupled-channel IAM [56] is

modified by removing the imaginary parts of the t- and u-channel loops in order to restore

unitarity in coupled-channel systems, which is otherwise violated in particular around

the ρ-meson region in the isospin-1 sector. In section 3, we will calculate the two-meson

scalar form factors, which are then unitarized by the IAM. There, unphysical sub-threshold

singularities, related to the so-called Adler zeros, will show up. To eliminate these defects,

an iteration procedure based on dispersion relations is performed for each form factor,

so that the improved form factors behave well in a wide energy range 0 . . . 1.2 GeV. In

sections 4 and 5, we will apply the same procedure to the calculation of unitarized vector

and tensor form factors, respectively. Some of the form factors obtained in this work
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are compared with those that have appeared in earlier works. For each kind of form

factor, we will also briefly introduce their applications in corresponding phenomenological

studies. This includes the application of the ππ form factor for the S-wave-dominated

decay Bs → f0(980)(→ π+π−)µ+µ−, the application of two-meson vector form factors in

the two-body hadronic decays of a charged lepton l → φφ′ν, where φ and φ′ denote light

pseudoscalar mesons, and the application of two-meson tensor form factors for the BSM

effects in two-body τ decays τ → φφ′ντ . Finally, section 6 contains a summary. Various

technicalities are relegated to the appendices.

2 Framework

2.1 Chiral perturbation theory and its unitarization

ChPT [8, 28, 57] provides a systematic framework to investigate the strong interaction

at low energies. It is based on the spontaneous breaking of the global G = SU(3)L ×
SU(3)R symmetry of the QCD Lagrangian, in the limit of vanishing u, d, and s quark

masses, down to the global H = SU(3)V symmetry of the QCD vacuum. This spontaneous

symmetry breaking gives rise to eight pseudo-Nambu-Goldstone bosons (pNGBs), which

are the relevant degrees of freedom at low energies. In fact, it can be proven that the eight

pNGBs construct a space which is isomorphic to the quotient space G/H = SU(3)L ×
SU(3)R/SU(3)V [58]. This isomorphism enables one to parametrize any of these quotient

elements U ∈ G/H by the eight pNGBs as

U = exp

[

iφ

F0

]

, (2.1)

where F0 is the pion decay constant in the chiral limit, and

φ = φaλa =











π0 + η/
√

3
√

2π+
√

2K+

√
2π− −π0 + η/

√
3
√

2K0

√
2K−

√
2K̄0 −2η/

√
3











(2.2)

contains the pNGB octet. Here, exact isospin symmetry is assumed, which turns off the π0-

η mixing for simplicity. We use the convention that under SU(3)L×SU(3)R transformations

U behaves as U → RUL†, with R ∈ SU(3)R and L ∈ SU(3)L. With U as the building

block, the leading-order (LO) effective Lagrangian of ChPT is constructed as

L(2) =
F 2

0

4
〈DµUD

µU †〉+
F 2

0

4
〈χU † + χ†U〉 , (2.3)

where 〈. . .〉 denotes the trace in SU(3) flavor space, χ = 2B0(M + s), with M the quark

mass matrix, DµU ≡ ∂µU − irµU + iUlµ, and s, lµ, rµ are the scalar, the left-handed, and

the right-handed external sources. The parameter B0 is proportional to the QCD quark

condensate, 3F 2
0B0 = −〈ūu+ d̄d+ s̄s〉.

Applying eq. (2.3) at one-loop produces ultraviolet (UV) divergences that can be reg-

ulated using dimensional regularization and then reabsorbed into the low-energy constants
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(LECs) in the next-to-leading-order (NLO) Lagrangian [8, 28]:

L(4) = L1〈DµUD
µU †〉2 + L2〈DµU (DνU)†〉〈DµU(DνU)†〉+ L3〈DµU(DµU)†DνU(DνU)†〉

+L4〈DµU(DµU)†〉〈χ†U + Uχ†〉+ L5〈DµUD
µU †(χ†U + Uχ†)〉

+L6〈χ†U + Uχ†〉2 + L7〈χ†U − Uχ†〉2 + L8〈χU †χU † + Uχ†Uχ†〉
−iL9〈RµνD

µU(DνU)† + Lµν(DµU)†DνU〉+ L10〈LµνUR
µνU †〉 , (2.4)

where Lµν and Rµν are field-strength tensors of the external sources

Lµν = ∂µlν − ∂ν lµ − i[lµ, lν ] , Rµν = ∂µrν − ∂νrµ − i[rµ, rν ] . (2.5)

The UV-finite, scale-dependent renormalized LECs {Lr
i } are defined as Lr

i = Li−Γiλ,

with the UV-divergent parts proportional to

λ =
1

32π2

[

2

d− 4
− ln(4π) + γ − 1

]

, (2.6)

and the nonzero values for their coefficients Γi relevant to this work are

Γ1 =
3

32
, Γ2 =

3

16
, Γ4 =

1

8
, Γ5 =

3

8
, Γ6 =

11

144
, Γ8 =

5

48
, Γ9 =

1

4
, Γ10 = −1

4
. (2.7)

The scale dependence of these LECs is given by

Lr
i (µ2) = Lr

i (µ1)− Γi

32π2
ln

(

µ2
2

µ2
1

)

. (2.8)

Some details of the loop functions occurring in the one-loop ChPT calculations can be

found in appendix A. Table 1 collects the numerical results for the Lr
i at the scale µ = Mρ

that were obtained previously. The first column corresponds to the analysis up to O(p4) in

ChPT [28, 59], and the second refers to the fit with O(p6) corrections [60]. The third column

corresponds to the previous fit of meson-meson scattering phase shifts and inelasticities in

the coupled-channel IAM [56], which we will discuss further below.

The power counting of ChPT is organized according to the increasing power of the

ratio p/Λχ given in terms of a typical small pNGB momentum p of the order of the pNGB

mass and the chiral symmetry breaking scale Λχ ∼ 4πFπ [61], where Fπ ≈ 92.1 MeV

is the physical pion decay constant. Therefore, the perturbative expansion in ChPT is

expected to break down when p/Λχ ∼ 1. Moreover, a perturbative expansion in powers

of momenta to any finite order cannot describe the physics of resonances, which are given

by poles of the S-matrix on unphysical Riemann sheets. Thus, the masses of the lowest

resonances in each meson-meson scattering channel limit the applicability region of ChPT

in the corresponding sector.

Unitarization (or resummation) is a systematic prescription intended to extend the

applicability of ChPT to higher energies, say 1 GeV, by modifying the perturbative expres-

sion such that it satisfies the full instead of only the perturbative unitarity requirement of

quantum field theory. Since unitarity is nonperturbative in its nature, in this way the low-

est meson resonances may also be described. Note, however, that unitarization comes with
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Lr
i O(p4) ChPT [28, 59] O(p6) ChPT [60] uChPT [56] uChPT Fit 1 uChPT Fit 2

Lr
1 0.4±0.3 1.11±0.10 0.56±0.10 0.52±0.01 0.55±0.02

Lr
2 1.35±0.3 1.05±0.17 1.21±0.10 1.08±0.01 1.07±0.03

L3 −3.5±1.1 −3.82±0.30 −2.79±0.24 −2.72±0.01 −2.76±0.03

Lr
4 −0.3±0.5 1.87±0.53 −0.36±0.17 −0.27±0.01 −0.20±0.02

Lr
5 1.4±0.5 1.22±0.06 1.4±0.5 1.36±0.19 1.13±0.61

Lr
6 −0.2±0.3 1.46±0.46 0.07±0.08 0.07 (fixed) 0.07 (fixed)

L7 −0.4±0.2 −0.39±0.08 −0.44±0.15 −0.60±0.04 −0.52±0.12

Lr
8 0.9±0.3 0.65±0.07 0.78±0.18 0.89±0.09 0.68±0.29

Lr
9 6.9±0.7 — — — —

Lr
10 −5.5±0.7 — — — —

Table 1. Low-energy constants Lr
i (in units of 10−3) at µ = Mρ. For the description of the fits

given in the last two columns, we refer to section 2.3.

a price: as there are various unitarization schemes, some scheme-dependence is introduced.

Also, crossing symmetry is often broken in such approaches.

Let us start with a simple example. In the case of 2→ 2 multi-channel scattering with

the momenta of initial and final particles as p1, p2 and p3, p4, respectively, we can define

the partial-wave amplitude TJ(s) with total angular momentum J from the full scattering

amplitude T (s, cos θ) by

TJ(s) =
1

2

∫ +1

−1
PJ(cos θ)T (s, cos θ)d cos θ , (2.9)

where s = (p1 + p2)2 = (p3 + p4)2 is one of the usual Mandelstam variables, θ is the

angle between ~p3 and ~p1 in the center-of-mass (c.m.) frame, and PJ(cos θ) is the Legendre

polynomial of order J . If we consider only two-particle intermediate states, then the

partial-wave amplitudes should satisfy the following unitarity relation:

Im [TJ(s)]ij =
∑

kk′

[TJ(s)]ik δkk′

|~pk|
8π
√
s

Θ(s− si
th) [TJ(s)]∗k′j , (2.10)

where time reversal invariance is assumed. The indices i, j, k, and k′ denote different

scattering channels, |~pk| is the modulus of the c.m. 3-momentum in the kth channel, and

si
th = (Mai

+Mbi
)2 is the production threshold of the ith channel particles. Equation (2.10)

can be written in matrix form:

Im [TJ(s)] = TJ(s)Σ(s)T ∗
J (s) , [Σ(s)]ij ≡ δij

|~pi|
8π
√
s

Θ(s− si
th) . (2.11)

Multiplying T−1
J and T ∗−1

J on both sides leads to

1

2i

[

T ∗−1
J (s)− T−1

J (s)
]

= − ImT−1
J (s) = Σ(s). (2.12)

– 5 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
6

Figure 1. A Feynman diagram interpretation for the IAM method: summing up all the s-channel

O(p4) scattering amplitudes to all orders.

In a fixed-order ChPT calculation, the relation (2.10) is only satisfied perturbatively.

For instance, substituting the ChPT expression of TJ(s) at O(p4) to both sides will result

in the breaking of the equality at the O(p6) level. There are many ways to recover exact

unitarity, and in this work we mainly adopt the multi-channel IAM outlined in ref. [56].

The procedure is as follows. First, the partial-wave amplitude TJ can be written as

TJ =
(

Re[T−1
J ]− iΣ

)−1
. (2.13)

Since Σ is a known matrix, we just need to calculate Re[T−1
J ], i.e., the real part of the

inverse matrix T−1
J in order to obtain the full TJ . The IAM is a way to calculate Re[T−1

J ]

approximately [56, 62, 63]. The idea is to start with the perturbative expansion of TJ : TJ =

T
(2)
J + T

(4)
J + . . ., where the superscripts (2), (4) denote the order of the amplitude, which

are O(p2) and O(p4), respectively. The corresponding inverse matrix can be perturbatively

expanded as

T−1
J = T

(2)−1
J

(

1− T (4)
J T

(2)−1
J + . . .

)

. (2.14)

Next, using the fact that T
(2)
J is real (again assuming time reversal invariance), we have

Re[T−1
J ] = T

(2)−1
J

(

1− Re[T
(4)
J ]T

(2)−1
J + . . .

)

. (2.15)

Since both T
(2)−1
J and Re[T

(4)
J ] are calculable in ChPT, we have already achieved our goal.

However, we can further simplify the expression by plugging it into eq. (2.13), which results

in

TJ =
[

T
(2)−1
J

(

1− Re[T
(4)
J ]T

(2)−1
J + . . .

)

− iΣ
]−1

= T
(2)
J

(

T
(2)
J − Re[T

(4)
J ]− iT (2)

J ΣT
(2)
J + . . .

)−1
T

(2)
J

= T
(2)
J

(

T
(2)
J − Re[T

(4)
J ]− iIm[T

(4)
J ] + . . .

)−1
T

(2)
J

≈ T
(2)
J

(

T
(2)
J − T (4)

J

)−1
T

(2)
J . (2.16)

In the third line we have used the perturbative unitarity relation, which can be obtained

by power expansion of eq. (2.11). The last line is the central equation for the IAM at NLO.

It effectively implies that we can use perturbation theory to calculate T
(2)
J and T

(4)
J , and

resum their effects to all orders. An advantage of this method is that the resummation is

a simple matrix inversion, and does not involve any extra integral equation. There is also

a simple Feynman diagram interpretation of eq. (2.16). As shown in figure 1, we simply

– 6 –
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sum up all the s-channel O(p4) corrections to all orders:

T = T (2) + T (4) + T (4)(T (2))−1T (4) + T (4)(T (2))−1T (4)(T (2))−1T (4) + . . .

= T (2) +
[

1 + T (4)(T (2))−1 + T (4)(T (2))−1T (4)(T (2))−1 + . . .
]

T (4)

= T (2) +
(

1− T (4)(T (2))−1
)−1

T (4)

=
(

1− T (4)(T (2))−1
)−1 [(

1− T (4)(T (2))−1
)

T (2) + T (4)
]

= T (2)
(

T (2) − T (4)
)−1

T (2), (2.17)

which gives exactly the IAM result. The explicit expressions for the scattering amplitudes

classified by definite isospin states can be found in appendix B.

An obvious shortcoming of the IAM formula is that it leads to a peak when the

determinant det
[

T (2) − T (4)
]

approaches a minimum. This peak may be unphysical and,

in terms of dispersion relations, is due to the failure to incorporate the pole contributions

from the so-called Adler zero of the partial wave in the sub-threshold region. This problem

can be satisfactorily resolved in the case of the single-channel IAM [64] but not for coupled

channels, see appendix C for a brief explanation of the procedure. In section 3.3, we will

introduce an effective solution based on dispersion relations for coupled-channel systems.

2.2 Unitarity

Although the uChPT was constructed to fulfill the unitarity relation ImT = TΣT †, the

one-step IAM solution of the partial waves actually satisfies the exact relation only above

the highest threshold. In general, the unitarity relation below the highest threshold is

broken due to the mixing between the left-hand and right-hand cuts of different matrix

elements in T during the process of matrix inversion. This phenomenon occurs since all

the particles in the initial and final states of the T (4)-matrix are treated as on shell [65].

Such a problem is well-known and also exists in other methods of unitarization [56, 66–

69]. However, depending on the values of LECs, such unitarity violation is usually very

small and would not cause any real problem in practical applications of IAM results. With

the LEC values reported in ref. [56], the only exception is the I = 1, J = 1 channel, see

figure 2. The imaginary part of the partial-wave amplitude in this channel is peaked at√
s ≈ 0.77 GeV due to the existence of the ρ-resonance, and it turns out that the IAM

approach leads to a breaking of the unitarity relation by as much as 20% around the ρ-peak.

As discussed in ref. [56], this problem can in principle be solved by adopting a multi-

step unitarization approach, namely to take the dimension of the T -matrix as a function of

s, which changes by one unit every time s crosses a threshold. By doing so one explicitly

avoids the mixing of left-hand and right-hand cuts between different matrix elements below

the largest thresholds, and thus the unitarity relation is exactly satisfied in all regions.

One disadvantage of this approach is that one cannot study the scattering amplitudes (and

their associated form factors) below their respective production thresholds because their

corresponding matrix elements simply do not exist in the scattering matrix. It is therefore

highly desirable to search for a prescription that allows for a simultaneous study of form
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Figure 2. Check of the unitarity relations for several T -matrix elements in coupled-channel uChPT,

with the LECs taking the central values given in ref. [56]. The indices of T I
J refer to the isospin I

and angular momentum J partial wave.

factors below and above thresholds, and at the same time avoids the mixing of left-hand and

right-hand cuts as much as possible. In the following, we demonstrate a simple procedure

that satisfies both requirements.

Let us focus on the (I, J) = (1, 1) ππ scattering, which couples to the KK̄ channel.

At NLO ChPT, the KK̄ → KK̄ scattering receives contributions from t- and u-channel

meson loops, where the Mandelstam variables t and u are defined as t = (p1 − p3)2 and

u = (p1−p4)2. If the initial and final kaons are on shell, the branch point for the KK̄ → KK̄

partial wave due to the ππ t-channel loop is at s = 4(M2
K −M2

π), which is below the KK̄

threshold, but above the ππ threshold. Similarly, the branch point of the t-channel πη

loop occurs at s = 4M2
K − (Mπ +Mη)2, again above the ππ threshold. If the kaons are off

shell, such singularities would not be on the physical Riemann sheet of ππ scattering [65],

and would not cause any problem. However, in the IAM treatment, the kaons are on shell,

leading to an overlap between such left-hand cuts with the ππ right-hand cut and thus a

violation of unitarity. We find that if we remove the imaginary part of the troublesome t-

and u-channel loops, unitarity can be exactly maintained, see figure 3, where the curves for

ImT and TΣT † coincide. These loops include the t-channel ππ and πη loops in KK̄ → KK̄

(both I = 0 and I = 1), the t- and u-channel ππ loops in ηη → ηη, the t- and u-channel

πK loops in KK̄ → ηη, and the t-channel ππ and u-channel πK loops in Kη → Kη.
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Figure 3. Unitarity relations are fulfilled exactly after removing the imaginary parts of the trou-

blesome t- and u-channel loops. Here, the LECs take the central values given in ref. [56].

2.3 Global fit of LECs

After the modification given above, the values of the LECs need to be refixed. We fit to

the following data sets using the MINUIT function minimization and error analysis pack-

age [83–85]: the ππ scattering phase shifts are taken from the dispersive analysis compiled

in ref. [70] (which is perfectly compatible with the alternative Roy equation analyses of

refs. [86–88] at the level of accuracy aimed for with the IAM);1 the data for the inelasiticity

η0
0 are taken from the analysis of ref. [81]; the ππ → KK̄ data are from refs. [79, 80] (cf.

also refs. [90, 91]); the Kπ phase shifts are taken from refs. [71–78] (cf. also the correspond-

ing dispersive analyses [90, 92, 93]); the data for the πη invariant mass distribution are

taken from ref. [82], and the background is extracted from the corresponding curve in that

reference.

We notice that in the NLO ChPT amplitudes for ππ → ππ, Kπ → Kπ, and KK̄ →
KK̄, Lr

6 and Lr
8 always appear as the same linear combination 2Lr

6 +Lr
8. Since most of the

available data are on these channels, it is difficult to fix Lr
6 and Lr

8 independently. Thus,

we fix Lr
6 to the central value given in ref. [56], and fit the other parameters to the above

1The table in appendix D of ref. [70] gives the ππ scattering phase shifts up to 970 MeV. The δ0
0 data

points above this energy were read off from the band in figure 15 of this reference, and those of δ1
1 were

taken from ref. [89]. The latter reference also provides an analysis of δ2
0 , which, however, does not match

exactly to the data given in ref. [70]. Thus, for δ2
0 , we only use those of ref. [70] up to 970 MeV.

– 9 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
6

400 600 800 1000 1200
s  [MeV]

0

50

100

150

200

250

I J(
)

0
0
1
1
2
0

700 800 900 1000 1100 1200
s  [MeV]

0

50

100

150

I J(K
K

)

1/2
0
1/2
1
3/2
0

1000 1050 1100 1150 1200
s  [MeV]

0

50

100

150

200

250

0 0(
KK

)

1000 1050 1100 1150 1200
s  [MeV]

0.0

0.5

1.0

1.5

0 0

700 800 900 1000
s  [MeV]

0

100

200

300

d
/d

s  
[e

ve
nt

s/2
5 

M
eV

] background

Figure 4. After removing the unitarity-violating contributions, the LECs are fitted to data. The

narrow bands are the results from Fit 2 with errors of all data pointed increased by adding 5% of

the central values. The dotted lines are from the best-fit values of Fit 1, i.e., fitting to data with the

original data errors. The results computed using the central values of LECs given in ref. [56] are

shown as dashed lines. The ππ phase shift data are from ref. [70]. For the Kπ phase shifts, the data

are taken from refs. [71] (up triangles), [72] (down triangles), [73] (circles), [74] (pentagons), [75]

(rectangles), [76] (diamonds), [77] (left triangles), and [78] (right triangles). The ππ → KK̄ data

are from refs. [79] (rectangles) and [80] (circles). The η0
0 data are from ref. [81]. The data for

dσπη/d
√
s, as well as the corresponding background, are taken from ref. [82].
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data. The πη invariant mass distribution is fitted with the following expression [56, 94]:

dσπη

d
√
s

= c qcm|(T 1
0 )πη→πη|2 + background, (2.18)

where c is a normalization constant to be fitted, qcm is the πη c.m. momentum, and the

background is extracted from the experimental analysis [82]. A direct fit to all these data

sets leads to a value of χ2/dof = 7.76 with the LECs given in the column “Fit 1” in

table 1. The large χ2/dof value is due to the inconsistency among the data sets. Following

refs. [56, 95], we increase the errors of the data points by hand, and find an additional error

of 5% (of the central values) to all data points leads to χ2/dof = 1.21. The LECs from

such a fit are listed in the last column in table 1, labelled as “Fit 2”. A comparison of these

fits, as well as the results using the central values of LECs in ref. [56], to the data is shown

in figure 4. The errors propagated from the data in Fit 2 are plotted as bands, which are

rather narrow. One sees that the increase of δ0
0 around the KK̄ threshold is more abrupt

in uChPT than that from the dispersive analysis [70]. Other than that, the data are well

described using these different sets of LEC values.

An additional remark is in order. We find that when the LECs take certain values,

T (2)−T (4) in the (I, J) = (0, 0) channel can have zeros in the physical region using this mod-

ified version of coupled-channel IAM. These are not the Adler zeros in the single-channel

scattering amplitudes, and can lead to sharp kinks in phase shifts and other observables

at the zeros. Such unphysical singularities also exist in the original coupled-channel IAM.

However, in that case, due to the presence of nonvanishing imaginary parts from the un-

physical left-hand cuts, the singularities are in the complex s-plane, and thus lead to

smoother kinks.2 Nevertheless, we checked that the best-fit LECs in both Fit 1 and Fit 2,

as well as those from ref. [56], do not have that problem. We will use the central values of

these fits (the three last columns in table 1) in the study of form factors in the following

to estimate the uncertainty of this method.

In what follows, we shall apply the idea above to calculate the two-meson scalar, vector,

and tensor form factors. We shall also consider a dispersion-theoretical improvement that

will get rid of the unphysical sub-threshold singularities due to Adler zeros.

3 Scalar form factors

In this section, we will give a systematic calculation for the two-meson scalar form factors

in uChPT, where the IAM approach is applied. Note that the unitarization of the two-loop

scalar (and vector) pion form factor was already discussed in ref. [9]. The scalar form factor

of a two-meson system is defined by the matrix element

B0F
q̄′q
S,i (s) ≡ 〈ai(pai

)bi(pbi
)| q̄′q |0〉 , (3.1)

where the subscript i is again the channel index, {ai, bi} are the two mesons in channel i,

and s = (pai
+ pbi

)2. The unitarity relation of the scalar form factor reads

2ImF q̄′q
S,i (s) =

∑

j

|~pj |
4π
√
s

[T ∗
0 (s)]ji Θ(s− sj

th)F q̄′q
S,j (s) , (3.2)

2See the kink around 800 MeV in the solid line of the δ0
0 plot in figure 2 of ref. [56].
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Figure 5. The imaginary part of a form factor is caused by the on shell configuration (cutting

along the dashed line) of the intermediate states. In the elastic region, the phase of a form factor

is the same as that of the scattering amplitude.

where the subscript “0” at the partial-wave amplitude denotes the J = 0 component. A

sketch is shown in figure 5, where the imaginary part of the form factor is caused by the

on-shell configuration of the intermediate states. Furthermore, time reversal invariance

leads to (T0)ij = (T0)ji. Now, we can simplify the expression above by taking F q̄′q(s) as a

column vector in the channel space and write eq. (3.2) as a matrix equation

ImF q̄′q
S (s) = T ∗

0 (s)Σ(s)F q̄′q
S (s) . (3.3)

This is the exact unitarity relation of the multi-channel scalar form factor. We can also

derive the perturbative unitarity relation by expanding F q̄′q(s) according to the chiral

power counting

FS = F
(0)
S + F

(2)
S + . . . , (3.4)

where the superscript q̄′q and the argument s are suppressed for simplicity. Here we define

the leading term of the expansion to be O(p0) because it is not suppressed by the chiral

expansion parameter. Meanwhile, T0 = T
(2)
0 + T

(4)
0 + . . .. Therefore, the perturbative

unitarity relation reads

ImF
(0)
S = 0, ImF

(2)
S = T

(2)
0 ΣF

(0)
S , . . . . (3.5)

3.1 ChPT result

We have to first compute the ChPT results for the scalar form factor up to O(p2) as input

to the IAM formula. For that purpose, we need to express the scalar current in terms of

ChPT fields. The scalar current in QCD is defined as

Sij(x) ≡ q̄i(x)qj(x) , (3.6)

where q = ( u d s )T . To obtain the ChPT version of this current, we start with the QCD

Lagrangian and promote its quark mass matrix M to a general matrix Xq,

LQCD = q̄LiD/ qL + q̄RiD/ qR − q̄RXqqL − q̄LX
†
qqR −

1

4
Ga

µνG
aµν . (3.7)

The scalar current defined in eq. (3.6) is then obtained by taking the partial derivative of

the Lagrangian with respect to matrix elements of Xq, which results in

Sij = −
(

∂LQCD

∂(Xq)ij
+
∂LQCD

∂(X†
q )ij

)∣

∣

∣

∣

∣

Xq=M

. (3.8)
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Figure 6. Feynman diagrams for a generic form factor at tree and one-loop level. The wave

function renormalization diagrams are not shown here.

We can now derive the scalar current in ChPT by applying the formula above to the chiral

Lagrangian. We can write the scalar current as Sij = S
(2)
ij +S

(4)
ij + . . ., where S

(n)
ij is defined

as the scalar current derived from the chiral Lagrangian L(n). The outcome for the scalar

currents, up to S(4), is

S
(2)
ij = −F

2
0B0

2
[U † + U ]ji,

S
(4)
ij = −2B0L4〈∂µU∂

µU †〉
[

U † + U
]

ji
− 2B0L5

[

U †∂µU∂
µU † + ∂µU∂

µU †U
]

ji

−8B2
0L6〈MU † + UM †〉

[

U † + U
]

ji
− 8B2

0L7〈MU † − UM †〉
[

U † − U
]

ji

−8B2
0L8

[

UM †U + U †MU †
]

ji
. (3.9)

In particular, the components of S(2) are

ūu = B0

[

− F 2
0 +K+K− +

π0η√
3

+
1

6
η2 +

1

2
(π0)2 + π+π−

]

+ . . . ,

d̄d = B0

[

− F 2
0 +K0K̄0 − π0η√

3
+

1

6
η2 +

1

2
(π0)2 + π+π−

]

+ . . . ,

s̄s = B0

[

− F 2
0 +K0K̄0 +K+K− +

2

3
η2
]

+ . . . ,

ūd = B0

[

K0K− +

√

2

3
ηπ−

]

+ . . . ,

ūs = B0

[

K̄0π− − K−η√
6

+
K−π0

√
2

]

+ . . . ,

d̄s = B0

[

− K̄0η√
6
− K̄0π0

√
2

+K−π+
]

+ . . . . (3.10)

The ChPT prediction for scalar form factors is then obtained by calculating the matrix

elements for the currents in eq. (3.10) with respect to two-meson states up to one loop, as

shown in figure 6. The full analytical results can be found in appendix D.

3.2 Unitarization

If we restrict ourselves to one single channel, the IAM unitarization formula for form

factors (scalar, vector, and tensor) can be derived rigorously from a dispersion relation in

complete analogy to the derivation of the single-channel IAM formula for partial waves,

see appendix C for more details (for an early application of the single-channel IAM to
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scalar and vector form factors, see ref. [62]). For coupled-channel form factors, a dispersive

derivation of the IAM is not available, so here we offer a more empirical derivation of the

unitarization formula, which we expect at least to work well above the highest production

threshold of the coupled channels considered here, which is sufficient for the applications

to most of the interesting processes we mentioned in the Introduction.

From eq. (3.3), one notices that a possible solution to this unitarity relation for the

scalar form factor is FS = T0A, where A is a real vector. The proof is simple:

T ∗
0 ΣFS = T ∗

0 ΣT0A = (ImT0)A = ImFS . (3.11)

In the second equality we have used the unitarity relation for T0. So the question is how to

choose the form of the real vector A such that its expansion reproduces the ChPT result

up to O(p4). The correct choice turns out to be

A = (T
(2)
0 )−1

[

F
(0)
S + F

(2)
S − T (4)

0 (T
(2)
0 )−1F

(0)
S

]

. (3.12)

With this choice and a bit of algebra, we obtain the IAM formula for a unitarized scalar

form factor

FS = F
(0)
S + T

(2)
0

(

T
(2)
0 − T (4)

0

)−1
F

(2)
S . (3.13)

Remember that as argued in section 2.2, the LHCs of T
(4)
0 will be transferred into FS .

Thus we also need to remove the imaginary part of the troublesome t- and u-channel loops

of T
(4)
0 in this formula manually.

3.3 Improvement by dispersion relation

It is well known that the IAM generates spurious structures such as peaks that do not

correspond to any physical resonance. This happens in particular in the region below the

lightest two-meson production threshold. In fact, since FS = T0A is only a possible solution

for the unitarity equation (3.3) above threshold (more rigorously, above the highest two-

meson threshold since we are using a one-step unitarization for a coupled-channel problem),

it is natural that the outcome can only be trusted above threshold. For example, figure 7

shows the scalar nonstrange current form factor from the IAM calculation, where the LECs

are taken from ref. [56] (gray line), Fit 1 (red line), and Fit 2 (blue line), respectively.

Obviously it suffers from sub-threshold irregularities, such as unphysical peaks (the tiny

peaks near 0 GeV in figure 7) and nonvanishing imaginary parts, in all channels.

The unphysical sub-threshold singularities due to the IAM are studied extensively in

terms of dispersion relation for the case of single-channel scattering amplitudes [64, 96].

There, the existence of spurious poles in the scalar partial wave is identified as a consequence

of the failure to include the effect of the so-called Adler zero in the dispersion integral of

the inverse amplitude. This problem can be solved by appropriately adding back such

contributions in the IAM formula. Unfortunately, a similar solution is not available in the

coupled-channel case because there is so far no dispersive derivation of the coupled-channel

IAM formula.
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Figure 7. Real (solid lines) and imaginary (dashed lines) parts of Fn
S,ππ from the original IAM

calculation. The LECs are taken from the original work [56] (gray line), Fit 1 (red line) and Fit 2

(blue line), respectively. In the sub-threshold region there exist unphysical peaks due to Adler zeros

in the scattering amplitude (pointed out by the black arrows) and nonvanishing imaginary parts

below the lowest threshold.

On the other hand, the dispersion relations of the form factors themselves are much

more straightforward. It simply takes the following form:

ReF (s) =
1

π
=

∫ ∞

sth

dz
ImF (z)

z − s , (3.14)

where =
∫

means the principal-value integration, and sth denotes the lowest threshold. Here

it is sufficient to employ an unsubtracted dispersion relation because F (s) falls off as 1/s

or faster at large s as suggested by perturbative QCD [97]. This integral equation suggests

a better way to proceed: use the IAM-predicted imaginary part of the form factor as the

input to the dispersion integral, and obtain an improved real part of the form factor. The

obtained real part is then used to modify the imaginary part, which will be the input of a

subsequent dispersive analysis. Such a procedure can be iterated until the curves of both

the real and imaginary parts of the form factor are stable. In the following we shall depict

the actual procedure and outline some of the details of such iterations.

First, we use F [n] to denote the form factor after n iterations (to avoid confusion with

the chiral order denoted by superscripts with parentheses, here we use square brackets). Ob-

viously, F [0] then represents the original IAM result without undergoing any dispersive cor-

rection. To start the iteration process, in the first step we set the imaginary part of F [1] as

ImF [1] ≡ T ∗ΣF [0], (3.15)

which will be used later as an input to the dispersion integral to obtain ReF [1]. However,

we have to apply one extra modification before evaluating the dispersion integral: the IAM

result F [0], which certainly does not apply to arbitrarily large s values, fails to reproduce

the asymptotic 1/s-behavior. We therefore need to introduce a smooth transition between
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the IAM-predicted ImF at small s and the expected 1/s at large s by hand. This can be

achieved by defining a modified imaginary part ImF̃ [1] as

ImF̃ [1](s) ≡ [1− σ(s)] ImF [1](s) + σ(s)
α[1]

s
, (3.16)

where α[1] is a constant to be determined later, and σ(s) is a monotonically increasing

activation function that satisfies σ(−∞) = 0 and σ(+∞) = 1. A simple choice of such a

function is

σ(s) =
1

2

(

tanh

{

4(s− s0)

δs

}

+ 1

)

. (3.17)

This activation function is centered at s0 and has a width of δs. This means that ImF̃ [1](s)

can smoothly transform from ImF [1](s) to α[1]/s in the region (s0 − δs/2, s0 + δs/2).

Now, we should use the modified imaginary part ImF̃ [1], instead of ImF [1], in the

dispersion integral to ensure the convergence at infinity. The unknown constant α[1] can

be fixed by requiring that F (s) reproduces the NLO ChPT result at s = 0, i.e., F [1](0) =

ReF [1](0) = FChPT(0). Once α[1] is fixed, everything in the dispersion integral is known

and we can use it to numerically determine ReF [1](s). The dispersion relation guarantees

that the outcome makes sense both below and above threshold.

The whole procedure above can be iterated until a stable result is obtained. At the

second step, we define ImF [2] ≡ Re{T ∗ΣF [1]} where F [1] = ReF̃ [1] + i ImF̃ [1], and then

modify its UV-behavior by constructing ImF̃ [2](s). Notice that this construction will in-

volve a new unknown constant α[2] which is in general different from α[1] so that it has

to be re-determined. After that, we can plug ImF̃ [2] into the dispersion integral to obtain

ReF [2]. This procedure will be iterated for several times so that we can obtain a series of

increasingly refined form factors F [3], F [4], . . ., which will eventually stabilize. Finally, the

unphysical peaks such as those in figure 7 are completely wiped out after such a dispersive

improvement.

It is worthwhile to stress that the Watson’s theorem is still fulfilled perturbatively at

the fixed point of the iteration procedure, and this dispersive treatment is applicable to all

scalar, vector, and tensor form factors.

3.4 Numerical results

In this section we show the numerical results of the unitarized scalar form factors after the

dispersive improvement. To show the convergence of the iteration, as an example, figure 8

gives the first four iterations for the real and imaginary parts of Fn
S,ππ, with the LECs

taken from ref. [56]. It can be seen that the iteration successfully removes the kink due to

the Adler zeros of the scattering amplitudes, and the imaginary part vanishes below the

lowest threshold. The curves of all the scalar form factors after the iteration are plotted

in figures 9–12 within the plot region 0 GeV <
√
s < 1.2 GeV. Here, we use three sets of

LECs: the original one from ref. [56] (gray lines), the one from Fit 1 (red lines), and the

one from Fit 2 (blue lines) to plot the form factors. The solid and dashed lines correspond

to the real and imaginary parts, respectively. The parameters for the activation function
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Figure 8. Four iterations for the real and imaginary parts of Fn
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central values of those given in ref. [56]. Different colors distinguish various steps of the iteration

and the sub-figures zoom in to show the details.
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Figure 9. Real (solid lines) and imaginary (dashed lines) parts of Fn
S,ππ, Fn

S,KK̄
, and Fn

S,ηη,

respectively. Three sets of LECs are used to plot the form factors: the original one from ref. [56]

(gray lines), one from Fit 1 (red lines) and one from Fit 2 (blue lines).
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Figure 10. Real and imaginary parts of F s̄s
S,ππ, F s̄s

S,KK̄
, and F s̄s

S,ηη, respectively. The meaning of

different types of lines is the same as that in figure 9.

σ(s) are taken to be s0 = 1.8 GeV2 and δs = 0.6 GeV2, which implies a smooth transition

between the IAM result and the 1/s-behavior within the range 1.1 GeV <
√
s < 1.6 GeV.

In the n = (ūu+ d̄d)/
√

2 channel and the s̄s channel, the real parts of the form factors

generate sharp peaks around
√
s ∼ 0.99 GeV due to the simultaneous existence of the

f0(980) resonance and the KK̄-threshold within a narrow region. Our results for Fn
S,ππ,

F s̄s
S,ππ, and F s̄s

S,KK̄
are consistent with those presented in ref. [98] (barring differences in

overall normalization), the latter were obtained by a slightly different version of algebraic

unitarization formula, incorporating only the s-channel cuts of the partial waves. However,

the f0(980) region shown in figure 9 has a narrower structure compared with that given

in refs. [16, 21]. Other disagreement appears in the Fn
S,KK̄

form factor. In particular, the

outcome of ref. [98] does not match the NLO ChPT value at s = 0. Our result, on the other

hand, guarantees such a matching as it is implemented during the determination of the

coefficient α[i]. Also, we present the ηη form factors that were not calculated in that paper.

In the ūs channel, the strategy adopted in ref. [98] therein is computationally involved

as one has to first discretize s→ {si} and solve the dispersion relation by inverting a huge

rank matrix (in the s-space) to obtain the discretized form factor F (si). Our approach is

much simpler because we are simply taking the IAM results above threshold as the input

of the dispersion integral, and the outcomes quickly stabilize after two or three iterations.
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Figure 11. Real and imaginary parts of F ūs
S,Kπ and F ūs

S,Kη, respectively. For notations, see figure 9.
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Figure 12. Real and imaginary parts of F ūd
S,πη and F ūd

S,KK̄
, respectively. For notations, see figure 9.

In figure 13, our results are compared with those from refs. [24, 98]. All of them coincide

with each other below 0.8 GeV. The mismatch at larger
√
s can be understood because

the convergence of ChPT becomes weaker at higher energies, which inevitably causes more

uncertainties. One notices that there is a cusp at the Kπ threshold, signaling the opening

of the Kπ channel in the S-wave. The second cusp appears at the Kη threshold, which

enters through the coupled-channel treatment.3

3.5 Applications of the scalar form factors

We end this section by discussing applications of the two-meson scalar form factors,

especially its s-dependence. Let us consider for example the decay Bs → f0(980)(→
π+π−)µ+µ−, which is a four-body decay dominated by the S-wave contribution f0(980)→
π+π−. To study this decay process, the main task is to evaluate the Bs → (π+π−)S

3The strength of the Kη threshold cusp in the Kπ S-wave is likely overestimated in uChPT, as the

phenomenological inelasticity is very small below Kη′ threshold [92]; see also refs. [99, 100].
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Figure 13. Comparison of F ūs
S,Kπ in this work using the original LECs in ref. [56] (gray solid line),

Fit 1 LECs (red dashed line) and Fit 2 LECs (blue dot-dashed line), respectively, with that from a

coupled-channel dispersion relation analysis [24] (magenta dot-dashed line) as well as that from a

Muskhelishvili-Omnès solution [98] (orange dotted line).

transition matrix elements, which are parameterized as

〈(π+π−)S |s̄γµγ5b|B̄s〉 =
−i
MBs

{

[

Pµ −
M2

Bs
−M2

ππ

q2
qµ

]

FBs→ππ
1 (M2

ππ, q
2)

+
M2

Bs
−M2

ππ

q2
qµFBs→ππ

0 (M2
ππ, q

2)

}

,

〈(π+π−)S |s̄σµνq
νγ5b|B̄s〉 =

FBs→ππ
T (M2

ππ, q
2)

MBs
(MBs

+Mππ)

[

(M2
Bs
−M2

ππ)qµ − q2Pµ

]

, (3.18)

where M2
ππ is the invariant mass square of the two-pion system. These Bs → π+π− form

factors can be calculated by light-cone sum rules (LCSR) and expressed in terms of the

π+π− light-cone distribution amplitudes (LCDAs) [101–107].

According to the Watson-Migdal theorem, since the Bs → π+π− transition totally

decouples from the leptonic part at leading order, its amplitude must share the same phase

as that of the π+π− scalar form factor F s̄s
S,ππ(M2

ππ) below the lowest inelastic threshold

(which is that of KK̄ since the four-pion channel is not considered, and the inelasiticity

is known to be negligible below about 1 GeV). Accordingly, in the framework of LCSR,

the S-wave π+π− LCDAs are defined almost the same as those of a single scalar meson

f0 but with the normalization factor taken as the scalar ππ form factor [6, 102–105]. For

example, the twist-2 LCDA is defined as

〈(π+π−)S |s̄(x)γµs(0)|0〉 = F s̄s
S,ππ(M2

ππ)B0 pππ,µ

∫ 1

0
du eiupππ ·xφππ(u) , (3.19)
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where F s̄s
S,ππ(M2

ππ)B0 stands for the original meson decay constant ff0 in the definition of

the f0 LCDAs. The definition of all the twist-2 and 3 S-wave π+π− LCDAs as well as the

explicit form of the resulting form factors [6] can be found in appendix E. As a result, the

form factors take the form

Fi(M
2
ππ, q

2) = B0F
s̄s
S,ππ(M2

ππ)F i(M
2
ππ, q

2) . (3.20)

Generally, the F i depend on both M2
ππ and q2. However, in the case of B → K∗(→ Kπ), as

shown by figure 3 of ref. [6], the F i’s have a much weaker dependence on M2
Kπ than that on

q2. Such behavior is similar to the case of Bs → π+π−. This enables one to approximately

suppress the M2
ππ dependence of F i , which leads to a factorized form

Fi(M
2
ππ, q

2) ≈ B0F
s̄s
S,ππ(M2

ππ)F i(q
2) , (3.21)

so that F i can be described by a suitable parametrization [108–111]. Practically, one can

first fix Mππ = Mf0(980) to extract F i(q
2), and then multiply it with F s̄s

S,ππ(M2
ππ) again

in the form of eq. (3.21) to recover the complete transition form factor Fi(M
2
ππ, q

2). The

detailed calculation can be found in ref. [110]. On the other hand, instead of the S-wave

π+π− LCDAs, one can firstly use the LCDAs of the f0 to get the transition form factors

F̃i(q
2) of Bs → f0, then due to the approximation leading to eq. (3.21), one can write the

total form factor as

Fi(M
2
ππ, q

2) ≈ B0

ff0

F s̄s
S,ππ(M2

ππ)F̃i(q
2) . (3.22)

Equations (3.21) and (3.22) explicitly reflect that the ππ distribution of the S-wave-

dominated decay Bs → f0(980)(→ π+π−)µ+µ− is determined by the distribution of the

ππ scalar form factor.

All these scalar form factors are also required in the study of three-body B decays,

which have been studied using dispersively reconstructed form factors or phenomenological

parametrizations, see for instance refs. [16, 21, 112–117] and many references therein.

4 Vector form factors

Next we discuss the vector form factors. The matrix element of a vector current with

respect to a two-meson system can be parametrized as

〈ai(pai
)bi(pbi

)| q̄′γµq |0〉 ≡ F q̄′q
V +,i(s)(pai

− pbi
)µ + F q̄′q

V −,i(s)(pai
+ pbi

)µ. (4.1)

Notice that we label the form factors FV ± as above because they are more commonly defined

in the t-channel, where pbi
will switch sign. From the equation of motion ∂µ(q̄′γµq) =

i(mq′ − mq)q̄′q, one sees that the form factor FV −,i is not independent since it can be

expressed in terms of FV +,i and the scalar form factor FS,i according to

F q̄′q
V −,i(s) =

1

s

[

B0(mq′ −mq)F q̄′q
S,i (s)− (m2

ai
−m2

bi
)F q̄′q

V +,i(s)
]

. (4.2)

Therefore, it is sufficient to concentrate only on F q̄′q
V +,i.
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The unitarity relation of F q̄′q
V +,i is most conveniently expressed in terms of

F̃ q̄′q
V +(s) ≡ PF q̄′q

V +(s) , (4.3)

where Pij ≡ |~pi|δij . One can then straightforwardly express the unitarity relation as

ImF̃ q̄′q
V + = T ∗

1 ΣF̃ q̄′q
V + . (4.4)

Notice that F̃ is associated with the J = 1 partial-wave scattering amplitude. However,

the relation above is rigorously true only above the highest threshold, where all elements

of P are real. When s is between the lowest and highest thresholds, a more rigorous form

of the unitarity relation is

ImF q̄′q
V + = (P−1)∗T ∗

1 ΣPF q̄′q
V +. (4.5)

In particular, at the right-hand side of the equation above we have (P−1)∗ instead of P−1

so that the kinematical imaginary part of T ∗
1 (i.e., the imaginary part due to |~pi|) below

the highest threshold can be canceled by that of (P−1)∗.

4.1 ChPT result

There are two kinds of vector currents: the SU(3)-octet current V a
µ (a = 1, . . . , 8) and the

singlet current V 0
µ due to the SU(3)V and U(1)B (B stands for baryon number) symmetry,

respectively. They can be defined as

V 0
µ = q̄γµq, V a

µ = q̄T aγµq, (4.6)

respectively. The easiest way to obtain such currents from the QCD Lagrangian is to first

promote SU(3)V and U(1)B to local symmetries by introducing external fields vµ = T ava
µ

and v
(s)
µ :

L = L0
QCD + Lext = L0

QCD + q̄γµ

(

vµ +
1

3
vµ

(s) + γ5a
µ
)

q − q̄(s− iγ5p)q. (4.7)

Taking the derivative of the Lagrangian with respect to the external fields gives the currents

V 0
µ = 3

∂L
∂vµ

(s)

∣

∣

∣

∣

∣

v=v(s)=0

, V a
µ =

∂L
∂vµ

a

∣

∣

∣

∣

v=v(s)=0
. (4.8)

Again, we can apply the formulae above to obtain vector currents in ChPT. The strict

SU(3) symmetry of the ChPT Lagrangian up to O(p4) leads to a vanishing V 0
µ . It should be

noted that at O(p6) a certain SU(3) breaking term can be introduced so that V 0
µ no longer

vanishes. However, at O(p4) we will not consider this effect. For the octet currents, we have

V (2)
aµ = − iF

2
0

4
〈λa[U, ∂µU

†]〉 ,

V (4)
aµ = −2iL1〈∂νU∂

νU †〉〈λa[U, ∂µU
†]〉

−iL2
{

〈∂µU∂νU
†〉〈λa[U, ∂νU †]〉+ 〈∂νU∂µU

†〉〈λa[U †, ∂νU ]〉
}

−iL3〈
(

[λa, U ]∂µU
† + ∂µU [λa, U

†]
)

∂νU∂
νU †〉 − 2iB0L4〈λa[U, ∂µU

†]〉〈MU † + UM †〉
−iB0L5〈([λa, U ]∂µU

† + ∂µU [λa, U
†])(MU † + UM †)〉

+iL9〈λa∂ν(∂νU∂µU
† − ∂µU∂

νU †)〉 . (4.9)
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In particular, the components of V
(2)

aµ in ChPT are (making use of the fact that

V 0
µ = ūγµu+ d̄γµd+ s̄γµs = 0 in the meson sector):

ūγµd = V µ
1 + iV µ

2 = −iK0←→∂µK− + i
√

2π0←→∂µπ− + . . . ,

ūγµs = V µ
4 + iV µ

5 = iπ−←→∂µK̄0 − i
√

3

2
K−←→∂µη − i√

2
K−←→∂µπ0 + . . . ,

d̄γµs = V µ
6 + iV µ

7 = −iK−←→∂µπ+ + i

√

3

2
η
←→
∂µK̄0 − i√

2
π0←→∂µK̄0 + . . . ,

ūγµu =
1√
3
V µ

8 + V µ
3 = iK−←→∂µK+ + iπ−←→∂µπ+ + . . . ,

d̄γµd =
1√
3
V µ

8 − V
µ

3 = −iK0←→∂µK̄0 − iπ−←→∂µπ+ + . . . ,

s̄γµs = − 2√
3
V µ

8 = iK0←→∂µK̄0 − iK−←→∂µK+ + . . . . (4.10)

The one-loop ChPT results for the vector form factors are given in appendix D.

4.2 Unitarization, dispersive improvement and numerical results

The IAM formula for the unitarized vector form factors can be obtained directly from

eq. (3.13) by the replacements T0 → T1 and FS → F̃V +:

F̃V + = F̃
(0)
V + + T

(2)
1 (T

(2)
1 − T (4)

1 )−1F̃
(2)
V +

⇒ FV + = F
(0)
V + + P

−1T
(2)
1 (T

(2)
1 − T (4)

1 )−1
PF

(2)
V + . (4.11)

This result is also required to be improved by a dispersion relation. The whole procedure

is identical to that of the scalar form factors, except that now the imaginary parts of the

vector form factors that enter the dispersion integrals should be taken as

ImF
[i]
V + ≡ (P−1)∗T ∗

1 ΣPF
[i−1]
V + , (4.12)

where i is the number of iteration following the unitarity relation of the vector form factors.

Our final results for the vector form factors are summarized in figures 14–16. In the

s̄s channel, there is a pole on the real axis below the KK̄ threshold, which corresponds

to the ω8 resonance as pointed out in ref. [56]. Its mass is between the masses of ω(782)

and φ(1020), which is reasonable since the ω8 is a mixture of ω and φ. Note that for

this channel we have removed the unphysical left-hand cuts of the ππ and πη loops in

T
(4)
I=0,J=1 as we did for the I = 1, J = 1 channel in section 2.2. Since we do not consider

3π intermediate states here, this sub-threshold resonance must be a bound state with zero

width. Keeping the left-hand cuts of the scattering amplitude results in an unphysical

imaginary part of the form factor below the KK̄ threshold, which is due to the on-shell

approximation of the IAM, see section 2.2. On the other hand, due to the absence of Adler

zeros and with the unphysical imaginary parts cut off, further improvement by dispersive

iteration is unnecessary for this channel.

In the ūs channel, it turns out that the IAM result is almost invariant under the

dispersive treatment; the imaginary parts of the Kπ and Kη form factors peak around√
s ≈ 0.89 GeV, reflecting the existence of the K∗(892) resonance.
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Figure 14. Real and imaginary parts of F s̄s
V +,KK̄

, respectively. The notations are the same as that

of figure 9 but here the imaginary parts are presented in the inset panel.
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Figure 15. Real and imaginary parts of F ūs
V +,Kπ and F ūs

V +,Kη, respectively. For notations, see

figure 9. The insets show that the Fit 1 and Fit 2 curves are very close to each other.
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Figure 16. Real and imaginary parts of F ūd
V +,ππ and F ūd

V +,KK̄
, respectively. For notations, see

figure 9.
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As explained in section 2.2, there is a breaking of the unitarity relation below the

highest threshold due to the mixing between the left-hand and right-hand cuts using the

coupled-channel IAM as in ref. [56]. Such a violation is especially serious for the I =

1, J = 1 channel, see figure 2, and thus must happen as well when calculating the ud̄ vector

form factors. It is found that only after the modification proposed in section 2.2, with the

imaginary part of the troublesome t- and u-channel loops removed, the iteration procedure

for the ud̄ vector form factors converges. The result is shown in figure 16, and agrees well

with the existing literature (see the discussion below).

The ππ vector form factor is calculated in ref. [36] through the Omnès representation

F (s) = exp

(

P1s+
s2

π

∫ ∞

4M2
π

ds′ δ1
1(s′)

(s′)2(s′ − s− iǫ)

)

, (4.13)

where P1 =
〈

r2
〉

/6 with
〈

r2
〉

the pion radius squared (see refs. [39, 118, 119] for recent

determinations of the pion charge radius from data), and a twice-subtracted dispersion re-

lation is applied. The Omnès representation relates the form factor with the corresponding

phase shift δ1
1(s), which can be extracted in a rough approximation from the mass and de-

cay width of the ρ meson using a Breit-Wigner parametrization. The scattering amplitude

dominated by the s-channel ρ resonance reads

a1
1(s) =

c

s−M2
ρ − iMρΓtot(s)

, Γtot =
g2

ρππp
3

6πM2
ρ

=
g2

ρππ

(

s
4 −M2

π

)3/2

6πM2
ρ

, (4.14)

where c is an irrelevant constant. The phase shift is derived as

δ1
1(s) = arctan

Im a1
1(s)

Re a1
1(s)

= arctan
MρΓtot(s)

M2
ρ − s

. (4.15)

The left panel in figure 17 shows a comparison between the ππ vector form factor derived in

this work and that from the Omnès representation, and we observe good agreement. In the

right panel, instead of F ūd
V,K+K− we compare our result for the kaon electromagnetic (EM)

form factor with that from the earlier literature also using uChPT [44], since the explicit

result for F ūd
V,K+K− is not available from that source. The EM form factor is defined as

〈

K+(p)K−(p′)
∣

∣

∣

∑

i

eiq̄
′
iγ

µAµqi |γ〉 ≡ FEM
V, K+K−(s)ǫ · (p− p′), (4.16)

where i = u, d, s and ei = 2/3,−1/3,−1/3. Generally, due to isospin symmetry, our vector

form factors derived above are related to this EM form factor according to

FEM
V,K+K−(s) =

1

2
F ūd

V +,KK̄
(s) +

1

3
√

2
F s̄s

V +,KK̄
(s)− 1

6
√

2
F ūu+d̄d

V +,KK̄
(s). (4.17)

Note that due to charge conservation we must have FEM
V,K+K−(0) = 1, which can be checked

by our results (using the U(1) symmetry constraint: ūγµu + d̄γµd = −s̄γµs). The EM

form factor from eq. (4.17) is shown by the blue solid line in the right panel of figure 17,

where the divergent bound state peak around 935 MeV corresponds to the ω8. However, in

– 25 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
6

�������� ����
��� � ����
��� � ����
����� ����� ���� (����) ��-��

��� ��� ��� ��� ���

�

�

�

�

��

� [���]

|��� ππ�� (�)|

��� �+ �-�� +����� ������

���������� �� (����) ������

��� �+ �-�� ���� ���(����)

��� ��� ��� ��� ��� ��� ��� ����

��

��

��

��

� [���]

|����+ �-
�� (�)|

Figure 17. Comparison between the ππ vector form factor derived in this work and that from the

Omnès representation [36] (left), comparison between the K+K− EM form factor derived in this

work and that from an earlier uChPT work [44] (right).

ref. [44], instead of the ω8 two physical resonances ω and φ were introduced manually, which

are mixtures of ω1 and ω8. Thus, to reproduce these two distinct resonances for better

comparison, we replace the last two terms in eq. (4.17) with the standard Breit-Wigner

distributions of the ω and φ:

1√
2

g

gφ

M2
φ

s−M2
φ + i MφΓφ

− 1

2

g

gω

M2
ω

s−M2
ω + i MωΓω

, (4.18)

where g is the SU(3)-symmetric vector-to-two-pseudoscalars coupling constant, and gφ, gω

refer to the coupling constants of φ and ω to the electromagnetic current. Their explicit

definitions can be found in refs. [120, 121], where gφ = −12.89, gω = 17.05 and g = 6.05.

The decay widths are taken as Γφ = 4 MeV and Γω = 8.5 MeV. The corresponding curve

is the red dashed line shown in the right plot of figure 17. Finally, the magenta dotted

line in the right panel is the EM form factor extracted from figure 4 of ref. [44]. From

this comparison, we find that regardless the region where the un-mixed resonant ω8 or the

physical mixtures ω and φ emerge, the agreement is good at both low (below 0.7 GeV) and

high (above 1.1 GeV) energies.

4.3 Applications of the vector form factors

We end this section by discussing an application of the two-meson vector form factors in

the two-body hadronic decays of a charged lepton l → φφ′ν. The leading contribution

to l → φφ′ν is due to a single exchange of a W -boson, which, at low energies, can be

approximated by the Fermi interaction. The corresponding amplitude is

iM = − iGF√
2
V ∗

qq′ ūνγ
µ(1− γ5)ul

〈

φφ′|q̄′γµq|0
〉

, (4.19)

where GF is Fermi’s constant and Vqq′ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

element. Since the axial vector component in the hadronic matrix element vanishes due
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to parity, the matrix element can be expressed in terms of the vector form factors defined

in eq. (4.1). Considering only the spin-averaged decay, the differential decay width is a

function of two kinematic variables. They can be chosen as s = (pφ + pφ′)2 and θ, which is

the angle between ~pφ and ~pl in the c.m. frame of φφ′. After carrying out the phase space

integration, one obtains

dΓ

ds d cos θ
= G2

F |Vqq′ |2 (m2
l − s)|~pφ|

(8π)3m3
l

√
s

[

A(s) +
|~pφ|√
s
B(s) cos θ +

|~pφ|2
s

C(s) cos2 θ

]

, (4.20)

where the φφ′ subscript and q̄′q superscript in the form factors have been suppressed for

notational simplicity, and

A(s) ≡ 2(m2
l −s)
s2

[

m2
l s
(

s|FV −|2 +2(M2
φ−M2

φ′)Re{F ∗
V +FV −}

)

+|FV +|2
(

M4
φ(m2

l +s)−2m2
φ(M2

φ′m2
l +M2

φ′s+s2)+M4
φ′(m2

l +s)−2M2
φ′s2 +s3

)]

,

B(s) = −8m2
l (m2

l −s)
s

(

|FV +|2(M2
φ−M2

φ′)+sRe{F ∗
V +FV −}

)

,

C(s) = 8|FV +|2(m2
l −s)2. (4.21)

Two-body hadronic decay of charged leptons is one of the commonly studied processes

in the extraction of the CKM matrix elements, for example τ → Kπντ for Vus [122].

Therefore, an improved understanding of the s-dependence in the vector form factors may

improve on the Vus precision [123] and lead to a better reconciliation of the same quantity

measured in other processes such as the kaon leptonic/semi-leptonic decays.

5 Tensor form factors

Next, we study the tensor form factors of a two-meson system, which were so far only

investigated in limited channels. We define the tensor form factors through the following

matrix elements:

〈ai(pai
)bi(pbi

)| q̄′σµνq |0〉 ≡ iΛ2

F 2
π

(pµ
ai
pν

bi
− pν

ai
pµ

bi
)F q̄′q

T,i (s) , (5.1)

where Λ2 is an LEC that appears when introducing external tensor sources to the chiral

Lagrangian, which we shall discuss later. The unitarity relation obeyed by the tensor form

factor is identical with that of the vector form factor FV + [55]:

ImF q̄′q
T = (P−1)∗T ∗

1 ΣPF q̄′q
T . (5.2)

Again, it is associated with the J = 1 partial-wave amplitude.

5.1 ChPT result

The derivation of tensor currents in ChPT requires the introduction of an antisymmetric

Hermitian tensor source t̄µν into the QCD Lagrangian:

L = q̄σµν t̄µνq . (5.3)
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The corresponding effective field theory was first investigated in ref. [52]. The LO chiral

Lagrangian coupled to the tensor source scales as O(p4) and is given by

L(4)
T = −iΛ2〈tµν

+ uµuν〉 , (5.4)

where

uµ = i
[

u†(∂µ − irµ)u− u(∂µ − ilµ)u†
]

, tµν
± = u†tµνu† ± u tµν†u . (5.5)

tµν and tµν† are given as

tµν =
1

4

(

gµλgνρ − gνλgµρ − iǫµνλρ)t̄λρ ,

tµν† =
1

4

(

gµλgνρ − gνλgµρ + iǫµνλρ)t̄λρ , (5.6)

and the convention ǫ0123 = 1 has been used for the Levi-Civita tensor.

At NLO, there exist quite a number of corresponding operators, among which the ones

contributing to tensor form factors are given as

L(6)
T = iC34〈tµν

+ {χ+, uµuν}〉+ iC35〈tµν
+ uµχ+uν〉+ iC36〈χ+〉〈tµν

+ uµuν〉
+iC37〈tµν

+ 〉〈χ+uµuν〉+ iC88〈∇ρtµν
+ [hµρ, uν ]〉+ iC89〈∇µt

µν
+ [hνρ, u

ρ]〉
+C106〈tµν

+ [χ−µ, uν ]〉+ iC107〈t+µν
hµαhν

α〉, (5.7)

with the covariant derivative defined as

∇µX = ∂µX + [Γµ, X] , Γµ =
1

2

(

u†∂µu+ u∂µu
†
)

. (5.8)

They are used to cancel the divergence that occurs in the one-loop corrections to the tensor

form factors. The renormalized LECs Cr
i and divergence coefficients γT

i are defined as:

Cr
i = Ci −

Λ2

F 2
0

λγT
i . (5.9)

In fact, it turns out that the requirement to cancel all divergences in tensor form factors

does not fix all the {γT
i } independently, but only a subset of them, which are determined

to be the following constraints:

γT
34 +

1

2

(

γT
89 + γT

106 + γT
107

)

= − 1

24
, γT

35 + γT
89 + γT

106 + γT
107 = −3

4
,

γT
36 = −11

18
, γT

37 = −1

2
, γT

88 − γT
89 − γT

107 = −1

4
. (5.10)

The numerical values of Λ2 and Cr
i at a given renormalization scale µ are obviously

required to make definite predictions on tensor form factors. Unfortunately, as far as we

know, no lattice data are available for these LECs. We therefore make use of the results

in ref. [124] that attempted to evaluate the effective action from first principles (under

certain uncontrollable approximations). However, a critical issue in that approach is that

one cannot study the scale dependence of the renormalized LECs, and therefore the issue
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of how one should match their results to the renormalized LECs with the standard Gasser-

Leutwyler subtraction scheme at a given scale, say µ = Mρ, remains ambiguous. To account

for this issue, we assume that the LECs in ref. [124] are given at some unknown scale µ̃,

and could be run to µ = Mρ by a renormalization group (RG) running

Cr
i (Mρ) = Cr

i (µ̃)− γT
i

32π2

Λ2

F 2
0

ln
M2

ρ

µ̃2
. (5.11)

which still involves an unknown coefficient ln(M2
ρ/µ̃

2). To fix this coefficient, we refer to

ref. [125], in which the O(p4) LECs Li are calculated within the same formalism. We

perform a RG running of those LECs and compare them to {Lr
i } at µ = Mρ that are fitted

to experimental data [60]. That allows us to get a best-fit value of ln(M2
ρ/µ̃

2) by minimizing

the χ2. We find that, with this best-fit value, the changes in the numerical values of {Li}
are relatively small. Therefore, for the case of tensor LECs, we shall simply cite the results

in ref. [124], assuming that systematic errors due to the ambiguity in the renormalization

scale are much smaller than the other theoretical errors quoted in the paper. Within such

a framework, the coefficients Cr
36 and Cr

37 vanish in the large-Nc limit, where Nc refers to

the number of colors in the QCD Lagrangian, while other nonzero coefficients are collected

in table 2 (readers should be alerted to certain differences in the definition of operators

between refs. [52, 124] that lead to changes in numerical values of LECs and have been

properly taken into account in table 2).

The tensor currents are defined as

Tµν
ij ≡ q̄iσ

µνqj . (5.12)

Using the O(p4) and O(p6) chiral Lagrangian with tensor sources, we are able to derive

the tensor currents T
(4)
µν and T

(6)
µν in ChPT, respectively, which are

T
(4)µν
ij = − iΛ2

4

[

u†[uµ, uν ]u† − iεµνλρu†uλuρu
† + u[uµ, uν ]u+ iεµνλρuuλuρu

]

ji
, (5.13)

T
(6)µν
ij =

i

F 2
0

(

∂[µφa

) (

∂ν]φb

)

[

C34{χ, λaλb}+ C35λ
aχλb + C36〈χ〉λaλb

+C37〈χλaλb〉+
1

2
C106[{χ, λa}, λb]

]

ji
+

2i

F 2
0

C107

(

∂α∂[µφa

) (

∂ν]∂αφb

) (

λaλb
)

ji

− i

F 2
0

[λa, λb]ji

[

C88∂
ρ
(

(∂[µ∂ρφa)∂ν]φb

)

+ C89∂
[µ
(

(∂ν]∂ρφa)∂ρφb

)]

+O(φ3) ,

where A[µBν] ≡ AµBν −AνBµ. In particular, the components of T (4)µν read

ūσµνu =
iΛ2

F 2
0

(−∂µK
+∂νK

− + ∂µK
−∂νK

+ − ∂µπ
+∂νπ

− + ∂µπ
−∂νπ

+) + . . . ,

d̄σµνd =
iΛ2

F 2
0

(∂µK̄
0∂νK

0 − ∂µK
0∂νK̄

0 + ∂µπ
+∂νπ

− − ∂µπ
−∂νπ

+) + . . . ,

s̄σµνs =
iΛ2

F 2
0

(−∂µK̄
0∂νK

0 + ∂µK
0∂νK̄

0 + ∂µK
+∂νK

− − ∂µK
−∂νK

+) + . . . ,

ūσµνd =
iΛ2

F 2
0

(∂µK
−∂νK

0 − ∂µK
0∂νK

− +
√

2∂µπ
0∂νπ

− −
√

2∂µπ
−∂νπ

0) + . . . ,
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Λ2 Cr
34 Cr

35 Cr
88 Cr

89 Cr
106 Cr

107

13.79 0.01 −4.14 −1.44 10.26 −9.04 −0.09

Table 2. Low-energy constants for the chiral Lagrangian with tensor sources derived from ref. [124].

Λ2 is given in units of 10−3b0 while the remainders are given in units of 10−3GeV−2b0, where

b0 = 1.32 GeV. The renormalization scale is assumed to be µ = Mρ (see the discussion in the text).
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Figure 18. Real and imaginary parts of Fn
T −,KK̄

, respectively (left), and real and imaginary parts

of F s̄s
T −,KK̄

, respectively (right). For notations, see figure 14.

ūσµνs =
iΛ2

2F 2
0

(−2∂µK̄
0∂νπ

− + 2∂µπ
−∂νK̄

0 +
√

6∂µη∂νK
− +
√

2∂µπ
0∂νK

−

−
√

6∂µK
−∂νη −

√
2∂µK

−∂νπ
0) + . . . ,

d̄σµνs =
iΛ2

2F 2
0

(
√

6∂µη∂νK̄
0 −
√

2∂µπ
0∂νK̄

0 −
√

6∂µK̄
0∂νη +

√
2∂µK̄

0∂νπ
0

+2∂µπ
+∂νK

− − 2∂µK
−∂νπ

+) + . . . . (5.14)

The one-loop ChPT results for the tensor form factors are given similarly in ap-

pendix D.

5.2 Unitarization, dispersive improvement and numerical results

The unitarity relation for tensor form factors FT is identical to that of vector form factors,

so their IAM formulae should also take the same form

FT = F
(0)
T + P

−1T
(2)
1 (T

(2)
1 − T (4)

1 )−1
PF

(2)
T . (5.15)

The results are given in figures 18–20, where due to the same reason as that for F s̄s
V , Fn

T and

F s̄s
T are also calculated by cutting off the left-hand cuts and are not improved by dispersive

iteration. The iteration procedures for F ūd
T and F ūs

T are exactly the same as the one for

the corresponding vector form factors, so we shall not repeat all the details here.

For the form factor F ud
T,ππ, we compare it with that derived in ref. [53], where F ud

T,ππ was

obtained using the Omnès representation. Since according to the Watson-Migdal theorem,
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Figure 19. Real and imaginary parts of F ūd
T −,KK and F ūd

T −,ππ, respectively. For notations, see

figure 9.
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Figure 20. Real and imaginary parts of F ūs
T −,Kπ and F ūs

T −,Kη, respectively. For notations, see

figure 9.

in the elastic region, the phases of the tensor form factors equal those of the vector form

factors, δT (s) = δ+(s), one can use the dispersion relation

FT (s)

FT (0)
= exp

{

s

π

∫ ∞

4M2
π

ds′ δT (s′)

s′ (s′ − s− iǫ)

}

(5.16)

to obtain the normalized tensor form factor. The comparison is shown in figure 21, and

we observe a significant difference. For instance, the sizes of the peak at s = M2
ρ are quite

different in the two calculations, and there exists a zero point in our curve above 1 GeV that

does not occur in the phase dispersive representation. The differences are exclusively due to

the SU(3)-breaking LECs in the tensor form factors at NLO, and therefore probably a rather

large uncertainty should be associated with them. An independent cross-check is therefore

highly desirable, and in appendix F we argue that this is in principle doable through a

comparison with future lattice QCD calculations of the tensor charge of the ρ-meson.
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Figure 21. Comparison of F ūd
T,ππ derived in this work (gray solid, red dashed and blue dot-

dashed lines corresponding to the three sets of LECs) and that from ref. [53] by phase dispersive

representation (magenta dotted line).

5.3 Applications of the tensor form factors

In the previous section, we have discussed the application of the two-meson vector form

factors that characterize the SM contribution to the hadronic charged-lepton decay. At

the same time, these processes also provide a suitable platform for searching for the BSM

physics due to their large phase space. In the literature, the BSM physics effects are

included by introducing a general set of higher-dimensional operators beyond the SM. For

instance, the dimension-6 effective operators (with only left-handed neutrinos) responsible

for τ → π−π0ντ are given by [53]

LCC = −4GF√
2

[

(1 + [vL]ℓℓ) ℓ̄LγµνℓLūLγ
µdL + [vR]ℓℓ ℓ̄LγµνℓLūRγ

µdR (5.17)

+ [sL]ℓℓ ℓ̄RνℓLūRdL + [sR]ℓℓ ℓ̄RνℓLūLdR + [tL]ℓℓ ℓ̄RσµννℓLūRσ
µνdL

]

+ h.c.,

where the SM Lagrangian is recovered by setting vL = vR = sL = sR = tL = 0. In

particular, the tL term contains the tensor interaction. The decay amplitude for τ−(P )→
π− (Pπ−)π0 (Pπ0) ντ (P ′) reads

M =MV +MS +MT

=
GFVud

√
SEW√

2
(1 + ǫL + ǫR) [LµH

µ + ǫ̂SLH + 2ǫ̂TLµνH
µν ] , (5.18)

with the leptonic and hadronic sectors, respectively, given by

Lµ = ūντ

(

P ′
)

γµ
(

1− γ5
)

uτ (P ) ,

L = ūντ

(

P ′
)

(

1 + γ5
)

uτ (P ) ,

Lµν = ūντ

(

P ′
)

σµν

(

1 + γ5
)

uτ (P ) , (5.19)
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and

H =
〈

π0π−|d̄u|0
〉

,

Hµ =
〈

π0π−
∣

∣

∣d̄γµu
∣

∣

∣ 0
〉

,

Hµν =
〈

π0π−
∣

∣

∣d̄σµνu
∣

∣

∣ 0
〉

. (5.20)

Therefore an improved understanding of the tensor form factors (as well as the scalar and

vector form factors) will better constrain the strength of the BSM physics interactions.

The same applies to other decay processes such as τ− → (Kπ)−ντ [54, 126, 127] and

τ− → (πη)−ντ [128, 129].

6 Conclusions

In this work, we have performed a complete study of the scalar, vector, and tensor two-

meson form factors based on uChPT improved by dispersion relations that remove the un-

physical sub-threshold singularities. The slight unitarity violation in the coupled-channel

IAM as in ref. [56] is thus removed. The low-energy constants used for the uChPT calcula-

tion are fixed by a global fit to the available data of two-meson scattering observables. The

resulting form factors are expected to be applicable in a wide energy region 0 . . . 1.2 GeV.

For the scalar and vector form factors, our results may be regarded as an update to those

given in the existing literature, but with a much simpler realization of the dispersion rela-

tion improvement. On the other hand, this work provides the first-ever systematic analysis

of the full two-meson tensor form factors. These form factors play important roles in

precision tests of SM and searches for the BSM physics.

Acknowledgments

The authors are very grateful to José R. Peláez and Michael Döring for providing data and

for useful discussions. We also thank the anonymous referee for pointing out a defect in the

first version of this manuscript. BK thanks Gilberto Colangelo for helpful e-mail communi-

cation. This work is supported in part by Natural Science Foundation of China under Grant

Nos. 11735010, 11835015, 12047503, 11911530088, 11961141012 and U2032102, by Natu-

ral Science Foundation of Shanghai under Grant No. 15DZ2272100, by the DFG and the

NSFC through funds provided to the Sino-German Collaborative Research Center TRR110

“Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 12070131001,

DFG Project-ID 196253076), by the Chinese Academy of Sciences (CAS) under Grant

Nos. XDB34030000 and QYZDB-SSW-SYS013, and by the CAS Center for Excellence in

Particle Physics (CCEPP). The work of UGM was also supported by the CAS President’s

International Fellowship Initiative (PIFI) (Grant No. 2018DM0034), by the Volkswagen-

Stiftung (Grant No. 93562) and by the EU (Strong2020). CYS is also supported by the

Alexander von Humboldt Foundation through a Humboldt Research Fellowship.

– 33 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
6

A Loop functions

In this appendix we summarize the relevant loop functions that appear in the one-loop

calculations within ChPT. First, from the tadpole diagrams we encounter the following

integral:
∫

ddq

(2π)d

i

q2 −M2
i

= 2M2
i λ+

M2
i

16π2
ln
M2

i

µ2
≡ 2M2

i λ+ 2F 2
0 µi , (A.1)

where µ is the renormalization scale and µi = (M2
i /32π2F 2

0 ) ln(M2
i /µ

2), with i = π,K, η,

and F0 is the pion decay constant in the three-flavor chiral limit. Next, in a loop integral

with two propagators we encounter the following two-point function:

− i
∫

ddq

(2π)d

1

[q2 −M2
P ][(q − p)2 −M2

Q]
= −2λ+ Jr

P Q(s) = JP Q(0) + J̄P Q(s) , (A.2)

where P,Q = π, K, and η, s = p2, and

JP Q(0) = −2λ− 2F 2
0

∆
(µP − µQ) , (A.3)

J̄P Q(s) =
1

32π2

[

2 +

(

∆

s
− Σ

∆

)

ln
M2

Q

M2
P

+
ν

s

{

ln

(

(s− Σ− ν − iε)2

∆2 − Σ2

)

+ iπ

}]

,

with

∆ = M2
P −M2

Q , Σ = M2
P +M2

Q ,

ν(s) =

√

(

s− (MP +MQ)2
) (

s− (MP −MQ)2
)

. (A.4)

For the case of a single mass MP = MQ, the J̄-function reads

JP P (0) = −2λ− 1

16π2
− 2F 2

0

M2
P

µP , (A.5)

J̄P P (s) =
1

32π2



4 +

√

s(s− 4M2
P )

s







ln



−
(s− 2M2

P −
√

s(s− 4M2
P )− iε)2

4M2
P



+ iπ









 .

Note that the above integrals have the correct unitarity structure along the right-hand cut,

which extends on the real axis from s = (MP +MQ)2 to infinity.

B Isospin decomposition of the scattering amplitudes and form factors

In this appendix we state our conventions in defining one- and two-particle isospin eigen-

states, and show how to construct scattering amplitudes of definite isospin.

B.1 One-particle isospin eigenstates

The one-particle isospin eigenstate is generically denoted as |φ, I, I3〉. The phases of such

states are chosen such that they satisfy standard results when acted on by isospin-raising
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and -lowering operators:

Ĵ+ |I, I3〉 =
√

(I − I3)(I + I3 + 1) |I, I3 + 1〉 ,

Ĵ− |I, I3〉 =
√

(I + I3)(I − I3 + 1) |I, I3 − 1〉 . (B.1)

For the pion triplet, we choose:

|π, 1,+1〉 = −
∣

∣

∣π+
〉

, |π, 1, 0〉 =
∣

∣

∣π0
〉

, |π, 1,−1〉 =
∣

∣π−
〉

. (B.2)

For the kaon doublet K+,K0, we choose:
∣

∣

∣

∣

K,
1

2
,+

1

2

〉

=
∣

∣

∣K+
〉

,

∣

∣

∣

∣

K,
1

2
,−1

2

〉

=
∣

∣

∣K0
〉

. (B.3)

For the anti-kaon doublet K̄0, K−, we choose:
∣

∣

∣

∣

K̄,
1

2
,+

1

2

〉

=
∣

∣

∣K̄0
〉

,

∣

∣

∣

∣

K̄,
1

2
,−1

2

〉

= −
∣

∣K−
〉

. (B.4)

Finally, the η-particle is simply an isospin singlet: |η, 0, 0〉 = |η〉.

B.2 Two-particle isospin eigenstates

Two-particle isospin eigenstates, denoted generically as |φφ′, I, I3〉, are simply obtained by

combining one-particle isospin eigenstates with appropriate Clebsch-Gordan coefficients.

There is one complication, namely isospin eigenstates that are constructed by two particles

in the same isospin multiplet should be multiplied by a factor 1/
√

2 so that the completeness

relation they satisfied is properly normalized as
∑

I,I3
|I, I3〉 〈I, I3| = 1.4 In the following

we present the two-particle isospin eigenstates that are relevant to this work:

|ππ, 0, 0〉 = − 1√
6

[∣

∣

∣π+π−
〉

+
∣

∣

∣π0π0
〉

+
∣

∣

∣π−π+
〉]

,

|ππ, 1, 0〉 = −1

2

[∣

∣

∣π+π−
〉

−
∣

∣

∣π−π+
〉]

,

|ππ, 2, 2〉 =
1√
2

∣

∣

∣π+π+
〉

,

∣

∣

∣

∣

Kπ,
3

2
,
3

2

〉

= −
∣

∣

∣K+π+
〉

,

∣

∣

∣

∣

Kπ,
1

2
,−1

2

〉

=

√

2

3

∣

∣

∣K+π−
〉

−
√

1

3

∣

∣

∣K0π0
〉

,

∣

∣

∣KK̄, 1, 0
〉

= −
√

1

2

∣

∣

∣K+K−
〉

+

√

1

2

∣

∣

∣K0K̄0
〉

,

∣

∣

∣KK̄, 0, 0
〉

= −
√

1

2

∣

∣

∣K+K−
〉

−
√

1

2

∣

∣

∣K0K̄0
〉

,
∣

∣

∣

∣

Kη,
1

2
,−1

2

〉

=
∣

∣

∣K0η
〉

,

|πη, 1, 0〉 =
∣

∣

∣π0η
〉

,

|ηη, 0, 0〉 =
1√
2
|ηη〉 . (B.5)

4Such a factor is sometimes defined into the partial-wave expansion, see, e.g., ref. [56].
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B.3 Scattering amplitudes of definite isospin

Following ref. [56], one may choose the eight independent φφ scattering amplitudes as

follows:

T1(s, t, u) ≡ Tπ+π−→π0π0(s, t, u) ,

T2(s, t, u) ≡ TK+π+→K+π+(s, t, u) ,

T3(s, t, u) ≡ TK+K−→K+K−(s, t, u) ,

T4(s, t, u) ≡ TK0K̄0→K+K−(s, t, u) ,

T5(s, t, u) ≡ TK0η→K0η(s, t, u) ,

T6(s, t, u) ≡ TK0π0→K0η(s, t, u) ,

T7(s, t, u) ≡ Tπ0η→π0η(s, t, u) ,

T8(s, t, u) ≡ Tηη→ηη(s, t, u) . (B.6)

All scattering amplitudes of definite isospin can be expressed in terms of these eight am-

plitudes and their crossings. The results are as follows. For I = 0, we have

T I=0
ππ→ππ(s, t, u) =

1

2
[3Tπ+π−→π0π0(s, t, u) + Tπ+π−→π0π0(t, s, u) + Tπ+π−→π0π0(u, t, s)] ,

T I=0
ππ→KK̄

(s, t, u) =

√
3

2
[TK+π+→K+π+(u, s, t) + TK+π+→K+π+(t, s, u)] ,

T I=0
ππ→ηη(s, t, u) = −

√
3

2
Tπ0η→π0η(t, s, u) ,

T I=0
KK̄→KK̄

(s, t, u) = TK+K−→K+K−(s, t, u) + TK0K̄0→K+K−(s, t, u) ,

T I=0
KK̄→ηη

(s, t, u) = −TK0η→K0η(t, s, u) ,

T I=0
ηη→ηη(s, t, u) =

1

2
Tηη→ηη(s, t, u) . (B.7)

For I = 1/2, we have

T
I=1/2
Kπ→Kπ(s, t, u) =

3

2
TK+π+→K+π+(u, t, s)− 1

2
TK+π+→K+π+(s, t, u) ,

T
I=1/2
Kπ→Kη(s, t, u) = −

√
3TK0π0→K0η(s, t, u) ,

T
I=1/2
Kη→Kη(s, t, u) = TK0η→K0η(s, t, u) . (B.8)

For I = 1, we have

T I=1
ππ→ππ(s, t, u) =

1

2
(Tπ+π−→π0π0(t, s, u)− Tπ+π−→π0π0(u, t, s)) ,

T I=1
ππ→KK̄

(s, t, u) =
1√
2

(TK+π+→K+π+(u, s, t)− TK+π+→K+π+(t, s, u) ,

T I=1
πη→πη(s, t, u) = Tπ0η→π0η(s, t, u) ,

T I=1
KK̄→KK̄

(s, t, u) = TK+K−→K+K−(s, t, u)− TK0K̄0→K+K−(s, t, u) ,

T I=1
KK̄→πη

(s, t, u) =
√

2TK0π0→K0η(t, s, u) . (B.9)
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For I = 3/2, we have

T
I=3/2
Kπ→Kπ(s, t, u) = TK+π+→K+π+(s, t, u) . (B.10)

Finally, for I = 2, we have

T I=2
ππ→ππ(s, t, u) =

1

2
(Tπ+π−→π0π0(t, s, u)− Tπ+π−→π0π0(u, t, s)) . (B.11)

B.4 Form factors

Finally, we discuss how the two-meson form factors are classified according to the isospin

eigenstates. The form factors of interest have the following general form

〈

φφ′
∣

∣ q̄Γq′ |0〉 , (B.12)

where Γ is any matrix in the non-flavor space. It is obvious that with different choices of

q̄q′ and φφ′ there will be different form factors. However, not all of them are independent

because some of them are related via charge conjugation and isospin symmetry. In this ap-

pendix, we will extract all the independent form factors in order to minimize the calculation.

We shall start from the classification of φφ′ states according to isospin. There are 10

groups of them: ππ, πK, πK̄, πη, KK, KK̄, Kη, K̄K̄, K̄η, and ηη. However, KK and K̄K̄

states have no nonvanishing form factors because they have strangeness ±2, which cannot

be obtained from a quark bilinear. Next, πK and πK̄ are related by charge conjugation

(the same holds for Kη and K̄η), so we just need to choose one of them. Therefore, there

are only 6 groups of independent φφ′ states that will give nonvanishing form factors. They

can be chosen as

ππ, Kπ, πη, KK̄, Kη, and ηη. (B.13)

Next we study the quark bilinear operators (we shall ignore the matrix Γ for notational

simplicity). At the first sight, there are 9 possible combinations: ūu, d̄d, s̄s, ūd, ūs, d̄u, d̄s,

s̄u, and s̄d. However, some of them are related by isospin and charge conjugation (C.C).

For example,

ūd
isospin←→ ūu− d̄d isospin←→ d̄u ,

ūs
isospin←→ d̄s

C.C←→ s̄d
isospin←→ s̄u . (B.14)

For two bilinears related by isospin, their matrix elements are related to each other by the

Wigner-Eckart theorem. For bilinears related by charge conjugation, their matrix elements

are related by charge-conjugating the outcoming mesons. Therefore, there are only four

independent quark bilinears, which can be chosen as

I = 0 : n ≡ ūu+ d̄d√
2

, I = 0 : s̄s , I = 1 : ūd , I =
1

2
: ūs . (B.15)

Now, with each independent quark bilinear, we just need to compute one matrix element for

each independent φφ′ group; the others are related by Wigner-Eckart theorem. Therefore,

the independent form factors can be chosen as the matrix elements of the quark bilinears

between the vacuum and two-particle isospin eigenstates given in table 3.
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Quark bilinear Two-particle isospin eigenstates

n = (ūu+ d̄d)/
√

2 ππ, KK̄, ηη

s̄s ππ, KK̄, ηη

ūd ππ, πη, KK̄

ūs Kπ, Kη

Table 3. Quark bilinears and meson fields that form independent form factors.

C Subtraction of sub-threshold poles

It is well known that the naïve application of the IAM will lead to spurious poles in the

sub-threshold region for quantities in the J = 0 channel, which is related to the existence

of the Adler zero in the S-wave [64, 96]. In this section, we briefly outline the method one

can adopt to subtract such spurious pole in both unitarized partial waves and form factors.

One may refer to ref. [64] for detailed discussions of the topic.

Let us restrict ourselves to a single-channel unitarization of partial waves and form

factors. Also, we shall simply use T2 and T4 to denote the O(p2) and O(p4) J = 0 partial

wave for notational simplicity. First, let us recall the naïve IAM formula for partial waves,

T =
T 2

2

T2 − T4
. (C.1)

The O(p2) amplitude T2 has a zero at s = s2 below the production threshold: T2(s2) = 0.

This is nothing but the Adler zero at the O(p2) level for the S-wave. Meanwhile, the

combination T2− T4 has a different zero at s = s′. Since in general s′ 6= s2, the naïve IAM

formula (C.1) has a spurious pole at s = s′. Similarly, the naïve IAM formula for the scalar

form factor

FS = F
(0)
S +

T2

T2 − T4
F

(2)
S (C.2)

suffers from a pole at s = s′.

From the dispersive point of view, the existence of such spurious poles is due to the

negligence of the pole contribution of various inverse amplitudes in the derivation of the

IAM formula through a dispersion relation. Therefore, the problem can be resolved by

appropriately adding back these contributions. Unfortunately, a dispersive derivation of

the multi-channel IAM is still missing, so we can only stick to the single-channel case in

this discussion.

To derive the single-channel IAM formula for partial waves, we shall consider the

dispersion relation of 1/T , 1/T2 and T4/T
2
2 respectively. Also, here we shall simplify our

discussion by considering an unsubtracted dispersion relation of each quantity, the outcome

turns out to be equivalent to choosing the subtraction point at the Adler zero of the full
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amplitude [64]. The dispersion relations we obtain are

1

T (s)
=

1

π

∫ ∞

sth

dz
ImT−1(z)

z − s + LC(1/T ) + PC(1/T ) ,

1

T2(s)
= PC(1/T2) ,

T4(s)

T 2
2 (s)

=
1

π

∫ ∞

sth

dz
Im{T4(z)/T 2

2 (z)}
z − s + LC(T4/T

2
2 ) + PC(T4/T

2
2 ) . (C.3)

Here LC and PC denote the left-hand cut and the pole contributions to the dispersion

integral, respectively. Since the full and perturbative amplitude satisfies the following

unitarity relation on the right-hand cut:

− ImT−1(s) = Im{T4(s)/T 2
2 (s)} =

|~pcm|
8π
√
s
, (C.4)

the right-hand cut contributions to 1/T and T4/T
2
2 simply differ by a sign. Furthermore,

one approximates LC(1/T ) ≈ LC(T4/T
2
2 ) by arguing that the left-hand cut contribution

is weighted at low energies where the usual ChPT expansion is appropriate. With these,

we can write

1

T (s)
≈ 1

T2(s)
− T4(s)

T 2
2 (s)

− PC(1/T2) + PC(T4/T
2
2 ) + PC(1/T ) , (C.5)

where the explicit expressions for the pole contributions are given by

PC(1/T ) =
1

(s− sA)T ′(sA)
,

PC(1/T2) =
1

(s− s2)T ′
2(s2)

,

PC(T4/T
2
2 ) =

T ′
4(s2)

(s− s2)(T ′
2(s2))2

+
T4(s2)

(s− s2)2(T ′
2(s2))2

− T4(s2)T ′′
2 (s2)

(s− s2)(T ′
2(s2))3

. (C.6)

Here sA is the Adler zero of the full partial-wave T -matrix. Of course its exact value is

unknown, but we can approximate it by the Adler zero of T2 + T4, which is sA ≈ s2 + s4

where s4 ≈ −T4(s2)/T ′
2(s2). If one neglects the pole contributions then the naïve IAM

formula (C.1) is recovered, the inclusion of the pole contributions will eliminate the spurious

pole in the sub-threshold region.

The pole subtraction for the scalar form factor follows a similar logic. Let us start by

considering the dispersion relations of (FS − F (0)
S )/T and F

(2)
S /T2, respectively,

FS(s)− F (0)
S (s)

T
=

1

π

∫ ∞

sth

dz
Im{(FS(z)− F (0)

S (z))/T (z)}
z − s + LC((FS − F (0)

S )/T )

+PC((FS − F (0)
S )/T ), (C.7)

F
(2)
S (s)

T2
=

1

π

∫ ∞

sth

dz
Im{F (2)

S (z)/T2(z)}
z − s + LC(F

(2)
S /T2) + PC(F

(2)
S /T2) .
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Along the right-hand cut, we have

Im

{

FS(s)− F (0)
S (s)

T (s)

}

= Im

{

F
(2)
S (s)

T2(s)

}

= F
(0)
S (s)

|~pcm|
8π
√
s
. (C.8)

Therefore, the right-hand-cut contributions for (FS − F (0)
S )/T and F

(2)
S /T2 are the same.

Furthermore, we assume that the two left-hand-cut contributions are also approximately

the same, following an argument similar to the case of the partial-wave scattering ampli-

tude. With this we obtain

FS(s) ≈ F (0)
S (s) +

T (s)

T2(s)
F

(2)
S (s) + T (s)

{

PC((FS − F (0)
S )/T )− PC(F

(2)
S /T2)

}

, (C.9)

where the explicit expressions for the pole contributions are given by

PC((FS − F (0)
S )/T ) =

FS(sA)− F (0)
S (sA)

(s− sA)T ′(sA)
,

PC(F
(2)
S /T ) =

F
(2)
S (s2)

(s− s2)T ′
2(s2)

. (C.10)

Again, we may approximate FS and T in the formulae above by their respective ChPT

expressions up to NLO.

Notice that if we neglect the pole contributions in eq. (C.9) and substitute T (s) by

the naïve IAM formula for the partial-wave T -matrix, then we re-obtain the naïve IAM

unitarized scalar form factor. This expression works fine above threshold but suffers from

a spurious pole below threshold. On the other hand, if we use eq. (C.9) with the expression

of T (s) given in eq. (C.5), then the spurious pole will be smoothly eliminated.

D Form factors in ChPT to one loop

In this section, we list the NLO ChPT results for scalar, vector, and tensor form factors.

Notice that we express our result in terms of the physical pion decay constant Fπ, which

is related to F0 by

Fπ = F0

{

1− 2µπ − µK +
4

F 2
0

[

2Lr
4M

2
K + (Lr

4 + Lr
5)M2

π

]

}

. (D.1)

D.1 Scalar form factors for the I = 0 system

The two-meson states are chosen to be exact isospin eigenstates. At NLO, calculating the

Feynman diagrams shown in figure 6 gives

−
Fn

S,ππ(s)
√

3
= 1+µπ−

1

3
µη−

8(2M2
K +3M2

π−s)
F 2

π

Lr
4 +

4(s−4M2
π)

F 2
π

Lr
5 +

16(2M2
K +3M2

π)

F 2
π

Lr
6

+
32M2

π

F 2
π

Lr
8 +

2s−M2
π

2F 2
π

Jr
ππ(s)+

s

4F 2
π

Jr
KK(s)+

M2
π

18F 2
π

Jr
ηη(s) ,
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−Fn
S,KK̄

(s) = 1+
2

3
µη−

8(6M2
K +M2

π−2s)

F 2
π

Lr
4 +

4(s−4M2
K)

F 2
π

Lr
5 +

16(6M2
K +M2

π)

F 2
π

Lr
6

+
32M2

K

F 2
π

Lr
8 +

3s

4F 2
π

Jr
ππ(s)+

3s

4F 2
π

Jr
KK(s)+

9s−2M2
π−6M2

η

36F 2
π

Jr
ηη(s) ,

3Fn
S,ηη(s) = 1−3µπ +4µK−

1

3
µη +

8(−10M2
K +M2

π +3s)

F 2
π

Lr
4−

4(16M2
K−4M2

π−3s)

3F 2
π

Lr
5

+
16(10M2

K−M2
π)

F 2
π

Lr
6−

128(M2
K−M2

π)

F 2
π

Lr
7 +

32M2
π

F 2
π

Lr
8 +

3M2
π

2F 2
π

Jr
ππ(s)

+
9s−2M2

π−6M2
η

4F 2
π

Jr
KK(s)+

16M2
K−7M2

π

18F 2
π

Jr
ηη(s) (D.2)

for the nonstrange form factors and

−
√

2

3
F s̄s

S,ππ(s) =
8(s− 2M2

π)

F 2
π

Lr
4 +

32M2
π

F 2
π

Lr
6 +

s

2F 2
π

Jr
KK(s) +

2M2
π

9F 2
π

Jr
ηη(s) ,

−
F s̄s

S,KK̄
(s)

√
2

= 1 +
2

3
µη −

8(4M2
K +M2

π − s)
F 2

π

Lr
4 +

4(s− 4M2
K)

F 2
π

Lr
5 +

16(4M2
K +M2

π)

F 2
π

Lr
6

+
32M2

K

F 2
π

Lr
8 +

3s

4F 2
π

Jr
KK(s) +

9s− 2M2
π − 6M2

η

18F 2
π

Jr
ηη(s) ,

3
√

2F s̄s
S,ηη(s)

4
= 1 + 2µK −

4

3
µη +

2(−16M2
K − 2M2

π + 3s)

F 2
π

Lr
4 −

4(16M2
K − 4M2

π − 3s)

3F 2
π

Lr
5

+
8(8M2

K +M2
π)

F 2
π

Lr
6 +

64(M2
K −M2

π)

F 2
π

Lr
7 +

32(2M2
K −M2

π)

F 2
π

Lr
8

+
9s− 2M2

π − 6M2
η

8F 2
π

Jr
KK(s) +

16M2
K − 7M2

π

18F 2
π

Jr
ηη(s) (D.3)

for the hidden-strangeness form factors.

D.2 Scalar form factors for the I =
1

2
system

The scalar form factors for the I = 1/2 meson-meson systems up to NLO in ChPT are

given by

√

2

3
F ūs

S,Kπ(s) = 1+
5s−4M2

π

4(M2
K−M2

π)
µπ−

s

2(M2
K−M2

π)
µK +

8M2
K +4M2

π−9s

12(M2
K−M2

π)
µη

−8(2M2
K +M2

π)

F 2
π

(Lr
4−2Lr

6)+
4(−2M2

K−2M2
π +s)

F 2
π

Lr
5 +

16(M2
K +M2

π)

F 2
π

Lr
8

−
3M2

η (3M2
K−3M2

π +s)−9M4
K +M2

K(9M2
π +2s)+s(7M2

π−9s)

72F 2
πs

J̄Kη(s)

−3M4
K +M2

K(2s−6M2
π)+3M4

π +2M2
πs−5s2

8F 2
πs

J̄πK(s) ,

−
√

6F ūs
S,Kη(s) = 1− 3(4M2

π−3s)

4(M2
K−M2

π)
µπ +

16M2
K−9s

2(M2
K−M2

π)
µK +

−88M2
K +28M2

π +27s

12(M2
K−M2

π)
µη

−8(2M2
K +M2

π)

F 2
π

(Lr
4−2Lr

6)+
4(−14M2

K +2M2
π +3s)

3F 2
π

Lr
5 +

128(M2
K−M2

π)

F 2
π

Lr
7
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−
3M2

η (3M2
K−3M2

π +s)−9M4
K +M2

K(9M2
π +2s)+s(7M2

π−9s)

8F 2
πs

J̄πK(s)

−
9M4

η −6M2
η (3M2

K +s)+9M4
K−18M2

Ks+s(4M2
π +9s)

24F 2
πs

J̄Kη(s)

+
16(5M2

K−3M2
π)

F 2
π

Lr
8 . (D.4)

D.3 Scalar form factors for the I = 1 system

The scalar form factors for the I = 1 meson-meson systems up to NLO in ChPT are given by

F ūd
S,KK̄

(s) = 1+
2

3
µη−

8(2M2
K +M2

π)

F 2
π

(Lr
4−2Lr

6)+
4(s−4M2

K)

F 2
π

Lr
5 +

32M2
K

F 2
π

Lr
8

+
s

4F 2
π

Jr
KK(s)−

8M2
K +M2

π +3M2
η −9s

18F 2
π

Jr
πη(s) ,

−
√

3

2
F ūd

S,πη(s) = 1−µπ +2µK−
1

3
µη−

8(2M2
K +M2

π)

F 2
π

(Lr
4−2Lr

6)− 4(8M2
K +4M2

π−3s)

3F 2
π

Lr
5

−64(M2
K−M2

π)

F 2
π

Lr
7 +

32M2
π

F 2
π

Lr
8 +

9s−8M2
K−M2

π−3M2
η

12F 2
π

Jr
KK(s)

+
M2

π

3F 2
π

Jr
πη(s) ,

F ūd
S,ππ(s) = 0 (by isospin and Bose symmetry). (D.5)

D.4 Vector form factors for the I = 0 system

As mentioned in section 4.1, the SU(3) singlet vector form factor of ūγµu+ d̄γµd+ s̄γµs is

zero up to O(p4). Therefore, it is sufficient to present the form factors of s̄γµs only:

F s̄s
V +,KK̄

(s)
√

2
= 1− 2µK +

s− 6M2
K

96π2F 2
π

+
2s

F 2
π

Lr
9 +

s− 4M2
K

4F 2
π

Jr
KK(s) ,

F s̄s
V +,ππ(s) = 0 (by isospin and Bose symmetry),

F s̄s
V +,ηη(s) = 0 (by Bose symmetry). (D.6)

D.5 Vector form factors for the I =
1

2
system

The vector form factors for the I = 1/2 meson-meson systems up to NLO in ChPT are

given by

−
√

2

3
F ūs

V +,Kπ(s) = 1 +
s− 4M2

K

4(M2
K −M2

π)
µπ +

−8M2
K + 4M2

π + s

2(M2
K −M2

π)
µK +

3(4M2
K − s)

4(M2
K −M2

π)
µη

−5M2
K +M2

π − s
96π2F 2

π

+
2s

F 2
π

Lr
9 +

M4
η − 2M2

η (M2
K + s) + (M2

K − s)2

8F 2
πs

J̄Kη(s)

+
M4

K − 2M2
K(M2

π + s) + (M2
π − s)2

8F 2
πs

J̄πK(s)

= −
√

2

3
F ūs

V +,Kη(s) . (D.7)
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D.6 Vector form factors for the I = 1 system

The vector form factors for the I = 1 meson-meson systems up to NLO in ChPT are given

by

F ūd
V +,ππ(s)
√

2
= 1− 4

3
µπ−

2

3
µK +

s−2M2
K−4M2

π

96π2F 2
π

+
2s

F 2
π

Lr
9 +

s−4M2
π

6F 2
π

Jr
ππ(s)+

s−4M2
K

12F 2
π

Jr
KK(s)

= F ūd
V +,KK̄

(s) ,

F ūd
V +,πη(s) = 0 (by C parity). (D.8)

D.7 Tensor form factors for the I = 0 system

For simplicity of notation, we will define C̃r
i ≡ Cr

i /Λ2. The tensor form factors for the

isoscalar systems up to NLO in ChPT are given by

Fn
T,KK̄

(s) = 1−7µπ−
1

3
µη +

s−6M2
K

96π2F 2
π

− 8(M2
K−M2

π)

F 2
π

Lr
5−4M2

πC̃
r
34 +2(M2

π−2M2
K)C̃r

35

−2(2M2
K +M2

π)C̃r
36 +8(M2

K−M2
π)C̃r

37−2sC̃r
88 +2(s−2M2

K)C̃r
89−4M2

KC̃
r
106

+2(s−2M2
K)C̃r

107 +
s−4M2

K

4F 2
π

Jr
KK(s) ,

Fn
T,ππ(s) = 0 (by isospin and Bose symmetry),

Fn
T,ηη(s) = 0 (by isospin and Bose symmetry), (D.9)

−
F s̄s

T,KK̄
(s)

√
2

= 1−4µπ−2µK−
4

3
µη +

s−6M2
K

96π2F 2
π

− 8(M2
K−M2

π)

F 2
π

Lr
5 +4(M2

π−2M2
K)C̃r

34

−2M2
πC̃

r
35−2(2M2

K +M2
π)C̃r

36−4(M2
K−M2

π)C̃r
37−2sC̃r

88 +2(s−2M2
K)C̃r

89

−4M2
KC̃

r
106 +2(s−2M2

K)C̃r
107 +

s−4M2
K

4F 2
π

Jr
KK(s) ,

F s̄s
T,ππ(s) = 0 (by isospin and Bose symmetry),

F s̄s
T,ηη(s) = 0 (by Bose symmetry). (D.10)

D.8 Tensor form factors for the I =
1

2
system

The tensor form factors for the I = 1/2 systems up to NLO in ChPT are given by
√

2

3
F ūs

T,Kπ(s) = 1+
−20M2

K +16M2
π +s

4(M2
K−M2

π)
µπ +

−12M2
K +8M2

π +s

2(M2
K−M2

π)
µK +

44M2
K−8M2

π−9s

12(M2
K−M2

π)
µη

−5M2
K +M2

π−s
96π2F 2

π

− 4(M2
K−M2

π)

F 2
π

Lr
5−4M2

KC̃
r
34−2M2

πC̃
r
35−2(2M2

K +M2
π)C̃r

36

−2sC̃r
88−2(M2

K +M2
π−s)C̃r

89−2(M2
K +M2

π)C̃r
106−2(M2

K +M2
π−s)C̃r

107

+
M4

η −2M2
η (M2

K +s)+(M2
K−s)2

8F 2
πs

J̄Kη(s)

+
M4

K−2M2
K(M2

π +s)+(M2
π−s)2

8F 2
πs

J̄πK(s) ,

√

2

3
F ūs

T,Kη(s) = 1+
−20M2

K +16M2
π +s

4(M2
K−M2

π)
µπ +

−12M2
K +8M2

π +s

2(M2
K−M2

π)
µK +

44M2
K−8M2

π−9s

12(M2
K−M2

π)
µη

−5M2
K +M2

π−s
96π2F 2

π

− 28(M2
K−M2

π)

3F 2
π

Lr
5−4M2

KC̃
r
34 +

2(M2
π−4M2

K)

3
C̃r

35
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−2(2M2
K +M2

π)C̃r
36−2sC̃r

88 +
2(−7M2

K +M2
π +3s)

3
C̃r

89 +
2(M2

π−7M2
K)

3
C̃r

106

+
2(−7M2

K +M2
π +3s)

3
C̃r

107 +
M4

η −2M2
η (M2

K +s)+(M2
K−s)2

8F 2
πs

J̄Kη(s)

+
M4

K−2M2
K(M2

π +s)+(M2
π−s)2

8F 2
πs

J̄πK(s) . (D.11)

D.9 Tensor form factors for the I = 1 system

The tensor form factors for the isovector systems up to NLO in ChPT are given by

−
F ūd

T,ππ(s)
√

2
= 1− 13

3
µπ−

8

3
µK−

1

3
µη +

−2M2
K−4M2

π +s

96π2F 2
π

−4M2
πC̃

r
34−2M2

πC̃
r
35

−2(2M2
K +M2

π)C̃r
36−2sC̃r

88 +2(s−2M2
π)C̃r

89−4M2
πC̃

r
106 +2(s−2M2

π)C̃r
107

+
s−4M2

π

6F 2
π

Jr
ππ(s)+

s−4M2
K

12F 2
π

Jr
KK(s) ,

−F ūd
T,KK̄

(s) = 1− 13

3
µπ−

8

3
µK−

1

3
µη +

−2M2
K−4M2

π +s

96π2F 2
π

− 8(M2
K−M2

π)

F 2
π

Lr
5−4M2

πC̃
r
34

+2(M2
π−2M2

K)C̃r
35−2(2M2

K +M2
π)C̃r

36−2sC̃r
88 +2(s−2M2

K)C̃r
89−4M2

KC̃
r
106

+2(s−2M2
K)C̃r

107 +
s−4M2

π

6F 2
π

Jr
ππ(s)+

s−4M2
K

12F 2
π

Jr
KK(s) ,

F ūd
T,πη(s) = 0 (by C parity). (D.12)

E Bs → π
+

π
− form factors

Normalized by the scalar form factor, the S-wave π+π− LCDAs are defined as [6, 102–105]

〈(π+π−)S |s̄(x)γµs(0)|0〉 = F s̄s
S,ππ(m2

ππ)pππ,µ

∫ 1

0
du eiupππ ·xφππ(u) ,

〈(π+π−)S |s̄(x)s(0)|0〉 = F s̄s
S,ππ(m2

ππ)B0

∫ 1

0
du eiupππ ·xφs

ππ(u) , (E.1)

〈(π+π−)S s̄(x)σµνs(0)|0〉 = −F s̄s
S,ππ(m2

ππ)B0
1

6
(pππµxν − pππνxµ)

∫ 1

0
du eiupππ ·xφσ

ππ(u) .

φππ and φs
ππ, φ

σ
ππ are twist-2 and twist-3 LCDAs, respectively. They are normalized as

∫ 1

0
duφs

ππ(u) =

∫ 1

0
duφσ

ππ(u) = 1 . (E.2)

According to the conformal symmetry in QCD [130], the twist-3 LCDAs have the asymp-

totic form [102–105]:

φs
ππ(u) = 1, φσ

ππ(u) = 6u(1− u) , (E.3)

while the twist-2 LCDA can be expanded in terms of the Gegenbauer moments as

φππ(u) = 6u(1− u)
∑

n

anC
3/2
n (2u− 1) . (E.4)

Since the contributions from higher Gegenbauer moments are suppressed, it is enough to

only consider the lowest moment a1. The first Gegenbauer moment for the f0(980) is [108]

a1 = −1.35 . (E.5)
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The Bs → π+π− form factors in terms of the π+π− LCDAs read as [6],

FBs→ππ
1 (M2

ππ, q
2)

= NF

{∫ 1

u0

du

u
exp

[

−m
2
b + uūM2

ππ − ūq2

uM2

]

[

− mb

B0
Φππ(u) + uΦs

ππ(u) +
1

3
Φσ

ππ(u)

+
m2

b + q2 − u2M2
ππ

uM2

Φσ
ππ(u)

6

]

+ exp

[

− s0

M2

]

Φσ
ππ(u0)

6

m2
b − u2

0M
2
ππ + q2

m2
b + u2

0M
2
ππ − q2

}

, (E.6)

FBs→ππ
− (M2

ππ, q
2)

= NF

{

∫ 1

u0

du

u
exp

[

−m
2
b + uūM2

ππ − ūq2

uM2

]

[

mb

B0
Φππ(u) + (2− u)Φs

ππ(u)

+
1− u

3u
Φσ

ππ(u)− u(m2
b + q2 − u2M2

ππ) + 2(m2
b − q2 + u2M2

ππ)

u2M2

Φσ
ππ(u)

6

]

−u0(m2
b + q2 − u2

0M
2
ππ) + 2(m2

b − q2 + u2
0M

2
ππ)

u0(m2
b + u2

0M
2
ππ − q2)

exp

[

− s0

M2

]

Φσ
ππ(u0)

6

}

, (E.7)

FBs→ππ
0 (M2

ππ, q
2) = FBs→ππ

1 (M2
ππ, q

2) +
q2

M2
Bs
−M2

ππ

FBs→ππ
− (M2

ππ, q
2), (E.8)

FBs→ππ
T (M2

ππ, q
2)

= 2NF (MBs
+Mππ)

{∫ 1

u0

du

u
exp

[

−(m2
b − ūq2 + uūM2

ππ)

uM2

]

[

−Φππ(u)

2B0
+mb

Φσ
ππ(u)

6uM2

]

+mb
Φσ

ππ(u0)

6

exp[−s0/M
2]

m2
b − q2 + u2

0M
2
ππ

}

, (E.9)

F Vector meson dominance and tensor form factors at the vector pole

The antisymmetric tensor interaction is not a part of the elementary SM interaction struc-

ture, so it is quite difficult to compare theoretical results of tensor form factor calculations

with data. Therefore, for an independent cross-check one should rely on future lattice QCD

calculations. One could of course calculate the two-meson tensor form factors directly on

the lattice, but since the results of different theory predictions of the tensor form factors

differ mainly around the ρ-peak (see figure 21), a more straightforward cross-check is to

calculate the tensor charge of the ρ-meson. Combining its value and the vector meson

dominance (VMD) picture, one is able to compare the two-meson tensor form factors with

lattice predictions around the vector-meson mass pole. We outline the method below.

The tensor charge fT
V of a vector meson V is defined through

〈

V(p)|q̄′σµνq|0
〉

= −ifT
V,q̄′q(εµ∗pν − εν∗pµ) , (F.1)

where εµ is the polarization vector of V. Suppose now we are interested in the tensor form

factor F q̄′q
T,φφ′(s) defined in eq. (5.1) at s ≈M2

V . If one is able to parameterize the V → φφ′

amplitude as

iMV→φφ′ = ifVφφ′(pφ − pφ′)µε
µ , (F.2)
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then the VMD picture provides an approximate expression of F q̄′q
T,φφ′(s) at s ≈M2

V ,

Λ2

F 2
π

F q̄′q
T,φφ′(s) ≈ −

2fVφφ′fT
V,q̄′q

s−M2
V + iΘ(s− 4M2

π)MVΓV

, (F.3)

where ΓV is the total decay width of V. An interesting consequence of this formula is

that one expects ReF q̄′q
T,φφ′(s) to vanish and ImF q̄′q

T,φφ′(s) to peak at s = M2
V . Furthermore,

with future lattice inputs of fT
V,q̄′q, the equation above serves as a consistency check of the

theoretical result for two-meson tensor form factors at the vector-meson pole.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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