
Two Methods for Display of High Contrast ImagesJack E. Tumbliny Jessica K. HodginsyBrian K. GuenterzyCollege of Computing and Graphics, Visualization and Usability CenterGeorgia Institute of Technology Atlanta, GA 30332-0280[ccsupjtjjkh]@cc.gatech.eduzMicrosoft Research, Bellevue WAJuly 16, 19981 AbstractHigh contrast images are common in night scenes and other scenes that include dark shadowsand bright light sources. These scenes are di�cult to display because their contrasts greatlyexceed the range of most display devices for images. As a result, the image contrasts arecompressed or truncated, obscuring subtle textures and details. Humans view and understandhigh contrast scenes easily, \adapting" their visual response to avoid compression or truncationwith no apparent loss of detail. By imitating some of these visual adaptation processes, wedeveloped two methods for the improved display of high contrast images. The �rst builds adisplay image from several layers of lighting and surface properties. Only the lighting layersare compressed, drastically reducing contrast while preserving much of the image detail. Thismethod is practical only for synthetic images where the layers can be retained from the renderingprocess. The second method interactively adjusts the displayed image to preserve local contrastsin a small \foveal" neighborhood. Unlike the �rst method, this technique is usable on any imageand includes a new tone reproduction operator. Both methods use a sigmoid function for contrastcompression. This function has no e�ect when applied to small signals but compresses largesignals to �t within an asymptotic limit. We demonstrate the e�ectiveness of these approachesby comparing processed and unprocessed images.2 IntroductionThe ultimate goal of realistic image synthesis is to recreate the viewer's sensations of the originalscene. This problem is a di�cult one because the relationship between scene radiances and1
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D E FFigure 1: Contrasts are greater than 300,000:1 in the original scene. A) Truncation discardsdetails in image shadows and highlights; B) contrast compression reveals shadows and highlights,but attenuates textures and �ne details and lacks the appearance of high contrast; C) \layering"method preserves image details and provides the appearance of high contrast, D{F) theinteractive \foveal" method adjusts the entire image for best display of a small circled regionspeci�ed by the mouse cursor (at the end of the red arrows).evoked visual sensations is poorly understood. Reproducing scene radiances or contrasts directlyis often impossible because the range of the human visual system, from below 10�6 to about10+8cd=m2, dwarfs the output range of most displays [14]. Typical cathode-ray tube (CRT)display intensities, for example, are near 50cd=m2, and the ratio between the largest and smallestpixel intensities is typically no more than 100:1.The ratio between two chosen intensities or luminances is called \contrast" and we use onlythis narrow de�nition throughout the paper. Other common quantitative de�nitions are Webercontrast �L=L and Michelson contrast (Lmax�Lmin)=(Lmax+Lmin), and these terms sometimesapply only to adjacent positions in an image or to locations separated by sharp boundaries. Someauthors use contrast to name perceived quantities, such as \simultaneous contrast," others useit to describe neural signals, identify neural processes, or as an abstract, qualitative term for anyimportant dissimilarity.We have also imposed our own de�nitions for the terms \scene" and \image." A scene is theinput to any picture capturing process and an image is the output. Waves crashing on cli�s on2



Figure 2: Artist Chris Van Allsburg's drawing of a rocket launch at midnight [35] depicts anextremely high contrast scene in a low contrast image (< 50 : 1) without artifacts common tocomputer graphics such as truncation or \clipping," loss of �ne detail, or halos around very darkor bright scene features. Both the streaks in the rocket exhaust (perhaps 10+8cd=m2) and theshapes of clouds overhead lit only by starlight (typically 10�5cd=m2) are clearly visible. FromTHE MYSTERIES OF HARRIS BURDICK. Copyright c
1984 Chris Van Allsburg. Reprintedby permission of Houghton-Mi�in Company. All rights reserved.a winter night form a scene, and a painting of it is the image; my father tending a camp�re isa scene, and a favorite old photograph of it is the image. A scene is only the purely objectiveand measurable part of the input; it includes shapes, textures, re
ectances, and illuminants, butdoes not include subjective features such as \warmth." An image is objective and measurable;it is the re
ectance of the paint or the radiances of a CRT's display screen.Synthetic and real-world scenes often contain very high contrasts. For example, a scene withdark shadows, visible light sources, caustics or specular re
ections is likely to contain contrastsas large as 100,000:1 or more. As a result, most displays with limited range force compressionor truncation of image contrasts and may discard subtle but important textures and details ofthe original scene.Limited display contrast is not an insurmountable problem because artists can produce3



drawings of high contrast scenes using low contrast materials. They can, for example, conveyconvincing impressions of a rocket launch at midnight as shown in Figure 2 [35] or the coolshadows under a tree on a hot summer afternoon using only charcoal on paper, a method thatprovides contrasts of about 50:1. With better display methods, the 100:1 contrast range of CRTdisplays should be adequate.The ease with which humans view high contrast scenes suggests that models of visualperception may help solve the problem of displaying high contrast images on a limited contrastdisplay. This paper presents two simple methods inspired by the human visual system. Inparticular, humans form separate but simultaneous judgments of lighting and surface propertiesas if the scene were perceived in multiple layers [2]. The lighting layer contains most of the highcontrasts while most of the image detail and texture is contained in the layers describing surfaceproperties. The �rst method, therefore, compresses the lighting layers of an image and leavesthe surface properties unchanged. The second method mimics the directional nature of visualadaptation. Because the human visual system adapts preferentially to available light in thedirection of gaze, this method adjusts the entire image for best display of a small neighborhoodaround the viewer's center of attention.The intent of both methods is to improve the accuracy and realism of displayed images. Asshown in Figure 1A and B, using the typical methods of truncation or compression to displaya high contrast scene can cause a severe loss of image details and textures. These details canbe made visible by both our \layering" and the \foveal" methods, demonstrated in Figure 1Cand D{F. The layering method statically reduces lighting contrasts and preserves re
ectances;the foveal method dynamically readjusts the display for best reproduction of the contrasts in asmall, targeted \foveal" neighborhood selected by the user's cursor movements.The next section discusses the layering and gaze-directed adaptation of the human visualsystem in more detail; in Section 4 we review earlier models of adaptation used in computergraphics. Section 5 presents our implementation of the layering method in detail, followedby development of a revised tone reproduction operator in Section 6 used in a gaze-directedinteractive foveal display program covered in Section 7. We conclude by analyzing the results ofthese two methods and discussing possible improvements.3 BackgroundPsychology, psychophysics, photography, and computer graphics provide research results thatare useful in addressing the problems inherent in displaying high contrast images. In this sectionwe brie
y summarize the studies of human visual perception that inspired the models in thispaper and justify our assumptions and simpli�cations.4



3.1 Layering BackgroundHumans see much more in an image than a simple map of intensities. The human visual systemis adept at simultaneously extracting three-dimensional shapes, textures, re
ectances, and othersurface properties from a scene or image. The absolute magnitude of the intensities that de�nethe image have little e�ect on these perceptions. For example, the surface properties of a child'swooden block are equally comprehensible when viewed in dim indoor lighting or by sunlight,though lighting changes may have increased scene intensities a hundredfold or more.Based in part on the early computational vision work of Barrow and Tenenbaum [4],psychophysicists such as Arend, Gerbino, and Goldstein proposed that an image or scene isnot viewed by the human visual system as a single entity but is decomposed into a stack ofoverlaid intrinsic images each of which describes a perceived scene quantity, such as illumination,re
ectance, orientation, or distance [2]. Intrinsic image layers formally portray the ability toestimate multiple scene properties within an image, an ability well supported by examples andexperimental evidence. Gilchrist [10], for example, placed a book with a bright red cover onthe dashboard of his car on a sunny day. The book added a strong red re
ection to his viewof green objects seen through the windshield. Instead of a yellow color he saw both the redbook re
ection and the green objects simultaneously. In experiments by Adelson [1], Arendand Goldstein [2], Henneman [12], and Gilchrist, test subjects reported distinctly di�erentbut consistent perceptions of re
ectance, illumination, transparency, image intensity, and otherproperties within viewed scenes. A recent book edited by Gilchrist [8] strongly supports thismultidimensional or \layered" view of vision with cogent argument and extensive references.This paper considers only six types of intrinsic image layers but many scenes contain morethan one instance of each layer type. For a simple example, consider a photographic printlit by sunlight leaking through half-closed Venetian window blinds. The photographic print isilluminated by stripes of light and shadow from the blinds, but human viewers can sense thisillumination layer without confusion. The re
ectances of the photograph vary between zeroand one, and these sensed values de�ne a re
ectance layer sensed without interference from theillumination. However, a viewer can also interpret the re
ectance values as a complete image anddecompose the re
ectances of the photograph into another set of illumination, re
ectance, andtransparency values imputed for the photographed scene. The viewer's visual system recursivelydecomposes the photograph's re
ectances into second set of intrinsic image layers.Recursive decomposition is especially useful for intrinsic image layers of high contrast scenesthat hold specular re
ectances and transparency information, as in Gilchrist's example of a redbook on a car dashboard. For a more complex case, consider a street scene near a modern o�cebuilding constructed from panes of tinted, partially mirrored glass. Considering only re
ectance,illumination, and transparency properties, a human observer may see and separately comprehendat least six intrinsic layers in the scene. Gazing at the glass on a sunny day reveals: 1) the di�usere
ectance of streaks and dirt on the glass surface. 2) the di�use illumination of the streaks5



and dirt by sunlight and light re
ected from other buildings to form layer; 3) the tint of thetransparency of the glass that forms a re
ectance-like layer; 4) a faint building interior scenethat illuminates the glass from behind; 5) the specular re
ectance of the aluminized coating onthe glass; and 6) the tinted mirror-image of the street scene that illuminates the specular coating.But now we have two opportunities for further recursion; both the building interior scene 4),and the mirrored street scene 6) may each be decomposed into another set of up to six layers. Ifthese layers include transparencies or mirror-like specular re
ections, more decompositions arepossible.Our visual system also seems to adjust its response as we direct our attention to variousintrinsic layers. In the glass building example, the building interior seems dimmer and lessdistinct when closely inspecting the bright re
ection of the street scene behind us, but the streetscene's content fades and the building interior seems bright and clear when our attention is aimedinside. This change suggests the visual system may make separate visual adjustments to betterassess the contents of each intrinsic image layer.Several authors have shown that the perception of surface properties and their illuminantsare largely independent, thus illumination layers rarely interfere with judgments of re
ectance,and re
ectance layers almost never disrupt the understanding of illumination, shadows, shapes,or transparency. An experiment by Gilchrist and Jacobsen [11] that is nicely summarized in [10]provides a striking example of this phenomenon. The experimenters arranged two small sealedrooms of equal dimensions and identical furniture layouts. A small aperture in the wall of eachroom provided a controlled view of the interior, and the room lights were placed outside the�eld of view. The experimenters painted all surfaces in one room, including the furniture, witha uniformly 
at, non-glossy black paint; in the other room they used white paint. Because allsurface re
ectances in each room were di�use and identical, any contrasts seen through the roomapertures arose entirely from variations or edges in illumination. Gilchrist and Jacobsen adjustedthe lamp intensities in each room so that light intensities seen through the viewing apertures werehighest for the black-painted room and lowest for the white-painted room. Despite this unnaturalordering of intensities, test subjects who looked through the apertures immediately identi�ed theblack- and white-painted rooms, and 22 of 24 test subjects also perceived uniform re
ectanceswithin each room. These results hold even for simple radiosity renderings of such rooms asillustrated in Figure 3. Gilchrist and Jacobsen's experiment demonstrates that the visual systemis attuned to detecting re
ectances reliably and under widely varying illuminations, even withouthelp from di�erent re
ectances in the scene. Such broad tolerance for lighting changes whenmaking re
ectance judgments suggests that the illumination layer of a viewed image or scene isless important and perhaps is sensed less critically than the re
ectance layer.Professional photographers routinely exploit our tolerance for changes in illuminants toproduce better pictures. Most photographers use weak \�ll lights" to brighten dark shadowswhile preserving the shadow boundaries and shadings. The resulting photograph reveals detailedre
ectances of surfaces in the shadowed regions, but the added �ll illumination is usually6



Figure 3: Progressive radiosity renderings of two matched rooms with constant re
ectanceeverywhere (0.90 for the room on the left and 0.03 for the room on the right) illustrate thatperceptions of re
ectance are not easily disrupted by illumination. Despite the high peak pixelintensities in the image at the right due to strong lighting, the dimly lit image at the left retainsthe appearance of higher re
ectance. Images rendered using HELIOS [3].unnoticed.Artists also seem to preserve scene re
ectances far more diligently and accurately than sceneillumination in images such as Figure 2. Assuming the original scene existed, the street surfacewould have been brilliantly illuminated by the rocket exhaust from the house, but the cloudsoverhead would have been lit only by starlight. The re
ectance of the street was low, perhapsabout 0.08, and the re
ectance of the clouds was high, perhaps 0.70, but the di�erence in thestrength of their illuminants was astronomical, probably as much as 10+7:1. Van Allsburg'simage reveals both the re
ectance of the cloud tops and the �ne surface texture of the streetbut assigns them very similar shades of gray; the huge illumination contrast is almost gone inthe image, revealed more by context than by image intensities. Spectators at the scene of thishouse-launching could probably see all the street and cloud details Van Allsburg has drawn, butnot simultaneously; they would have to gaze at each of them separately to let their eyes adjustto the huge changes in illumination. But Figure 2 combines all these separately sensed scenedetails together into one image, as if the scene's illumination contrasts were compressed to createthe low contrast image.Compressing only the illumination layers of an scene works well for low contrast displaysbecause these layers contain most or all of the large scene contrasts. The illumination layersusually consist of smoothly varying light distributions with simple discontinuities at object orshadow boundaries; compressing or reducing them, therefore, is unlikely to obscure any noticeablelow contrast scene details. Conversely, the re
ectance layers contain most of the �ne scene detailsand textures, and are not di�cult to display because their contrasts are always small. Very lowand very high di�use re
ectances, such as 0.01{0.04 for brushed black velvet and 0.93{0.97 forclean new snow [13] rarely form contrasts that exceed 100:1. This observation is certainly notnew; homomorphic �ltering methods used in image processing [21, 31] routinely exploit thisproperty, and it was probably well known to those working to improve photographic �lm a7



century earlier. The low contrasts of re
ectance values are especially useful in computer graphicsrendering because scene re
ectances are usually known at each image pixel.These experiments and observations lead us to suggest a method for constructing a lowcontrast image from a high contrast scene. First, split the scene into separate intrinsic imagelayers of illumination and re
ectance values. Leave the re
ectance layers unchanged, butcompress the illumination layers; if more than one layer exists, equalize them so that nonewill unduly dominate the �nal display image, and their aggregate will not exceed the contrastrange of the display device. Finally, combine the compressed illumination layers with the originalre
ectance layers to form a low contrast display image. To �nd a good method for the illuminationcompression and equalizing steps we again return to results from psychophysics.Several experiments support the contention that the visual system has almost no directsensation of light intensities but instead constructs estimates from delicate sensations of intensitychanges. Experiments reported by Ripps and Weale [23] showed that test subjects asked toestimate light intensities routinely made errors of 30% or more. More recent experiments bySchubert and Gilchrist [25] show that human estimates of absolute intensity in a featureless,uniform visual �eld, or ganzfeld, are even less reliable. Test subjects viewed a ganzfeld madeby controlled illumination of half a ping-pong ball placed over each eye. The illuminationintensity changed extremely slowly at 0:045 log10 units per minute. Because this rate-of-changewas about one-tenth of the slowest perceivable rate measured in humans, their test subjectscould report only the direct sensations of absolute intensity and were unable to integrate rate-of-change sensations. A three-fold increase or decrease in viewed intensity was required beforetest subjects could reliably report the direction of the gradual change. This experimental resultsuggests that human vision includes a very weak, insensitive response to absolute intensity, butconstructs most perceptions of intensity from sensations of change. When researchers separatelycontrolled the intensity of a small patch within the ganzfeld, test subjects easily detected thepatch when the contrast between the patch and the ganzfeld was only a few percent. Testsubjects were unable, however, to determine whether the intensity changed in the patch, thesurroundings, or both. These experiments strongly support the hypothesis that intrinsic imagelayers must be constructed from sensations of change (perhaps contrast), rather than fromabsolute image intensities, and this \relational" approach to vision has strong support amongsome psychophysicists [8].Measurements of neural signals supplied by each eye seem to support relational views, butalso raise di�cult questions about the mental construction of intrinsic image layers. Visualsignals leave each eye through the optic nerve bundle, and every signaling �ber in this bundleis an axon (the output stem) of a retinal ganglion cell; these cells form the �nal neural layerand output of the retina. Each retinal ganglion cell responds only to light falling within asmall area of the retina known as its receptive �eld, and receptive �elds of nearby gangliaoften overlap. By direct intracellular measurements, physiologists have established that a retinalganglion cell responds primarily to changes in illumination across its receptive �eld, and its8



output approximately encodes the contrast between light in a small \center" region and itssurroundings. Each cell responds strongly to either increments or decrements of light in itscentral region, but not both; increment- and decrement-responding cells are called \ON-center"and \OFF-center" respectively [36]. This approximate encoding of locally measured contrastsindicates that \adaptation," the adjustment of visual sensitivity to �t the available light, isaccomplished primarily within the retina.However, the response of retinal ganglion cells to large local contrasts is bounded by gradual,asymptotic limits. Signals from retinal cells are di�cult to measure, but experiments by Sakmannand Creutzfeldt (1969) and others (summarized in [36]) have shown ganglion �ring rates in thecat approach a �xed upper limit as local contrasts exceed about 100:1, and their plots of �ringrates revealed a family of smooth asymptotic curves. Retinal ganglion cells may directly encodethe small contrasts (<100:1) caused by re
ectance variations in a viewed scene, but the hugecontrasts possible at illumination boundaries must drive both ON-center and OFF-center cellstowards their asymptotic limits. Asymptotically limited signals from the eye might reasonablybe expected to create asymptotically compressed mental assessments of the large scene contraststhat cause them, even if we do not know the methods or mechanisms used by the visual systemto convert retinal signals to intrinsic image layers. A plausible assumption is that this perceivedcompression of large contrasts is symmetric, favoring neither the ON-center nor the OFF-centersignals. The complementary response limits of ON-center and OFF-center cells plotted on log-log axes suggests that a sigmoid or \S-shaped" function can form a reasonable model of suchperceptual compression. We will construct a sigmoid function in Section 5, and use this functionin both the layering and the foveal display method.Compressive sigmoid functions are also good descriptions of light reproduction by photo-graphic �lm. Plotting display intensity versus scene intensity on log-log axes for commonly used�lm stocks shows a central linear region bounded by asymptotic lower and upper limits knownrespectively as the \knee" and \shoulder" of the �lm response. The knee compresses very dimscene features towards displayed black and very bright scene features are compressed towardswhite by the �lm's shoulder. This gradual leveling of �lm response to increasing contrast is morevisually appealing than abrupt truncation because it helps preserve interesting details in the im-age highlights and shadows. Unlike �lm, the layering method presented in Section 5 applies thecompressive sigmoid function only to the illumination layer of an image. Even at the extremes ofscene illumination where the compression e�ect is strongest, the image details in the re
ectancelayers are una�ected and are still visible in the displayed image.We suspect compressing the illumination layers is quite similar to what computer graphicsanimators do when they manually light a scene or write special purpose shaders to achieve a highcontrast e�ect. For example a realistically rendered image of a jointed-arm desk lamp such asthe one shown in Figure 1 will have radiances far di�erent from the measurements of a real-worldscene. The patterns of illumination and the distributions of light are similar, yet the contrastsare greatly reduced to avoid clipping by the display.9



Taken together, these experiments and examples suggest that humans viewing scenes orimages are far more aware of the content of the re
ectance layers than they are of the absoluteintensity in the illumination layers, and that an asymptotic \sigmoid" function is a plausible wayto limit larger contrasts within a scene to form a display image. These observations form thebasis for our �rst display method for high contrast images. In this method we capture intrinsicimage layers during computer graphics rendering, compress the illumination layers with a sigmoidfunction, preserve the re
ectance layers, and then combine layers to produce a display image asillustrated in Figure 1. In Section 5, we describe a practical implementation of this method anddemonstrate its performance on test images.3.2 Local Adaptation in the Foveal RegionOur second high contrast display method, the \foveal" display program, is inspired by eyemovements and how they contribute to what we \see," that is, to our mental impressions ofviewed scene content. The human eye is highly directional, adaptable, and nonuniform. Fineimage detail and color information are detected almost exclusively in the \fovea," the two- to�ve-degree wide region of the retina centered at the direction of gaze, and both resolution andcolor sensing ability drops rapidly away from the center of this region [14]. To compensate forthis lack of color and resolution throughout most of the visual �eld, the human eye makes quickjumps (saccades) or uses smooth eye movements (glissades) to examine interesting scene features.Somehow the new data gathered from eye movements are seamlessly assembled to form what wesee; an inertially stable and uniform impression of the visual �eld, complete with color and �nedetail everywhere. This mental impression is assembled without any conscious e�ort, and withvery little awareness of the underlying eye movements and eye adjustments needed to create it,such as focusing and adaptation.Adaptation is an ensemble of adjustments made by the human visual system in response tothe amount of available light in a viewed scene. These adjustments include variations in pupildiameter, changes in concentrations of photopigment within the receptor cells of the retina, andlight-dependent changes of neural processing in the retina and in interpretation by later stagesof the visual system. The combined e�ect of these mechanisms allows us to read the letteringon the brilliant surface of an incandescent light bulb and to walk safely on a path lit only bystarlight.None of these adaptation mechanisms adjust instantly, and some reach equilibrium quiteslowly. Photopigment concentrations in retinal rod receptors grow so slowly that most peopleneed at least 45 minutes of darkness to reach the maximum sensitivity of \night vision," yetsensitivity and photopigment concentrations fall rapidly within tens of seconds of exposureto bright light. Pupil diameter changes also occur in seconds, but cannot change retinalilluminance by more than a factor of about 10:1. Other more signi�cant adaptation processesdue to neural interactions are generally much faster, most have a rapidly e�ective onset taking10



only tens or hundreds of milliseconds, but some may take seconds to completely run theircourse. Adjustments for cone cells in the retina, which �ll the fovea, are particularly fast;their multiplicative adaptation processes can be complete in as little as 50 milliseconds. SeeSpillmann and Werner [36] or other textbooks for a good summary of these processes. Whiletemporal e�ects are important to a complete model of visual adaptation, we will ignore them inthis paper for simplicity.The huge input range of the human visual system is largely the result of adaptation processes.As summarized by Walraven and colleagues [36], several researchers have isolated the response ofretinal photoreceptors from adaptation e�ects by measuring cell responses to very brief 
ashes oflight. Their measurements indicate that without adjustment by adaptation processes, responsesvary only in a narrow range of light intensities covering about two factors of ten, or 100:1.The light-sensing elements of many television cameras have a similar input range, and CRTimage displays rarely exceed 100:1 contrast. This approximate match between photoreceptorand CRT contrast ranges raises an important question: could the low contrasts of CRT displayimages somehow convey the appearance of much higher contrast scenes by continually changingthe image to mimic adaptation? Such an idea is not far-fetched; auto-exposure video camerascontinually adjust sensitivity to match available light, and image sequences with transitions fromdark to light surroundings are easy to understand. However, the foveal display program describedin this paper attempts to model local and directional adaptation e�ects more closely.Adaptation has a strong local character because the human visual system adjusts separatelyat di�erent locations within a viewed scene or image. These adjustments allow simultaneoussensing of texture and detail in both strongly shadowed and brightly lit regions. As a result,human vision almost never \clips" as a camera or display might. For example, trees silhouettedagainst a brilliant sunset may appear featureless black when photographed or rendered, but ahuman viewer will see leaf colors, bark textures, and other �ne details of the tree if any of themsubtends more than a few degrees of the visual �eld. Local adaptation allows us to recover theappearance of the tree within the scene.Local adaptation depends strongly, but not entirely, on the image within the viewer's small,central fovea. For example, looking directly at the surface of an incandescent light bulb causesthe remainder of the visual �eld to temporarily appear darker, indicating that the bright imageon the fovea depressed perceived intensities everywhere. However, if the bulb is at least 20-30degrees away from the direction of gaze, hand movements that reveal or block a view of the bulbhave little or no e�ect on the apparent brightness of the rest of the scene. This foveal dominanceof adaptation raises an interesting question; is local adaptation outside the fovea signi�cant ornecessary to the assembly of our mental impression of the scene?For the foveal display program we claim the answer is no. A simple demonstration shows thehuman visual system can easily comprehend a scene from foveal intensities alone. Peer through atube of paper rolled tightly enough to restrict your �eld of view to the fovea, a circle of between 2and 5 degrees diameter centered at your direction of gaze. Next, get a friend to �nd an unfamiliar11



picture and place it in front of the tube. By aiming the tube at various parts of the image you caneasily understand the picture and build a detailed impression of its contents. Because peripheralscene intensities are not necessary for understanding the scene under these circumstances, localadaptation to them is also not required. Of course this demonstration is not conclusive becausethe paper tube responds instantly to hand movements and provides a �xed peripheral image; thefoveal display program has much slower interactive response and the changing peripheral imagescould disrupt the scene appearance.We also ignored the periphery for a more pragmatic reason; we do not know how to makedisplay images that include e�ects of local adaptation without introducing \halo"-like artifactsaround very dark or very bright image features, as discussed later in Section 4. Instead, weassume the e�ects of local adaptation on our mental impression of a scene can be adequatelyrecreated by viewing uniformly processed images created from foveally dominated measurementsof the scene.Local adaptation is particularly useful when viewing high contrast scenes because smallneighborhoods tend to be much more homogeneous than the entire image. Neighborhoods thatinclude both shadowed and brilliantly lit features will have high contrast, but these regions areusually only a small fraction of the entire image. The problem of displaying high contrast imagesis largely a matter of handling these few particularly di�cult neighborhoods appropriately.We have applied these observations in the foveal display program, our second method fordisplaying high contrast images. The program is interactive; the user indicates a direction ofgaze within the displayed image using the mouse cursor and the display program quickly computesand displays a new image best suited to the contrasts in the indicated region. Each new imageis an attempt to display what the user's eyes would see in the scene after adapting to the newdirection of gaze, and the program relies on the user's visual system to assemble the images intoa consistent impression of the high contrast scene.Because the display cannot reproduce all the original scene contrasts, out-of-range displayvalues are asymptotically compressed towards black or white using the same \sigmoid" functiondevised for the layering method. We will describe this sigmoid function in Section 5, develop anew tone reproduction operator in Section 6, and �nally give the implementation details of thefoveal display program in Section 7.4 Previous Computer Graphics MethodsLocal control of sensitivity in the retina helps the human visual system comprehend highcontrast scenes, and suggests that a position-dependent scale factor might reduce scene contrastsacceptably for a low contrast display. This approach converts the original scene or real-worldintensities, Lw, to the displayed image intensities, Ld, using a position-dependent multiplyingterm m(x; y): Ld(x; y) = m(x; y) � Lw(x; y): (1)12



Professional photographers use a similar technique to reduce contrasts in printed images. In thisprocedure, called \dodging and burning," the photographer moves an opaque hand-held maskto increase or decrease the exposure of the photographic paper around dim or bright portions ofthe image. However, unless the masks are moved skillfully, the adjacent areas of the image areover- or under-exposed, resulting in a dark or light \halo" e�ect around high contrast features.Digital and electronic imitations of dodging and burning have shown similar weaknesses. Themethod proposed by Chiu et al. [7] used low pass �ltering, de�ned by weighted averages of theneighborhood intensities, to construct a smoothly varying scale function that depends on imagecontent. Their approach provides excellent results on smoothly shaded portions of an image;however, any small, bright feature in the image will cause strong attenuation of the neighboringpixels and surround the feature or high contrast edge with a noticeable dark band or halo. Webelieve the scaling function should change abruptly at the boundaries of high contrast featuresto avoid the halo e�ect, but we do not know how to construct a suitable scale function with thisbehavior.A later paper by Schlick [24] reported problems with similar halo artifacts. Schlick used a �rstdegree rational polynomial function to map high contrast scene luminances to display systemvalues (e.g. RGB 0-255). This function works well when applied uniformly to each pixel of ahigh contrast scene, and is especially good for scenes containing strong highlights. Next, he madethree attempts to mimic local adaptation by locally varying a mapping function parameter; onemethod caused halo artifacts, and his tests results indicated that the other two methods wereinferior to the uniformly applied mapping function.However, the uniformly applied function Schlick presents is quite elegant and practical. Userscan �nd all parameters of the mapping function without photometric measurements of thedisplay device, and can compute the mapping quickly because it does not require transcendentalfunctions. The function preserves contrasts for dark image regions and asymptotically compressesimage highlights su�ciently to avoid clipping on the display. Schlick's function inspired us torevise our sigmoid function in Section 5 for greater e�ciency.Tanaka and Ohnishi [32] noted that a mild form of halo artifacts have been used in paintingsto identify and emphasize the presence of illumination edges. They created a locally varyingscale factor from a Gaussian low pass �lter to reduce image contrasts, and modeled their �lterson the center-surround arrangement of retinal receptive �elds. Their locally varying scale factorinduces halo artifacts whose amplitude is proportional to local scene contrasts, but they claimthe mild halos seen in their example images are desirable. Their method is simpler and faster toapply than that of Chiu et al. because it does not require repeated �ltering of the out-of-rangeimage remainders, but as a consequence Tanaka and Ohnishi's method cannot guarantee theoutput image will match the limited intensity or contrast range of the intended display device.Jobsonet al. [17, 22, 16], recently devised a full-color local scaling and contrast reductionmethod using a multiscale version of Land's \retinex" theory of color vision. Retinex theoryestimates scene re
ectances from the ratios of scene intensities to their local intensity averages.13



Jobson, Rahman, and colleagues also use Gaussian low pass �ltering to �nd local multiplyingfactors, making their method susceptible to halo artifacts. They divide each point in the imageby its low pass �ltered value, then take the logarithm of the result to form a reduced-contrast\single-scale retinex." To further reduce halo artifacts they construct a \multiscale retinex" froma weighted sum of three single-scale retinexes, each computed with di�erent sized �lter kernels,then apply scaling and o�set constants to produce the display image. These and other constants(see table II, pg. 971 of Jobson [16]) give excellent results for the wide variety of 24-bit RGBimages used to test their method, but it is unclear whether these robust results will extend to
oating-point images whose maximum contrasts can greatly exceed 255:1, such as those used inFigure 1 or in the recent paper by Ward-Larson et.al [40].While the multiscale retinex method does reduce halo artifacts, halo artifacts can grow withthe logarithm of the maximum scene contrast, and no combination of weights and �lter kernelsizes will eliminate them, as can be demonstrated by applying their method to a grayscale \step"image with value 0:001 on the left half side and 1:0 on the right. All multiscale retinexes will forma bright halo or overshoot on the right side whose width corresponds to the half-width of thelargest �lter kernel used. Retinexes also distort all scene contrasts by displaying the logarithm oflocally scaled scene intensities. While the logarithm provides substantial contrast compression forhigh contrast scenes, it distorts even the moderate contrasts that could be precisely reproduced ona display device. Nonetheless, their results on example images are impressive and show promisefor use where preservation of image detail is more important than perceived contrast �delity,such as surveillance cameras, or in applications where parameters can be manually adjusted forbest subjective e�ect, such as publications, still photography, or static video cameras.With the exception of dodging and burning and the methods of Chiu, Jobson, Tanaka, andtheir colleagues, most imaging systems do not imitate local adaptation. Instead, almost all imagesynthesis, recording, and display processes use an implicit normalizing step to map the originalscene intensities to the available display intensities without disturbing any scene contrasts thatfall within the range of the display device. This normalizing consists of a single constant multiplierm: Ld(x; y) = m � Lw(x; y): (2)The multiplier is often ignored or explained as an imitation of global visual adaptation, but theexact value of m is the combined e�ect of several unrecorded adjustments to imaging equipment.For example, a �lm camera records scene intensities scaled by the lens aperture, exposure time,and �lm speed. A slide projector's displayed images are scaled by the strength of its light source.Computer graphic images are created and stored in RGB units made from normalized sceneintensities, and gamma-corrected cathode-ray tube displays create intensities proportional toRGB units.Image normalizing has two important properties; it preserves all reproducible scene contrastsand it discards the intensities of the original scene or image. Contrast, the ratio of any twointensities, is not changed if both intensities are scaled by the same multiplier. Normalizing14



implicitly assumes that scaling does not change the appearance, as if all the perceptuallyimportant information were carried by the contrasts alone, but scaling display intensities canstrongly a�ect a viewer's estimates of scene contrasts and intensities. While this scaling is notharmful for many well-lit images or scenes, discarding the original intensities can make two sceneswith di�erent illumination levels appear identical. Normalizing also fails to capture dramaticappearance changes at the extremes of lighting, such as gradual loss of color vision, changes inacuity, and changes in contrast sensitivity.Tumblin and Rushmeier [34] tried to capture some of these light-dependent changes inappearance by describing a \tone reproduction operator," which was built from models of humanvision, to convert scene intensities to display intensities. They o�ered an example operatorbased on the suprathreshold brightness measurements made by Stevens and Stevens [30, 28] whoclaimed that an elegant power-law relation exists between luminance L, adaptation luminanceLa, and perceived brightness B: B = C � � LLa�
 : (3)These measurements, however, were gathered using \magnitude estimation," an experimentalmethod that has not found universal acceptance among psychophysicists because results canvary strongly with context, because test subjects exhibit learning e�ects that make repeatablemeasurements di�cult, and because these variations are not adequately explained by basicsensory processes [18]. More conventional methods measure only the detection thresholdsfor simple scene features. S. S. Stevens [29] argued that thresholds, though measured morereliably, are poor indicators of human response to large-scale or suprathreshold signals becausemeasured thresholds depend on both the sensitivity and the background noise in neural processes.Insensitive visual mechanisms will have high measured thresholds, but high thresholds do notnecessarily indicate low sensitivity. Very sensitive mechanisms may also have high thresholds iftheir response to weak signals must overcome strong background noise before detection. Stevenswarned against misinterpreting threshold measurements as the inverse slope of human responsecurves (e.g. 1=threshold as \sensitivity") and vigorously objected to the practice of integratingthreshold measurements to construct large-scale sensory response curves [29]. He attempted tomeasure directly the complete range of human vision, and the resulting power-law relation agreesreasonably well with the narrower results from more conventional threshold-�nding experimentssuch as those by Blackwell [5]. More generally, extending threshold measurements to estimatesuprathreshold performance is inadvisable for any nonlinear system such as the human vision.Nonlinear systems are not well described by the simple measures of sensitivity and impulseresponse that su�ce for linear systems because no transfer function exists.Tumblin and Rushmeier's tone reproduction operator used the results of Stevens and Stevensbut exhibited several serious shortcomings, as shown in Figure 4. Images or scenes that approachtotal darkness processed with their method are displayed as anomalous middle gray imagesinstead of black, and display contrasts for very bright images (> 100cd=m2) are unrealistically15



exaggerated. Their method did not address the contrast limitations of displays and was presentedin an awkward form that discouraged its use. In Section 6 we reformulate this method usingless cumbersome notation and modify the operator to eliminate the anomalies with very dimand very bright images. The foveal display program described in Section 7 uses this revised tonereproduction operator.Soon afterwards Ward [38] presented a much simpler approach to appearance modeling thatalso provided a better way to make dark scenes appear dark and bright scenes appear bright on thedisplay. Ward observed that normalizing usually results in the appearance of moderate interiorlighting when used to display any image computed using global illumination methods, regardlessof the intensities of the original scene. He proposed using a light-dependent multiplying factorm to restore the appearances of di�erent lighting conditions. The factor was built using contrastvisibility data from Blackwell [33], data which showed that the smallest noticeable increase inluminance or \contrast threshold" of a small target on a uniform background grows nonlinearlyas the amount of surrounding light increases. Ward chose his scale factor to match thresholds ofthe display to those of the original scene: Ld = m � Lw (4)whereLd is the display luminance in cd=m2,Lw is the original scene or world luminance in cd=m2, andm = � 1:219+L0:4da1:219+Lwa0:4 �2:5,whereLda is the display adaptation luminance, a mid-range display valueLwa is the adaptation luminance for the real-world or scene, usuallylog(Lwa) = meanflog(Lw)g.Because Ward's method scaled image intensities by a constant factor m, it did notchange scene contrasts for display. Although his method provided visually pleasing results onmany images, some published night scenes computed with his method seem to show loweredcontrast [38]. This contrast reduction may be due to the loss of linearity commonly found at thesmallest output values of many displays. The lower bounds on the display luminance Ld shownin Figure 4 are usually set by light from the display surroundings and cause all scene intensitiesbelow about 10�2cd=m2 to appear as featureless black on the display. Figure 4 also shows thatthe scale factor m maps all adaptation luminance values Lwa above about 100cd=m2 to almostthe same display value Ld. Such choices for m e�ectively normalize scene luminances; boosting16
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the illumination intensities in a bright scene by a factor of 10 will produce nearly identical displayimages.Ferwerda and colleagues later o�ered an extended appearance model for adaptation thatsuccessfully captured several of its most important visual e�ects [9]. By modeling the gradualtransition from cone-mediated daylight vision to rod-mediated night vision, their methoddepicted reduced luminance sensitivity, color sensitivity, and spatial resolution with decreasedlight. Like Ward, they converted original scene or image intensities Lw to display intensities Ldwith a multiplicative scale factor m, but they determined their m values from a smooth blendingof increment threshold data for both rods and cones in the retina, as shown in Figure 4. Theirinclusion of threshold data for rod-mediated vision extended the usable range of their operatordown to about 10�4cd=m2, which is much closer to the absolute threshold of vision. They includedboth a spatial-�ltering step and a color-controlling step to simulate the reduced acuity and lossof color sensitivity of night vision. They also provided a simple method to mimic the time courseof adaptation for both dark-to-light and light-to-dark transitions. As with Ward's method, theirm choices act chie
y as a normalizer for all scenes with Lda above about 100cd=m2, and does notmodify image contrasts for display, though the Gaussian �lter used in the resolution-controllingstep will attenuate small high contrast features in the image.More recently Ward and colleagues published a new and impressively comprehensive tonereproduction operator based on iterative histogram adjustment and spatial �ltering processes.Their operator reduces high scene contrasts to match display abilities, and also ensures thatcontrasts that exceed human visibility thresholds in the scene will remain visible on the display.They model some foveally dominated local adaptation e�ects, yet completely avoid halo artifactsor other forms of local gradient reversals, and include new locally adapted models of glare, colorsensitivity, and acuity similar to those used by Ferwerda et al. [9]. Their example images arequite beautiful and convincing, and their method appears straightforward to implement.However, the underlying method of histogram adjustment is troublesome for three reasons.First, the method has no position dependence; a pixel at the center of the image is equallya�ected by intensities of distant and nearby pixels. Second, the method enforces a monotonicallyincreasing mapping from scene intensity to display intensity. Artistic renderings such as Figure 2routinely violate this restriction because di�erently illuminated regions of the image, such asthe sky, the house, and the street, are rendered using overlapping intensity ranges to achievegreater display contrast. Third, the histogram adjustment method can occasionally reduce largescene contrasts inconsistently. Spans of scene intensities held by large numbers of pixels areprobably the most important parts of the scene, and are rightfully assigned larger portions of thedisplay range. However, contrasts with more unusual scene pixels can be distorted. For example,choose two scene pixels that form a large contrast and appear in an empty or sparsely populatedregion of the scene's histogram. In the displayed image, the contrast between this pixel pairmay be reduced to nearly the threshold of visibility. Now choose another pair of scene pixelswhose contrast is one third that of the �rst pair and are located in a densely populated region18



of the scene's histogram. In the displayed image the contrast of this pixel pair may be nearlyunchanged, leading to a curious reversal; the small scene contrast would be displayed as muchlarger than the large scene contrast.A few other computer graphics researchers have modeled the appearance of extremelybright, high contrast scene features by adding halos, streaks, and blooming e�ects to createthe appearance of intensities well beyond the abilities of the display. Nakamae et al. [20]proposed that the star-like streaks seen around bright lights at night are partly due to di�ractionby eyelashes and pupils, and they presented a method to calculate these streaks in RGB units,implicitly normalizing them for display. Later Spencer, Shirley, and others [27] presented anextensive summary of the optical causes and visual e�ects of glare and modeled their appearanceby using several adjustable low pass �lters on the intensities of the original scene. Small,extremely bright light sources that cover only a few pixels, such as street lights at night orthe sun leaking through a thicket of trees, are expanded into large, faintly colored, glare-likeimage features that have a convincing and realistic appearance.Despite progress in modeling the light-dependent changes in appearance that occur overthe entire range of human vision, few methods o�er the substantial contrast reduction needed todisplay these images without truncation or halo artifacts. The method of Tumblin and Rushmeierreduces display contrasts somewhat to match the eye's lowered contrast sensitivity in night vision,but their method also increases contrasts for scenes brighter than the display, thereby makingtruncation problems more severe. Ward's �rst method does not change image contrasts, nor doesthe method of Ferwerda and colleagues except as a byproduct of their acuity-limiting Gaussian�lter. Linear �lters used by Nakamae to model di�raction and by Spencer to model intra-ocularscattering may incidentally reduce contrasts of small features, but as noted by Spencer andcolleagues, a need remains for a perceptually valid method to reduce scene contrasts.Sections 5 and 7 present implementation details of two simple display methods for highcontrast images that both use a simple sigmoid function to asymptotically limit display contrasts.In the \layering" method of Section 5 the sigmoid function reduces contrasts of only theillumination layers for display. The interactive \foveal" method described in Section 7 usesthe revised tone reproduction operator presented in Section 6 to map scene intensities to displayintensities, then applies the sigmoid function to reassign out-of-range pixel intensities to theavailable display limits.5 Implementation and Evaluation of LayeringAs discussed in Section 3.1, the human visual system extracts several simultaneous perceptionsfrom an image. The layering method of contrast reduction relies on this ability to perceivemultiple illuminants and surface properties separately and on the natural tolerance for changes inillumination routinely exploited by photographers. Our layering method uses standard computergraphics rendering methods to create separate layer images representing high contrast scenes.19



Deep shadow:
0.4 cd/m2 −>(50, 30, 23)

Lightbulb:
175,000 cd/m2 −>(255, 255, 255)

Shroud reflection:
40,000 cd/m2 −>(240, 240, 240)

Bright wood:
1,600 cd/m2 −>(250, 199, 154)Figure 5: Applying the layering method to a high contrast scene (> 300; 000 : 1) reduces displayintensities to nominal pixel values without discarding �ne textures and image details.These layer images are 
oating-point images that describe scene properties. To construct adisplay image such as Figure 5 from these layers, we compress the illumination layers to reducetheir contrast and then combine them with the re
ectance layers.We use six di�erent types of intrinsic image layers grouped together in three pairs to representthe high contrast scene or image; an example of each is shown in Figure 6. The �rst pair describesdi�use re
ectance and illumination in the scene, the second pair describes specular re
ectanceand illumination, and the third pair describes transparency and illumination. The original sceneis then expressed in layers by:Scene(x; y) = Kd(x; y)Id(x; y) +Ks(x; y)Is(x; y) +Kt(x; y)It(x; y) (5)where for all (x; y) points in the image,K values form re
ectance layers (0 � K � 1), andI values form illumination layers (cd=m2).The di�use illumination layer, Id, describes the amount of light received from all directions ateach visible surface point in the scene but excludes all light subject to mirror-like re
ections fromthe specular direction Ŝ. Given the surface normal vector N̂ of unit length and a unit-lengthvector Ê pointing from the surface to the eye or camera, the vector Ŝ is mirror-like; it is coplanarwith N̂ and Ê, points outwards from the surface, and forms an equal but opposite angle with N̂such that N̂ � Ê = �N̂ � Ŝ. The di�use re
ectance layer, Kd(x; y), is the fraction of the di�useillumination, Id(x; y), that is re
ected towards the eye.The specular illumination layer, Is, gives the amount of light subject to mirror-like re
ectionstowards the eye. Specular illumination is received at each surface point along the direction of Ŝ,20



KsKdKd KtKt

Id Is ItFigure 6: Layer images: the top row shows di�use re
ectance Kd, specular re
ectance Ks, andtransparency Kt. These three images have rich, complex detail but low contrast. The bottomrow shows corresponding layer images for di�use illumination Id, specular illumination Is, andtransparent illumination It. These images contain few details but extremely high contrasts.so the di�use and specular illumination layers, Is and Id, together represent the total irradiance ofall visible surfaces. The specular re
ectance layer,Ks, is the fraction of the specular illumination,Is, that is re
ected toward the eye.The transparent illumination, It, is somewhat unconventional because it describes the lightintensity behind transparent objects and measures only the irradiance components in directionsthat follow an unobstructed path through the transparent object and towards the eye. Refractionat the surfaces or interiors of transparent objects may bend these paths; as a result thetransparent illumination layer image may contain lens-like distortions as shown in the transparentcylinder in Figure 6. The transparency layer,Kt, describes the fraction of It transmitted throughthe transparent object to the eye. To de�ne a directly visible light-emitting surface, set It to thesurface emittance and Kt to 1.0.As discussed earlier in Section 3.1, the human visual system appears capable of recursivedecomposition and separate adaptation to some scene layers. The layering method restrictsrecursive decomposition to the specular and transparent illumination layers, Is and It. Toperform the decomposition, we assume the visual system may treat each of these layers as anew scene, and this new scene may itself be decomposed into new set of its own di�use, specular,and transparent layers, as diagrammed in Figure 7. Each node in the �gure represents a sceneand contains all the layers needed to represent it, and the root node describes the entire scene.In some cases the Is or It layer of a scene is recursively decomposed; it is replaced by an edgeleading to a new scene with its own set of layers. For example, in the layered image shown in21



scene =

. . .

Is ItId

Kd Ks Kt

Is ItId

Kd Ks Kt

Is ItId

Kd Ks KtFigure 7: Recursive decomposition of layer images: both specular illumination and transparentillumination layers form comprehensible images that may be decomposed into more layers.Complex images or scenes with multiple transparencies and re
ections form a tree of layer images.Figure 5 and diagrammed in Figure 7, the uppermost specular illumination layer Is is replacedby a new scene re
ected in the glass tabletop. Recursive decomposition replaces this Is layerwith an edge to a new node with six child layers, as shown in the graph. Of these, the di�usere
ectance and illumination layers Kd and Id include the interior of the lampshade and thewhite re
ective shroud around the light bulb; the specular re
ectance and illumination layersKs and Is include the highlights on the shroud and on the light bulb, and the transparency andtransparency illumination layers Kt and It include the light bulb's frosted glass envelope and theillumination behind it. Returning to the root of the graph, the transparency illumination layerIt is the new scene seen through the glass tabletop. In the graph, this layer is replaced by anedge to a new node containing six child layers. The child layers for di�use re
ectance includethe wooden 
oor seen through the tabletop. The transparency and transparency illuminationchild layers are zero-valued because no transparent objects exist behind the glass tabletop, butthe specular re
ectance and illumination layers Ks and Is are not empty because they contain asliver of the lightbulb surface and glints from the pencil and lamp base. Further decompositionis possible on Is as shown by the ellipsis in the graph.In the layering method we assume the human visual system separately compresses andadapts to each illumination layer to help reduce large perceived contrasts due to mismatchedillumination. In the scene in Figure 5, separate adaptations to the di�use and specularillumination layers Id and Is permit us to see both the dimly lit wooden 
oor texture in thebackground and the shape of the light bulb re
ected in the glass table top; compressing contrastswithin the di�use illumination layer Id ensures the wood texture is also visible in the foreground.To merge these diverse layers we estimate a separate \adaptation luminance value" Lwa at themiddle of the range of each layer's luminances, compress the contrasts of each illumination layeraround the central Lwa to emulate the e�ects of local adaptation, scale layer intensities to match22



adaptation values Lwa to the display, and then combine all layers to form the displayed image.We concur with Schlick [24] that tone reproduction operators should probably be achromaticand therefore depends only on the luminance of the layer. We estimate the luminance foreach layer using a quick binary fraction approximation of the Y luminance signal of the NTSCtelevision standard [15]:L = L(x; y) = 516R(x; y) + 916G(x; y) + 216B(x; y): (6)where R, G, and B are color spectral components expressed in cd=m2, and L is the luminanceor gray-scale value of the scene or image. We then express each R,G,B color component asa fraction of the pixel's luminance value for fast conversion of display luminance to displayRGB values. For example, a pixel where RGB = (7; 11; 13)cd=m2 yields L = 10cd=m2,and (R=L;G=L;B=L) = (0:7; 1:1; 1:3). For each illumination layer, we de�ne the adaptationluminance value Lwa as the mean luminance of all non-zero pixels Lw measured on a logarithmicscale: log(Lwa) = meanflog(Lw)g: (7)This logarithmic scale directly corresponds to contrasts: given any two luminance values, L1and L2, the distance between them on a logarithmic scale log(L2)� log(L1) is the logarithm oftheir contrast, log(L2=L1). Accordingly, the mean of log(L) is the centroid of contrasts within alayer, and hence is a plausible \midrange value" for contrast compression.Perhaps the simplest method for compressing contrasts of an illumination layer is to scale itsvalues around Lwa on log-log axes with the scaling constant 
 to form compressed layer imageLc: log(Lc(x; y)) = log(Lwa) + 
(log(L)� log(Lwa)) (8)or equivalently, Lc = Lwa � LLwa�
, where 0 < 
 < 1, and compression increases as 
 approacheszero. The contrast compression term is named 
 because it is analogous to the power-lawresponse of an idealized CRT display given by L = V 
, where L is normalized display intensity(Lout=Lmax), and V is normalized video input signal (Vin=Vmax) [15].We found 
 compression unacceptable because it compresses both large and small contrastsequally. Illumination layers often contain small areas of high contrast, such as specular highlightsor directly visible light sources, and large areas of low contrast, such as the gradual illuminationchanges across interior walls. A 
 value small enough to make the high contrasts displayableoften makes the low contrasts invisible. A better compression function should be� progressive: to compress large contrasts more severely than small contrasts,� monotonic: to guarantee that small luminances remain smaller than large luminances,� symmetric: to a�ect very dark and very light regions equally,� asymptotic: to compress an in�nite scene range to a �nite display range,23



� minimal: to compress scene contrasts just enough to �t display contrasts and no more, and� adjustable: to suit viewer preferences.Many functions satisfy these goals. After examining the function proposed by Schlick [24]we adopted a similar �rst degree rational polynomial that forms a \sigmoid," or S-shaped curvewhen plotted on log-log axes: sig(x) =  xg + ( 1k )xg + k ! �D (9)where:x is the normalized scene, found by dividing scene by adaptation luminance: L=Lwa,sig() is normalized display luminance, 0 < sig() � 1,k2 is the maximum achievable output contrast; sig(1) = D and sig(0) = D=k2,D is an output scaling constant to map maximum scene luminance to maximumdisplay luminance,g is the gamma (
) setting parameter, where 
 is the slope of the curve at x = 1when plotted on log-log axes: 
 = g � (k � 1)(k + 1) : (10)The k, D and g parameters adjust the shape and size of the sig() function response curve,but are awkward to specify directly. Instead, we �nd their values from the limits of the desiredmapping between scene luminances and display luminances. As shown in Figure 8, these limitsform a rectangular \limit box" around a portion of the sig() function curve. The width of thelimit box is set by xmax and xmin, the maximum and minimum normalized scene luminancesrespectively, and the height is given by C, the amount of display contrast used.The limit box provides an intuitive way to specify any desired sig() function. Choosingvalues for xmin, xmax, and C along with Lwa provides enough information to uniquely specifya sig() function that sweeps across the limit box from its lower left to its upper right corner.This sig() function applies just enough contrast compression to map xmin and xmax to displayminimum and maximum, yet stays symmetric about Lwa, even if Lwa is o�-center within thelimit box. If Lwa is closer to xmax than xmin then scene luminances near xmin will be compressedmore severely than those around xmax. Solutions for k and g exist for any limit box wherexmax=xmin > C; if xmax=xmin < C then no sig() function is needed because all scene contrastscan be directly reproduced on the display without compression. If the gamma setting parameterg is held constant, the 
 of the resulting curve varies smoothly as the limit box changes sizeand shape, and increasing g smoothly increases the 
 of the curve. The 
 value grows fromzero as C rises above zero, and if g = 1:0 then 
 asymptotically approaches 1.0 as C increases.We found an analytic expression for k using limit box terms and g by writing the equation24
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Figure 8: Both the layering and foveal methods use the sig() function of Equation 9 to reducehigh scene contrasts to �t within the abilities of the display. Users set sig() function parametersby specifying a \limit box" for the mapping from scene to display luminances. The limit boxis bounded by upper and lower scene luminance limits xmax and xmin and by display contrastlimit C. The sig() function has an in
ection point and is symmetric about x = 1 (or log(x) = 0)where slope is given by 
.C = sig(xmax=Lwa)=sig(xmin=Lwa) and solving for k:k(xmax; xmin; Lwa; C; g) = 12Lgwa(xgmax � C � xgmin)(Bp +qB2n + C �A2) (11)whereA = 2Lgwa(xgmax � xgmin),Bp = ((xmax � xmin)g + L2gwa)(C � 1), andBn = ((xmax � xmin)g � L2gwa)(C � 1).To maintain normalized display output to ensure sig() = 1 when scene luminance Lw reachesxmax in Equation 9 let: D = (xmaxLwa )g + k(xmaxLwa )g + 1k : (12)25



In Section 6 we will specify a desired gamma 
d for the sig() function curve. Though we haveno analytic solution, �nding the value of g that produces a gamma value of 
d is a simple root�nding problem. On log-log axes, adjusting the g parameter is equivalent to scaling the sigmoidcurve function sig() about its in
ection point at x = 1, shrinking or stretching the entire curveto modify 
, its slope at x = 1. To �nd a sig() curve that both �ts the limits box and has thedesired gamma 
d we must �nd the g to satisfy Equation 10 where k is given by Equation 11.The equation is well behaved and converges quickly with conventional root �nding methods.The layering method applies the sig() function to each illumination layer using nominal valuesof xmax = max(L), xmin = min(L), 
 = 1:0 and C = pCmax. The value of C is an ad-hoc choice,made to consume only half of the contrast range of the display (when plotted on log-log axes, asin Figure 8) and allow room for additional contrast from re
ectance layers. Choosing C by morerigorous methods may improve layering results. Choosing D using Equation 12 normalizes theoutput of sig() function for easy conversion to display units; maximum scene luminance xmaxcauses sig() output of 1:0, and xmin produces an output of 1=C. We scale sig() outputs by aconstant equal to maximum display luminance Ldmax to convert to photometric units (cd=m2).Finally, all layers are combined to construct a reduced contrast display image. The compressedand scaled illumination layers are each converted from luminance images back to RGB imagesby multiplying them with their corresponding (R=L;G=L;B=L) images. If any luminance layerwas compressed with a 
 other than 1.0 we apply this same contrast sensitivity change to thecolor ratio images as (R=L)
 ; (G=L)
 ; (B=L)
. Then the compressed illumination layers Id, Is,and It are multiplied by their associated re
ectances Kd, Ks, and Kt, progressively collapsingthe tree of layer images diagrammed in Figure 7 from the leaves upwards to the root node toform the output image. Because the tree describes a sequence of nested multiplies and adds, ourimplementation computes a composite K image for each of the illumination layers, multiplieseach of them with their corresponding I images, and sums the result. We compute the compositeK images by traversing the layer image tree in depth �rst order so multiplications of commonparent K layers are performed only once. Composite K images provide considerable savings forthe image of Figure 9 because the tree held 36 layer images, including 7 illumination layer imagesat the leaves of the tree. Computing the 7 composite K images also allowed us to experimentwith di�erent types and amounts of compression for illumination layers and quickly revise theoutput image.Figures 1, 5, and 9 show the results of layering applied to extremely high contrast images,and clearly reveal deep shadow detail and the brilliant surfaces of light sources. In Figure 1,the illumination layer compression reveals the wood grain of the 
oor in both the brightly litand deeply shadowed areas and exhibits gradual shading on the interior of the lamp housing. InFigure 9, layering reveals the driver's face in the red car and details of both the street light andthe wet street surface re
ecting the car's glossy paint in the foreground.Capturing layer images is straightforward with many synthetic image renderers, particularlythose with shading models that use explicit di�use and specular terms such as those by Gouraud,26



BAFigure 9: The original high contrast (> 300; 000 : 1) image A loses both highlight and shadowdetail to clipping; in image B the layering method maintains the appearance of high contrastwhile revealing the driver's disembodied face behind the windshield and the re
ection of thestreetlight in the car hood.Phong, or Cook-Torrance. The layering method is not a new form of rendering, but does requirethe renderer to save computed values for illumination, re
ectance, and transparency. To capturethe layer images shown here we modi�ed the shader functions of a commercially available raytracer [41] to record K and I values in separate 
oating-point image �les. Auxiliary programsthen compressed and combined the layer �les to form the �nal images shown here. Though thelayering method was intended as an automatic technique that needs no external parameters, wefound that a wide range of xmax, xmin, C, D and 
d values for the compression function producedpleasing display images. Adjusting these parameters provides a convenient and intuitive way tointeractively change the emphasis of various image components according to their importance ina scene.Capturing layer images might be more di�cult in renderers that compute global illuminationsolutions or use bidirectional re
ectance distribution functions (BRDFs) to describe surfaces,such as RADIANCE [39], HELIOS [3], or the commercial software products o�ered byLightScape. These renderers explicitly compute illumination both from light sources and frominter-re
ections with other surfaces. They may also include complex angular dependencies insurface re
ectances. We expect that the six image layers de�ned here can be captured from theintermediate results of such renderers, but we have not attempted to do so.Images from the layering method sometimes contain subtle aliasing artifacts. The nonlinearcompression of illumination layer images will cause some error at pixels that contain largeillumination boundaries, because the result of compressing the pixel's single value is not thesame as compressing two or more illuminants within the pixel independently, then combiningthem. We suspect these errors can be greatly reduced either by retaining subpixel geometryinformation or by careful use of a transparency or \alpha" value computed at each pixel to help27



represent such boundaries.Our experience with layering also suggests that in addition to a \layered" image decomposi-tion, the visual system may further segregate images into regions or objects. For example, thelayering method grouped together the dim specular re
ections of the blue chrome spheres in thebackground of Figure 5 with the dazzling re
ections of the glass tabletop, and adjusting the com-pression function on Is a�ected the appearance of both. Computer graphics has a tremendousadvantage over traditional photography and other image capture methods because the 3-D scenedescription used to render an image is likely to contain an adequate partitioning of the objectsas well.6 Revised Tone Reproduction OperatorThe foveal method of Section 7 depends on an improved tone reproduction operator which wewill now construct by revising and updating the method of Tumblin and Rushmeier [34]. Webegin by building on the work of Ferwerda and Ward. They set display luminance Ld from sceneor world luminances Lw using Ld = m �Lw, but we include a (
) term to adjust contrasts just asm adjusts intensities: Ld = m � � LwLwa�
 (13)As before, m is a scale factor based on a model of human visual adaptation, and 
 is the change inhuman contrast sensitivity between the original scene and the displayed image. Unlike the scalefactor m, the 
 term a�ects small and large luminances di�erently; display contrasts increase asthe scene contrasts increase, but grow more slowly when the 
 term is smaller.We �nd 
 from Tumblin and Rushmeier's original tone reproduction operator [34], restatedhere with less awkward notation and with corrections for the anomalies in very dim and verybright images. Their operator was based on work by Stevens [30, 28], who claimed that a viewerfully adapted to a uniform background luminance La viewing a test patch of luminance L willexperience a brightness sensation B, related to L by a power law. Rewriting the claim in SI unitsgives: B = C0� LLa�
 (14)whereL is luminance in cd=m2,B is brightness in brils; a fully dark-adapted viewer senses one bril when viewinga patch of 1 micro-lambert intensity,La is adaptation luminance in cd=m2,C0 = 0:3698, a constant due to measurement units,28




 is contrast sensitivity, an exponent that depends on adaptation luminance La.In Stevens and Stevens, the contrast sensitivity term 
 falls linearly with decreasing log(La),passes through zero at La = 2:3�10�5cd=m2, and is negative for smaller values. We have modi�edtheir 
 term in three ways. As shown in equation 18 below, 
 is limited to no more than 2:655to match measurements that indicate human contrast sensitivity stops increasing above about100cd=m2 [26]. We also limited its minimum value to zero to prevent negative contrasts inextremely dim images and added a constant o�set of 2:3 � 10�5 to La so that contrast sensitivityapproaches zero asymptotically near the threshold of vision.Tumblin and Rushmeier used two instances of Equation 14 to convert scene luminances todisplay luminances. One instance computes the perceived brightnesses of the display Bd, andthe other �nds the perceived brightnesses Bw of the \real world" or scene. Bd is set equal to Bwto make the perceived quantities match:Bw = C0 � LwLwa�
w = Bd = C0 � LdLda�
d : (15)Solving for Ld in terms of Lw and Lwa:Ld = Lda � LwLwa�� 
w
d � : (16)The result has the same form as Equation 13, except the C0 terms cancel and reveal an anomaly;all mid-range scene luminances map to mid-range display luminances near Lda, therefore thedisplay appears a uniform gray in dim scenes where contrast sensitivity is low. We remove thisanomaly by appending a new scale factor term m(Lwa).Our m(Lwa) function is built from a simple conjecture about visual appearance; we claim asthe scene adaptation luminance value Lwa increases from starlight to the threshold of eye damage,the corresponding display luminances should grow steadily from display minimum to maximum.We choose m(Lwa) to vary according the same log-linear expression Stevens used to �nd contrastsensitivity 
 in Equation 18, forming an almost straight line (or a straight series of dots inFigure 4D) when plotted on log-log axes. For Lwa values below 100cd=m2, changes in m matchchanges in contrast sensitivity and cause scene luminances of Lwa=pCmax to map precisely to theminimum display luminance. Above 100cd=m2, reaching minimum display luminance requiresscene luminances further below Lwa. The revised tone reproduction operator is given by:Ld = m(Lwa) � Lda � � LwLwa�� 
w
d � (17)whereLda is the display adaptation luminance, typically between 10{30cd=m2,Lwa is scene adaptation luminance, found from scene luminances Lw using:29



log(Lwa) = meanflog(Lw + 2:3 � 10�5cd=m2)g,
d is 
(Lda), and 
w is 
(Lwa), Stevens' contrast sensitivity for a human adapted tothe display and the scene respectively. Find these 
 values using:
(La) = 8<: 2:655 for La > 100cd=m21:855 + 0:4 log10(La + 2:3 � 10�5) otherwise, (18)m(Lwa) is the adaptation-dependent scaling term to prevent anomalous gray nightimages: m(Lwa) = �qCmax�(
wd�1) (19)whereCmax is the maximum available display contrast (30 to 100 typical),and 
wd = � 
w1:855+0:4log(Lda)�.The m term steadily increases display brightnesses as the scene adaptation luminance Lwaincreases towards the upper limits of vision, as shown in Figure 4. We will apply the operatorde�ned by Equations 17, 18, and 19 in Section 7.7 Implementation of the Foveal Display ProgramAs discussed in Section 3.2, the foveal display program evokes the visual sensations of a highcontrast scene by computing new displayed images in response to the user's eye movements.The program regards the mouse cursor position as the user's direction of gaze in the scene, andconsiders a small circular region around the mouse cursor as the user's \foveal neighborhood,"the portion of the scene currently viewed by the user's fovea. Users may adjust the diameterof the program's foveal neighborhood to match personal preferences and nominally subtend 2{5degrees in the original scene. In response to mouse clicks on the image, the program computes anew image as it might appear after foveally dominated adaptation, with intensity and contrastof the displayed image determined by the tone reproduction operator presented in the previoussection. Any out-of-range display intensities are asymptotically compressed towards display blackor white by the sig() function of Section 5 to help preserve details and textures in image shadowsand highlights.The foveal display program works in four steps. First, in response to a mouse click theprogram �nds the position and diameter of the foveal neighborhood and brie
y displays a thincircle enclosing it, as shown in Figure 10. Second, the program computes the foveal adaptationluminance value Lwa from scene luminances in the circled neighborhood using a precomputedimage pyramid. Third, the program uses Lwa in the tone reproduction operator described in30
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BBAA CC

DDFigure 10: Example display images from the interactive foveal display program: each red arrowpoints to the foveal neighborhood, a circled region around the user's direction of gaze. A) Placingthe circled region on the night sky causes adaptation luminance Lwa near the absolute thresholdof vision where contrast sensitivity is extremely low causing the anomalously dim street light.B) Adapting to distant terrain lit by moonlight greatly increases contrast sensitivity, causingcontrast compression in the foreground. C) Directing attention to the deep car shadows inthe foreground reveals re
ected details of the wet ground below the car. D) Adapting to thedistant yellow car shows its re
ection on wet pavement. E) Gazing at the bulb of the streetlightcauses extremely high adaptation luminance, darkening the rest of the scene. Images A) and E)illustrate the limitations of globally applied adaptation models; local adaptation in the humanvisual system ensures that the street light and car have a bright appearance for any direction ofgaze in the scene.Equation 17 to �nd the desired display image luminances at each pixel. Finally, it applies theasymptotic compression function sig() to �nd displayed luminance values without truncatingimage highlights and details in the foveal region.The foveal program must update the displayed image rapidly because the program relies onthe user to remember and assemble a sequence of images into a coherent impression of the highcontrast scene. For quick response, the program uses an image pyramid [6] of log scene luminancesto �nd Lwa values in constant time for any foveal neighborhood diameter, and we recommendWard's 32-bit per pixel RGBE format [37] to store and manipulate high contrast scene values,though we used 32-bit 
oating point values for each color component in our test program toensure accuracy. Our program, written in Visual C++ 5.0 running under WindowsNT 4.0 ona 90-Mhz Pentium machine with 48MB of memory achieves a 4 Hz display update rate on a256x256 pixel image, and was not optimized for speed.Without image pyramids, computing foveal adaptation luminance Lwa can be slow forlarge diameter foveal neighborhoods. Foveal Lwa is a localized form of the global adaptation31



value computed by Equation 7, where each foveal neighborhood pixel's contribution to Lwa issmoothly weighted by distance to favor pixels nearest the cursor. The weighting function has anapproximately Gaussian shape and is applied to the logarithm of neighborhood pixel luminances;their weighted sum is log(Lwa). The time required to compute Lwa directly from scene pixelsgrows linearly with the number of neighborhood pixels.Using image pyramids allows computation of Lwa in constant time, but the method is moreeasily explained by a simpler problem. Suppose the foveal neighborhood diameter diam is limitedto one of two �xed widths, either W or 2W pixels. We may choose to precompute two imagesto store Lwa for each pixel; one image for diameter W named lev0, another for diameter 2Wnamed lev1. To �nd Lwa quickly use diam to select an image and use the cursor position toselect a pixel. However, the lev1 image is much smoother than lev0 because it was computedwith a foveal neighborhood four times larger; we can reasonably approximate all lev1 values byinterpolating them from a much smaller precomputed image. For example, we may decide toreduce the size of the original lev1 image by a factor of four using (2; 2) decimation by discardingevery other scanline and every other pixel on the remaining scanlines. To �nd Lwa for any valueof diam between W and 2W we can approximate Lwa by �rst �nding its value in lev0 and lev1and then interpolating between them according to the ratio of W and diam. Image pyramidsuse similar ideas.The image pyramid is a stack of images built by recursive low-pass �ltering and (2; 2)decimating. The base level of the pyramid holds the pixel-by-pixel logarithm of the inputimage luminance, and each successively higher pyramid level is a smoother, smaller versionof the previous level, ending with a single pixel image at the top level. The programbuilds each pyramid level using Burt and Adelson's separable 5-tap Gaussian-like �lter kernel[0:05; 0:25; 0:40; 0:25; 0:05]. This �lter is approximately circularly symmetric and does notintroduce the half-pixel o�sets found in the more widely used MIP-map pyramid �lters, yetit is very fast to compute because it is symmetric and applied separately in the horizontal andvertical directions. Building a complete pyramid for an N�N image requires only 4=3N2 storagelocations, 2N2 multiplies and 8=3N2 adds.Sampling an image pyramid level at the cursor position is equivalent to �nding a weightedsum of input image pixels in a neighborhood around the cursor. The neighborhood's diameterdoubles with each successively higher pyramid level, as shown in Figure 11. To approximatea continuously variable neighborhood size, the program linearly interpolates between samplesin two adjacent pyramid levels, using the logarithmic relation between neighborhood diameterand pyramid level. The pyramid levels are numbered sequentially, with lev = 0 as the base, andlev = levmax for the tip image. The pyramid base is a copy of the log(Lw) image; therefore, eachpixel in the lev = 0 image can be regarded as the input image averaged over a local neighborhoodwith a diameter of diam = 1 pixel. The spacing between pixels doubles in each successivelyhigher pyramid level when measured against the pyramid base, so that diam = 2lev pixels. Toapproximate Lwa at the cursor position for a neighborhood diameter that is a power of two,32
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Figure 11: Image pyramids allow the foveal display program to �nd log(Lwa), a weighted sumof neighborhood pixel values, in constant time for any neighborhood diameter.the program �nds the cursor's value within the pyramid level selected by lev = log2(diam).For neighborhood diameters that are not a power of two, lev is split into integer and fractionalparts, levInt and levFrac respectively. The program �nds the cursor-position value at both levellevInt and at level levInt+1, linearly interpolates between these two values using levFrac, andconverts the interpolated value from log units to the luminance value Lwa.The locally measured adaptation luminance, Lwa, determines how the foveal display programwill convert original scene luminances, Lw, to display luminances, Ld. Though the operator inEquation 17 can adjust the contrast of the displayed image by changing 
w, it cannot guaranteethat the computed display luminances Ld are within the range of the display device. To avoidclipping, the foveal program combines the sig() function of Equation 9 and Figure 8 with thetone reproduction operator of Equations 17{12 to compute the compressed display luminance:Ld = sig(x; xmax; xmin; Lwa; C;Dfov; 
); (20)wherex = LwLwa ,xmax; xmin = max(Lw);min(Lw) measured over the entire scene,C = Cmax, the maximum contrast available from the display,Dfov = D � m(Lwa) using D found in Equation 12 and m given by Equation 19, and33




 = (
w
d ) found in Equation 18.The x inputs to the sig() function are the original scene contrasts as measured against theadaptation luminance value Lwa. The xmax, xmin, and C parameters are constants that ensurethe sig() function can accept all scene luminances without truncation, and the D value mapsscene Lwa values to display luminances according to the revised tone reproduction operator ofEquation 17. The 
 term adjusts display contrasts to match contrast sensitivity of a humanobserver viewing the original scene.Interactive viewing of high contrast images with the foveal display program resembles thefamiliar behavior of an automatic exposure camera, and Figures 1 and 10 show typical screenimages. The foveal program reproduces all displayable scene contrasts in the small circledneighborhood around the cursor, but other regions that form high contrasts when comparedto the adaptation luminance Lwa are compressed towards display black or white and temporarilylose low contrast details. As the cursor or the Lwa value moves nearer to these obscured regions,their details emerge in the displayed image.8 DiscussionBoth the foveal and layering methods display images of high contrast scenes while preservingdetails commonly lost to truncation or scaling in conventional methods of image display. Bothmethods are supported by results from the psychophysical literature, are straightforward toimplement, and are not computationally expensive. The foveal method can be applied tohigh contrast images from any source, but the layering method is useful only for syntheticallygenerated images. The layering results can be displayed statically and are suitable for printedimages, but the foveal method is interactive, and requires a computer display to convey theimpression of high contrast.Though both methods were intended for display use, the layering method also shows somepromise as a scene lighting tool. Our experience with layering has shown that interactivelyadjusting Lwa and the sig() parameters xmin, xmax, C, D and 
 for each illumination layerwhile viewing the combined result provides an intuitive way to produce images with attractivelighting. Layering seems especially well-suited to interactive lighting design tools such as thoseby Kawai, Painter, and Cohen [19] and may help to reduce the tedious cycles of adjusting lightsand re-rendering.Creating the appearance of a high contrast scene is often di�cult with conventional lightingmethods. For example, the �rst image in Figure 12 shows the layering result, and images A{C show the best approximations to the layering result that we could achieve by changing theintensities of the two light sources. Increasing the ambient illumination revealed the 
oor in thebackground, but no intensity value for the light bulb appeared correct. Reducing the light bulb34



A B CA B CFigure 12: The layering result shown in the �rst image is di�cult to achieve by re-lighting andre-rendering the original scene, as shown in images A-C. The 
oor and horizon in the backgroundare easily revealed by increased ambient light, but we found no acceptable intensity for the lightbulb. Reducing intensity to reveal the bulb's re
ection in the glass tabletop eliminates table legshadows (A), but increasing it enough to show dramatic leg shadows in (C) causes nearby woodtextures to clip to white. The intermediate choice (B) still lacks the appearance of high contrastprovided by the layering result.intensity enough to detect its shape re
ected in the glass tabletop caused the strong shadowsfrom the table legs to disappear (A), but increasing its intensity enough to deepen the shadowscaused the wooden 
oor texture beneath the glass tabletop to clip to white (C). As a compromise,in image B we chose the highest light bulb intensity that would avoid clipping the wooden 
oortexture. Despite our e�orts, this image lacks an appearance of extremely high contrast andwould need additional skillfully placed light sources to resemble the layering result shown in theleftmost image.The layering and foveal methods are preliminary steps towards perceptually valid displaymethods for high contrast scenes, and these methods capture just a few of the many directlymeasurable response properties of human vision. We have not addressed many importantadaptation properties, some of them already examined by other authors, such as local adaptationin both foveal and peripheral vision, temporal e�ects, the subtractive adaptation process thatgradually augments contrast sensitivity and aids color lightness constancy, visual masking e�ects,and color adaptation. Both methods make global changes to images to prevent image artifacts;we intentionally avoided local variations of intensity scale factor m, contrast scale factor 
, andasymptotic compression function sig(). The human visual system makes such local nonlinearadjustments routinely with very few apparent artifacts, but we do not know how to model thisprocess mathematically.Some images produced by the foveal display program illustrate the need for a better modelof local adaptation. In Figure 10, selecting a circled neighborhood in the night sky will choosean extremely low adaptation luminance near the absolute threshold of vision, where contrastsensitivity approaches zero. When this \foveal" adaptation is applied to the entire image, eventhe street light is reduced a dim gray shape instead of the brilliant white appearance our eyeswould see.The layering and foveal methods could be extended to include other previously published35



visual e�ects models as well. For example, layering is well suited for use with the visual glare,di�raction, and scattering models of Spencer et al. [27], and the foveal method could include thewide-ranging models for color, acuity, and the time course of adaptation developed by Ferwerdaand colleagues [9]. High speed implementations of the foveal method might lead to interestingexperiments using eye-tracking equipment or head-mounted displays in which the displayed imageactively guides adaptation of the user's visual system. Combinations of the foveal and layeringmethods may also be possible, where the user's direction of gaze assigns attention to layer imagesaccording to their content adjusts their sig() function parameters for emphasis.Currently the most accurate and appealing low contrast renditions of high contrast scenesare made by highly skilled artists. Ansel Adams's rich photographic prints capture the dramaticappearance of western landscapes, and several intriguing books of charcoal drawings by ChrisVan Allsburg [35] (Figure 2) show astonishingly high contrast scenes with �ne detail visibleeverywhere. These works set a high standard for realistic image display that is far beyond thecurrent capabilities of computer graphics. Studying texts for drawing and photography mayprovide important guidance for future high contrast display methods.AcknowledgmentsThis project was supported in part by NSF NYI Grant No. IRI-9457621, by Mitsubishi ElectricResearch Laboratory, and by a Packard Fellowship. Early versions of the layering and fovealmethods were developed during an extended student internship at Microsoft Research. We thankHoughton Mi�in Company for granting written permission to use the copyrighted drawing byChris Van Allsburg in Figure 2 for a small fee.References[1] E. H. Adelson. Perceptual organization and the judgment of brightness. Science, 262:2042{2044, 24 December 1993.[2] L. Arend. Surface colors, illumination, and surface geometry: Intrinsic-image models ofhuman color perception. In A. L. Gilchrist, editor, Lightness, Brightness, and Transparency,pages 159{214. Lawrence Erlbaum, Hillsdale, NJ, 1994.[3] I. Ashdown. Radiosity: A Programmer's Perspective. John Wiley and Sons, New York, NY,1994.[4] H. G. Barrow and J. Tenenbaum. Recovering intrinsic scene characteristics from images. InA. R. Hanson and E. M. Riseman, editors, Computer Vision Systems, pages 3{26. AcademicPress, San Diego, CA, 1978. 36
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