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HANS ROTT 

TWO METHODS OF CONSTRUCTING 

CONTRACTIONS AND REVISIONS OF 

KNOWLEDGE SYSTEMS 

1. INTRODUCTION 

The theory of nonmonotonic reasoning and the theory of belief revision 

share a very important subject. Both theories help to understand how 

it is possible rationally to pass from one knowledge system into 

another knowledge system that is in contradiction with the former 

one. In nonmonotonic reasoning this transition is accomplished by 

distinguishing between axioms (“explicit beliefs”) and theorems 

(“implicit beliefs”) and giving up the doctrine that more axioms must 

always yield more theorems. Thus my old (implicit) belief that Tweety 
can fly may well turn into disbelief after getting the information 

(acquiring the explicit belief) that Tweety is a penguin. A considerable 

limitation of this approach is that the new axiom must be (monotoni- 

cally) consistent with the previous axioms, or else WC get an incon- 

sistent knowledge base. 

The theory of belief revision on which I shall focus my attention is 

not subject to this restriction. In fact, it does not at all distinguish 

between axioms and theorems, or between beliefs and their reasons. 

The knowledge systems it takes into consideration are i&o/e theories, 

where a theory, or knowledge set, is understood as a set of sentences 

closed under some appropriate logic Cn. We shall assume that this 

logic includes classical propositional logic, that it is compact (i.e., if 

A E Cn(lM) then A E Cn(M,,) for some finite Iu0 E M) and that it 

satisfies disjunction of premises (i.e., if C E Cn(M u {A}) and C E 

Cn(lM u {B}), then C E Cn(M u {A v B))). As a consequence of 

this, we have the deduction theorem for our logic (if B E Cn(M u {A)) 

then A + B E Cn(M)). Finally we shall presuppose that the logic is 

monotonic (if A E Cn(lw) then A E Cn(lW u {Bj)). Our language is 

to include the usual propositional operators --J, &, v , +, and et, 

and the propositional constants T (“Truth”) and I (“Falsity”). The 

set of all sentences of the language is denoted by L, the set of all 
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150 IIANS ROTT 

logical theorems {A: A E Cn(QI)} ’ d IS enoted by LT. M E L is called 

consistent if L 4 Cn(M). We frequently write M k A for A E Cn(M). 

Throughout this paper, variables A, B, C etc. range over arbitrary 

sentences, and variables M, N, M’, N’, M” etc. range over arbitrary 

sets of sentences. 

How can such a holistic theory of belief revision handle inconsist- 

ent theories? I believe that Twcety can fly. What should I do if I 

come to know that Twcety in fact does not fly? As a first answer, I 

may be content with the advice that I first have to withdraw my belief 

that Tweety can fly, then add the belief that Twccty cannot and 

finally take the deductive closure. (This advice has become known as 

the hvi idenfiry.) A moment’s reflection shows that the real problems 

are not solved by this move. How are contractions to be accomplished? 

Peter Glrdenfors founded and developed, partly in collaboration with 

David Makinson and Carlos Alchourron, the approach I am going to 

sketch now. At the end of the 1970s he started by specifying a set of 

“rationality postulates” or constraints that must be satisfied by oper- 

ations on a knowledge set in order to model the intuitive process of 

knowledge contraction. Let K be a knowledge set and :K bc a func- 

tion from L to 2’-. We write K L A for Lo. Then :K is a contrac- 

tion function over K if and only if it satisfies the following postulates: 

(Cl) K A A is a knowledge set (closure) 

w KlAcK (inclusion) 

(C3) if A 4 K then K I A = K (vacuity) 

(C4) iftiAthenA$KL A (success) 

(f-3 K E Cn((K L A) u (A}) (recovery) 

(C6) if t A ct B then K 2 A = K 2 B (preservation) 

(C7) K L A n K A B E K - A & B (conjunction 1) 

(C8) if A $ K - A 8c B then 
K-A&BsK-A (conjunction 2) 

For the motivation of these constraints for contractions see [4], 

Chapter 3, [5], and 171. (Cl)-(C8) make sure, among other things, that 

contractions do not incur unnecessary loss of information.’ As we will 
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almost exclusively be concerned with the formal aspects of the 

dynamics of knowledge systems in the following, some familiarity 

with the literature cited is useful for the reader. 

Even if we dispose of a reasonable set of postulates for contrac- 

tions, this will not help us in actually performing any contraction or 

revision of our current knowledge system. What we need is a method 

of constrz~rinl: a new state of knowledge out of the earlier enc. We 

require some structure here to guide us which in a way corresponds 

to the information contained in the distinction between explicit and 

implicit beliefs in nonmonotonic reasoning. or in the storage of the 

justifications for our beliefs in reason maintenance systems. In this 

paper I shall briefly review two different methods of knowledge con- 

traction that were suggested in the course of the Gardenforsian 

research program. Then a tight connection between these methods 

will be established showing that they even can be viewed as cquiv- 

alent. I close with some remarks on simple and iterated revisions. 

2. TWO ORDERINGS FOR CONTRACTION CONSTRUCTJOTS 

The first method I want to discuss is investigated in Alchourron, 

Glrdenfors and Makinson [2] and may be called the method of I&I- 

tionalparrial meet contractions. When trying to exclude A from K 

while minimizing the loss of information, it is tempting to take a 

maximal subset of K that does not imply A. Let M(K, A) be the set 

of all such subsets. AIchourron and -Makinson [l] showed, howcvcr. 

that the choice of an element of M(K. A) will in gcncral leave far too 
many sentences untouched. Conversely. they proved that the full meet 

fl M(K, A) cancels far too many sentences from K. A natural idea is 

to consider the pmtiuf meet of some prejkred clcmcnts of M(K, A). 

Provided that we have a preference relation on M(K), where 
M(K) = U {M(K, A): I! A],’ we can obtain reasonable contractions: 

DEFINITION I. If d is a preference relation on M(K) then the 

associated contraction function - = C( <) over K is given by 

i 

0 (ME M(K, A): M’ < M 

KAA = for all M’ E M(K, A)}, if tc Al 

K ifl- A. 
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If L is a contraction function over K and there is a (transitive) 

preference relation < on M(K) such that - = C( <), then I is 

called a (transitively) relational partial meet contraction function 

((T) RPMCF). 

Note that M(K, A) = @ if and only if A E LT. Now, what properties 

should we require for 6‘~ Alchourrbn, Gardenfors and Makinson [2] 

make use of only two postulates: 

PO) If M(K, A) # 0 then there is an M E M(K, A) such 

that M’ < M for all M’ E M(K, A) (existence) 

PI) if M < M’ and M’ < M” then M Q M” (transitivity) 

Only relations < satisfying (PO) are intended to quality as pwference 

relations (P-relations).3 The authors show that C( &) satisfies (Cl)- 

(C8) if < satisfies (PO) and (PI). Conversely, they prove a represen- 

tation theorem: Any contraction function - over K satisfying (Cl)- 

(C8) is a TRPMCF. In the proof, a preference relation < = P*( 2) 

is constructed from a given contraction function - over K, and it is 

shown that C(P*( -)) = A. We put off the discussion of P*( -) 

until the end of Section 4. 

A second method of constructing contractions, the method of 

epistemic entrenchment contractions, is found for the first time in 

Gardenfors [4], Section 4.8, and presented more elegantly in Glrden- 

fors and Makinson [5]. Some relation over the sentences in a knowl- 

edge set is supposed to exist that reflects how deeply entrenched these 

sentences are in our current state of knowledge. Provided that we 

have a relation of epistemic entrenchment on L, then, Gardenfors and 

Makinson recommend that it should guide us in performing knowl- 

edge contractions as follows: 

DEFINITION 2. If I is a relation of epistemic entrenchment on L 

then the associated contraction function - = C(I) over K is given 

by 

K-A = 
K n {B: A < A v B}, if VA, 

K, iftA. 
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If - is a contraction function over K and there is a relation of 

epistemic entrenchment I on L such that - = C(I), then L is 

called an epistemic entrenchment contraction function (EECF). 

There should be no danger of confusion of this ‘C’ with the ‘C’ of 

Definition 1 if the difTerent arguments arc carefully kept apart. 

A < A v BofcoursestandsforA I A v BandnotA v B I A. 

We ought to say what features make a relation on L count as a rela- 

tion of epistemic entrenchment (EE-relation). In [5] we find the follow- 

ing collection of postulates: 

(El) 

(W 

(E3) 

(W 

(E5) 

if A I B and B I C then A I C (transitivity) 

AlBorBIA (connectivity) 

if A k B then A < B (dominance) 

AsA&BorBsA&B (conjunctiveness) 

if K # L, then A I B for all B iff A 4 K 
(minimality) 

w if B I A for all B then A E LT (maximality) 

Note that (E2), following from (El), (E3) and (E4), is redundant. 

Nevertheless it is expedient to have it as a principle of its own. For 

example, (E2) immediately entails that I is reflexive. Since K appears 

in (E5), we call I an EE-relation with respect to K. For the intuitive 

motivation of these postulates, see [3], [4], [q. 

The content of Definition 2 is not easy to grasp. But it receives an 

excellent justification from its interplay with the (re-)construction of 

EE-orderings out of the contraction behaviour. 

DEFINITION 3. If - is a contraction function over K then the 

associated relation of epistemic entrenchment I = E( -) on L is 

given by 

A I BifandonlyifA$KL A&BortA&B. 

This definition is very plausible. If you give up A & B by retracting A 

then A could not have been more firmly entrenched than B. 
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:.... 

~PlSTEMli ENTi3E@&ENT 
qd’. ., 

I satisfying (El)d(E6) .: ,.’ 

p&+REwE ~~~~‘: 

oh M(K) :. :, “’ ... 
. . . ‘:Y 

6 satisfying (pd)-(Pit 

. 

Scheme I 

In Glrdenfors and Makinson [5] we find the following important 

results: If I satisfies (El)-(E6) then C( 5) satisfies (Cl)-(CS); if 

- satisfies (Cl)-(CS) then E(A) satisfies (El)-(E6); and finally, 

E(C(<)) = _( for any < satisfying (El)-(E6), and C(E(-t-)) = 2 

for any 2 satisfying (Cl)-(Cg). Thus we get a kind of representation 

theorem similar to the first one: Any contraction function - over K 

satisfying (Cl)-(CS) is an EECF. 

To sum up, we find ourselves faced with Scheme 1. 

In my view, it is more natural to have a relation I on L than 

a relation < on 2L. On the other hand, the rationale behind 

(T)RPMCFs is easier to understand than that behind EECFs. So 

both kinds of contraction constructions have their intuitive merits. 

It seems very desirable to know something about the relationship 
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between (T)RPMCFs and EECFs. This is what we shall be concerned 

with in the main part of this paper. 

3. CONNECTING TIIE TWO ORDERIh-GS: 

GARDENFORS’ I:IRST ATTEMPT 

The first attempt to connect P-relations and EE-relations is due to 

Ggrdenfors [3]. In this paper. however, Gtirdcnfors uses a different set 

of postulates for epistemic entrenchment. It does not include the 
limiting case conditions (E5) and (E6), and instead of (E4) it includes 

an apparent dual, viz., 

@4*) A v B I A or ii v B I B (disjunctivencss). 

There is also another postulate for the preference relation < (which 

has already been discussed in [2]): 

m A4 < M’ or A4’ < M (connectivity). 

Glrdenfors [3], pp. 359-360. then builds a two-way bridge between I 

and d . For any given P-relation ,<, an EE-relation I = E( <) is 

associated with < by defining A I B if and only if for all M in 

M(K) such that A E M there is an !M in M(K) such that B E IV’ and 

M < M’. Conversely, for any given EE-relation 5, a P-relation 

d = P( 5) is associated with I by defining A4 < M’ if and only if 

there is an A E A4 such that for all B E M’ it holds that A I B. 

Notice that these definitions look at the sentences that are retained 
in some elements of M(K). Notice also that the second definition 

attaches most importance to the epistcmically least entrenched sen- 

tences in A4 and M’, a fact which might raise some intuitive 

suspicion. 

The formal results of Glrdenfors [3] are impressive. He shows that 

if < satisfies (PI) and (PZ), then E(G) satisfies (El)-(E3) and (E4*). 

If I satisfies (El)-(E3) and (E4*), then P(I) satisfies (PI)-(P2), pro- 

vided that K is a,finite knowledge set, in the sense that Cn partitions 

it into finitely many equivalence classes.4 In the finite case, Ggrdenfors 

shows that P(E($)) and Q are identical relations on M(K), provided 

that < satisfies (Pl) and (P2), and that E(P(<)) and I are identical 

relations on K, provided that I satisfies (El)-(E3) and (E4*). 
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Unfortunately these results are somewhat depreciated by the obser- 

vation that (E4*), when taken together with (El)-(E3), has some 

undesirable consequences. To prove this, I shall call A an ordinary 
sentence if A < T; if T _< A, then A is called an extraordinary sen- 

tence. (Note that A I T by (E3).) 

LEMMA 1. Let I be a relation satisfying (El)-(E3) and (E4*) and 

iet A and B be ordinary sentences. Then the biconditional A ct B is 
extraordinary. 

Proo$ Let I, A and B bc as indicated. WC start by noting that 

k (A v B) v (A t, B). By (E4*) we have (A v B) v (A ++ B) I 
A v B or (A v B) v (A c-) B) I A t* B. The first condition 

cannot hold, however, since by hypothesis A < T I (A v B) v 
(A +-+ B) and B < T I (A v B) v (A tt B), whence (El) would 

license to infer A < A v B and B < A v B, in contradiction with 

(E4*). Thus the second condition must hold, which means that A c, B 
is extraordinary. Cl 

(E4*) is not really “dual” to (F4), but incompatible with it, on pain 

of triviality: 

COROLLARY. Let I he an EE-relation satisfying (El)-(E4) and 
(E4*), and let A and B he ordinary sentences. Then A I B and B I A. 

Proqf. By Lemma 1 and (E3) we know that A v 1 B is extra- 

ordinary. Hence A < A v 1 B. But by (E4) we have A v B I 
(A v B)&(A v TB) I AorA v ill I (A v B)& 
(A v 1 B) I A. Thus A v B I A. But by an entirely analogous 

argument, also A v B I B. On the other hand, (E3) gives us 

AlAv BandBIAv B.Hcnce,by(El),AIBandB(.A. 

q 

Lemma 1 indeed shows that (E4*) is fatal. There are good reasons 

to represent all beliefs concerning particular matters of fact by 

ordinary sentences (compare (E6) above). There are also good reasons 

to keep extraordinary sentences in contractions as long as possible. 

But combining this and Lemma 1 entails that giving up any of our 

factual beliefs must result in giving up all of our factual beliefs, which 

is absurd. 
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It seems to me, then, that we have to reject (E4*). Yet we do not 

have to renounce results of the Gardenfors [3] style. In the next sec- 

tion, I shall suggest different connections between E-relations and 

P-relations and then mimic Gardenfors’ theorems (where the finiteness 

assumption is dispensed with in all but one case). Furthermore, I 

show that EECFs and TRPMCFs are equivalent if the new bridge is 

crossed in either of the two possible ways. 

4. THE REAL CONNECTION 

We begin by extending < to an ordering of arbitrary sets of sentences, 

i.e.. to a relation on 2L. Henceforth we will call d a preference 

relation, or P-relution, with respect to a knowledge set K if and only if 

Q satisfies the following collection of postulates: 

PO) If M(K, A) # @ then there is an M E M(K, A) such 

that N 6 M for all N E M(K, A) (existence) 

(PI) if M < N and N Q M’ then :M < M’ (transitivity) 

W) M 6 N or N d M (connectivity) 

(P3) if M c N then M d N (dominance) 

(P4) M < M n N or N d M n N (intersection) 

(W M < N for all 1% iff LT $ M (minimality) 

W) if K # L, then N 6 M for all consistent N 

iffK c M (maximality) 

As in the case of EE-relations, connectivity is redundant, but we shall 

keep it as a postulate of its own in order to see its power. In contrast 

to EE-relations (see (E3)): P-relations seem to allow some kind of 
informational-content reading if we look only at (P3). However, (P4) 

shows that one must be cautious with interpretations. I do not want 

to discuss the intuitive content of (PO)-(P6) here. In any case, these 

postulates will turn out to be suitable, when we follow a new road 

from < to I and vice versa. 

DEFINTION 4. If ,< is a P-relation on 2’- (with respect to a knowl- 

edge set K) then the associated EE-relation 5 = E( <) on L (with 
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respect to K) is given by 

A < B if and only if for all M in M(K) such that 

B $ A4 there is an M’ in M(K) such that 

A 4 M’ and M ,< M’. 

We recall from [2], Lemma 2.4, that for any A E K and M E M(K), 

A $ M is equivalent to M E M(K, A). 

DEFINITION 5. If I is an EE-relation on L (with respect to a 

knowledge set K) then the associated P-relation < = P(I) on 2’. 

(with respect to K) is given by 

M 6 N if and only if for all A $ N there is a B 4 M 

such that A I B. 

Notice that these definitions put special attention to the sentences that 

are missing in some set of sentences, and that Definition 5 attaches 

most importance to the epistemically must entrenched sentences miss- 
ing. I believe that these features are intuitively more appealing than 

those of the Gardenforsian definitions mentioned in Section 3. 

Definitions 4 and 5 are formulated in close analogy to the Girden- 

fors definitions. We arc now going to state some useful equivalent 

formulations in two technical lemmas. 

LEMMA 2. Let < he a P-relation on 2’. with respect to a knowledge 

set of K. Then the fallowing three conditions are equivakent: 

(i) For ail M in M(K) such that B # M there is an M’ in M(K) 

such thut A C# M’ and M < M’; 

(ii) far all knowledge sets M such that B 4 M there is u knowledge 

set N such that A 4 N and M < N; 

(iii) for all M E 2L such that M If B there is an N E 2L such that 

N # A and M < N. 

Proof. From (i) to (ii): Let M be a knowledge such that B # M. By 

(P4), (P6) and (PI), we get M Q M n K. Since M A K is again a 

knowledge set and B 4 M n K, there is an M’ in M(K, B) such that 

M n K s M’, the latter giving us M n K < M’, by (P3). By appli- 

cation of(i) WC get that there is an M” in M(K) such that A $ M” 
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and M d M”. Since elements of M(K) are knowledge sets and since 

A4 Q M n K < M’ < M”, we find that, by (PI). M” is an N we are 

looking for in (ii). 
From (ii) to (iii): Let M E 2L be such that M V B. Let M’ = 

Cn(M) is a knowledge set, B F$ M’ and, by (P3). M d M’. By appli- 

cation of (ii) WC get that there is a knowledge set N such that A 4 N 

and M’ < N. Since knowledge sets are closed under Cn, N Y A: and 

we find that, by (Pl). N is just such an N as we arc looking for in 
(iii). 

From (iii) to (i): Let M in M(K) bc such that B $ M. Since ele- 

ments of M(K) arc knowledge sets, M V B. By application of (iii) 

we get that there is an N E 2L such that N tf A and M < N. Set 

N’ = Cn(N); then A $ N’ and, by (P3), .N < N’. By (P4), (P6) and 

(Pl), we get N’ Q IV’ n K. Since N’ n K is a knowledge set and 

A $ N’ n K$ there is an M’ in M(K, A) such that N’ n K G M’, the 

latter giving us N’ n K Q M’, by (P3). By M d N d N’ < N’ n 

K < M’ and (Pl). we find that M’ is just such as M’ as we are look- 

ing for in (i). cl 

It will be convenient to have an additional technical concept in the 

following. If I is an EE-relation on L, then an EE-cut, or simply cul, 

is a set of sentences S such that for any A in S all sentences B with 

A I B are also in S.’ We note some properties of cuts. It is easy to 
verify that the class of all cuts is closed under arbitrary unions and 

intersections, that cuts arc nested (by (E2)), and that S.,, defined by 

{B: A < B}, and S;, , defined as {B: A I B}. are cuts by (El)). The 

largest cut is L = {R: I I B], then comes K = (B: I < B) (if 

K # L), then come subsets of K, the smallest but one cut is LT = 

{B: T I B) and the smallest cut is @ = (B: T < B) (by (Ej), (E3) 

and (E6)). Any non-empty cut S is a knowledge set, provided that Cn 

is compact. To see this, assume rhat S : A. Then B, & . . . & B, k A 

for some B,, _ . . , B,: in S, hence, by (E3), B, & . . & B!, 5 A. 

Itcratcd application of (E4) gives us B, I BI & . . . & B, for some 

iE{l,..., iz}, hence, by (El), Bi I A. But as Bi E S and S is a cut, 

this entails that A E S, and we arc done. 

We are now able to recast the defining condition of Definition 5. 
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LEMMA 3. Let I be an EE-relation on L. Then the following two 

conditions are equivalent : 

(i) For all A $ N there is a 3 4 M such that A I B. 

(ii) For all cuts S, ifs c M then S G N. 

Proof. From (i) to (ii): (i) is equivalent to the condition that S, = 

(B: A 5 B} $ M f or all A 4 N. By contraposition, if S, s M then 

A E N. Let S be a cut such that S G M. We have to show that 

S c N. But for any A in S, S,, E S E M, hence A E N, so S c N. 

From (ii) to (i): (ii) entails that for all A, if S, E M, then S, c N. 

Hence, by contraposition and by the reflexivity of I, S, $C M for all 

A 4 N. But this just means that there is a B such that A I B and 

B $ M, for all A $ N, and we are done. cl 

Notice that the proof of Lemma 3 makes use only of the transi- 

tivity and connectivity of I. In the following we shall frequently 

work with the nicer conditions (iii) of Lemma 2 and (ii) of Lemma 3 

in lieu of the characterizations of E( <) and P(I) given in Definitions 

4 and 5. We are now going to explore the interrelation between EE- 

relations and P-relations. 

LEMMA 4. L& < be a P-relation on 2L (with respect to a knowledge 

set K). Then I = E( <) sutisjes (EZ)-(E6). 

Proof. (El) is easy and (E2) follows from (El), (E3) and (E4). - 

For (E3), suppose that A I- B and M V B. In order to get A 5 B, we 

have to show that there is an N such that N It A and M d N. But 

M If A, and by the reflexivity of d (which in turn follows from (P2)), 

M < M, so we can put N = M. - For (E4), suppose for reductio ad 

absurdum that neither A s A & B nor B I A & B. This means that 

there is an M such that M bF A & B and for all N such that N If A it 

holds that not M d N, and there also is an M’ such that M‘ tF A & B 

and for all N’ such that N’ tf B it holds that not M’ < N’. Since Q 

is reflexive, M I- A and M’ t- B. Hence M Y B and M’ If A. Hence 

neither M < M’ nor M’ < M, contradicting (P2). - For (ES), let 

K # L. Assume that A I B for all B. This means that for any B and 

any M such that M tf B there is an N such that N ti A and M < N, 

which is equivalent to the statement that there is an N such that N Y A 

and M d N for all consistent M. By (P6) this in turn means that 
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there is an :V such that N V A and K E X, which reduces to K if A 

or: as K is a knowledge set, to A 4 K. - For (E6), assume that E I A 

for all B. This means that for any B and any M such that M V A 

there is an 1%’ such that ?V V B and M < IV. But if we take T as B, it 

is impossible that !V t! B. Thus it is impossible that M t: A for any M, 

thus t A. 17 

Note that the proof of Lemma 4 does not use (PO), (P3), (P4) or 

(P5). 

LEMMA 5. Let I be an EE-relation on L (with respect to u knowi- 

edge set K). Then < = P(I) sutisfies (PO)-(P6). 

Proof. For (PO), assume that :M(K, A) # 0. Then t: A. We have to 

show that there is an M E M(K, A) such that for all M’ E M(K, A), 

M’ < M, the latter meaning that every cut S G M’ is a subset of M. 

We first note that the largest cut that can be a subset of any element 

of M(K, A) is S, = {S: A < B}, since every larger cut includes A 
(by the reflexivity of 5). Second, .y, # 0. by (E5). A third obser- 

vation is that the non-empty cut S’, is a knowledge set which does not 

contain A. hence S,, h! A. But now we see that M(K, A) must contain 

a superset M of S,,. Clearly for any M’ E M(K, A) and any cut S, if 

S c M’ then S 5 S, E M, and we are done. - (Pl) is immediate, 

and (P2) follows from (PI), (P3) and (P4). - For (P3), assume that 

M 5 N. For M < IV, we have to verify that every cut S c M is a 

subset of X, which is trivial. - For (P4). suppose for reductio ud 

ubsurdum M $ M A N and 1’~’ $ M n N. This means that there is 

a cut S such that S G M and S $ M n N and a cut S’ such that 

S’ c N and S’ $Z M n N. From S c M and S’ G IV we get 

S n S’ c_ M r\ N. But since cuts arc nested, S n S’ = S or 

S n S’ = S’, and we get a contradiction. - For (P5), assume that 

CM d N for all N. This means that for any N E 2’. and any cut S, if 

S E M then S c IV, or equivalently, that for any cut S, if S E $1 

then S = 0. Since LT is the second smallest cut (which is due to 

(E6)). the latter is equivalent to A C$ M for some A such that t A. - 

For (P6), let K # L. Assume that 11’ d M for cvcry consistent N. 

This means that for every consistent N and every cut S, if S c IV 

then S c M, or equivalently, since K # L is the second largest cut 

(which is due to (ES)), K G $2. cl 
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Note that the proof of Lemma 5 requires all of the postulates (El)- 

(E6), which already enter into our knowledge of cuts. 

THEOREM 1. Let <_ be an EE-relation on L (with respect to a 

knowledge set K). Then I * = E(P( I)) is identical with 1. 

Proof. We have to show that A <* 3 if and only if A I B. 

From left to right: Let A I* B, which means that for all M such 

that M Y B there is an N such that N tt A and for all cuts S, if 

S c M then S G N. Suppose for reductio that B < A, i.e., that 

A E S,. Since S, is a knowledge set not containing B, S, V B. Thus 

there must be an N such that N ti A and S, s N. But since A E S,, 

N contains A, so N t A, and we have a contradiction. 

From right to left: Let B <* A, which means that there is an M 

such that M P 1y and for all N such that N If A there is a cut S such 

that S G M and S $ N. Suppose for reductio that A i B, i.e., that 

A $ S,. Since S, is a knowledge set, S, Y A. Thus there must be an M 

such that M V B and a cut S such that S c M and S 9 S,. From 

the latter condition it follows that there is a C in S such that C I tl, 

and since S is a cut, B must be in S too. But as S G M, then B E M, 

so M t B, and we have a contradiction. Cl 

THEOREM 2. Let 6 be a P-relation on 2’ with respect to afinite 

knowledge set K. Then the restrictions of <* = P(E( <)) and < to the 

cluss of‘knowledge sets are identical. 

ProoJ Let K be a finite knowledge set. We have to show that for 

any two knowledge sets M and N, M <* N iff M < N. Let N and M 

always stand for knowledge sets in this proof. The cut notation is not 

useful here, so we apply the original condition of Definition 5. 

From left to right: Let M <* N, which means that for all A 4 N 

there is a B 4 M such that for all M’ with M’ If B there is an N’ such 

that N’ !I A and M’ < N’. As M is a knowledge set, we can put 

M’ = M, getting that for all A 4 N there is an N’ such that N’ If A 

and M < N’. In particular, for all A E K - N there is an N’ such 

that N’ I/ A and M d N’. Since K is finite module Cn, we will need 

only finitely many such sets N’. Call them N,‘, . . . , N,,‘. Since N’ V A 

entails A 4 N’, we have (N,’ n . . . n NJ n K s N n K, hence 

(N,’ n . . . n N,,‘) n K < N n K. On the other hand, by (n- I)-fold 
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application of (P4), &’ d IV; n . . . n A{; for some i E { 1, . _ . . n>. 

Furthermore, (P4), (P6) and (PI) give us N; n . . . n Xi d (IV,’ n . . . n 

NJ n K. Putting all this together, we finally get the chain M < Ni’ < 

;-l)y,, ,ryi;ya;Ir; iT. . . n N,,‘) n K B N n K Q N, and. by 

From right to left: Let N <* M, which means that there is an 

A # N such that for all B I$ M there is an IM’ with JM’ Y B such that 

for all N’ with :V’ H A, N’ < 1M’. As N is a knowledge set, we can 

put N’ = IV, getting that for all B 6 A4 there is an M’ such that 

M’ V B and N < M’. By a chain of reasoning entirely analogous to 

the from-left-to-right case, we get N < 1M. 0 

The last four results reproduce those of Gardenfors [3] in our new 

setting. The main differences are these: first, I USC more complete sets 

of conditions for < and 6; second, I consider I as a relation not 

only on K but on I. and < as a relation not only on M(K) but on 

2’-; third, I need the finiteness assumption for K only once where 

Gardenfors uses it three times. The most interesting observations 

of this paper are, 1 believe, the following theorems for which there 

are no precedents in [3]. Roughly, they say that partial meet contrac- 

tions based on d and cpistemic entrenchment contractions based on 

< are equivalent, if Q and I are related by either Definition 4 or 

Defnition 5. 

THEOREM 3. Let < he a P-relution on 2’. (with respect to a knowl- 

edge set K). Then C(E( <)) is identical with C( <). 

Pruqf. If we write --_ for C(E( <)) and -* for C( <). we have to 

show that K - A = K A-* A for any A E L. This is trivial in the 

limiting case of A E LT where by delinition K 1 A = K = K --L* A. 

Now let A 4 LT. 

Condition (iii) of Lemma 2 is not useful here, so we go back to the 

original condition of Definition 4. For K A A = K -* A then we 

have to show that 

(*I K n {B: there is an ,W’ in M(K) such that A $ M’ and 

for all M in M(K) such that A v B 4 M it holds 
that M < M’} = 

n {ME M(K, A): M’ < M for all M’ in M(K, A)). 
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Consider the case where A is not in K. Then M(K, A) = {K}, so 

the RHS of (*) is K. It remains to show that for all B E K there is 

an M’ in M(K) such that A $ M’ and for all M in M(K) such that 

A v B $ M it holds that M < M’. Let B E K and choose K as M’. 

It suffices to show that for all M in M(K) such that A v B 4 M we 

have M < K. But if A v B 4 M then K is not a subset of M, since 

A v B E K. So, by (P6), M < K. 

Now consider the principal case A E K. We first note that for all M 

inM(K)andallAandBinK,A v B$MiffA$MandB$M. 

For suppose that M E M(K, C); then A v B E K - M iff M u 

{A v B} t C, i.e., M u (A) I- C and M u {B} t C, i.e., A E K - M 

and B E K - M. 

Using this we know that B is in the LHS of (*) if and only if 

(**I B E K and there is an M’ in M(K) such that A $ M’ 

and for all M in M(K) such that A $ M and B 4 M it 

holds that M < M’. 

From (**) we get by simple predicate calculus 

(***I for all M in M(K) such that A 4 M and B $ M there is 

an M’ in M(K) such that A $ M’ and M < M’. 

To see that conversely (***) already entails (**), first suppose for 

reductio that (***) holds but B $ K. Then B $ M for all M in M(K). 

By Lemma 2.4 of [2], (***) then states that for all M E M(K, A) there 

is an M’ E M(K, A) such that M < M’. But this contradicts (PO). 

Thus B E K. Second, suppose for reductio that (***) holds but also 

that for all M’ in M(K) such that A 4 M’ there is an M in M(K) 

such that A $ M and B $ M and M’ < M. By (PI) and Lemma 2.4 

of [2], then we get that for all M’ E M(K, A) there is an M” E M(K, A) 

such that M’ < M”. But this again contradicts (PO). Thus (**). 

Now we know that B is in the LHS of (*) iff (***) is satisfied. (***) 

is logically equivalent to B E r){M E M(K): A 4 M and M’ < M for 

all M’ E M(K) such that A E M’}. Using Lemma 2.4 of [2] again, we 

see that this may be expressed as B E n(M E M(K, A): M’ < M for 

all M’ E M(K, A)}, which is just the RHS of (*). 0 

Using previously established results, we obtain the next central 

theorem as a corollary of Theorem 3. 
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D 

. . /’ 
EE-RELATidN’on L E 

r 
j P-RE&flON on 2k’ 

:: 
K finite. 4 restricted ’ 

I satisfying (El )-(k6) < to knM sets 5 :c satisfying (PO)-(P6). 

CONTRACTION FUNCTION 
.L&- 

2 satisfying (Cl)-(C8) 

Scheme 2 

THEOREM 4. Let I be an EE-relation on L (with respect to knowl- 
edge set K). Then C(P( -<)) is identical with C(I). 

Proof. From Lemma 5 we know that P(I) is a P-relation with 

respect to K. Hence, by Theorem 3, C(P( I)) = C(E(P( I))). 
Theorem I te!ls us that E(P(<)) = <, hence C(E(P(<))) = C( 2). 

Putting this together, we get C(P( I)) = C(I). 0 

Taking over the connection between EE-relations and (EE-)contrac- 

tion functions from 151: we are now presented Scheme 2. 
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The missing links between preference relations and contraction func- 

tions are supplied easily by a last connecting definition. 

DEFINITION 6. If A is a contraction function over K then the 

associated preference relation d = P(l) on 2L is given by P(E(-)). 

P( -) of course satisfies (PO)-(P6). We can establish a number of 

corrollaries in a way similar to the proof of Theorem 4. 

COROLLARIES. Let 2 he a contraction function over a knowledge 

set K, I an EE-relation and < he a P-relation with respect to K. Then 

the following identities hold: 

G) C(P(L)) = -. 

(ii) P(C( <)) = < within the class of knowledge sets. 

provided that K is finite. 

(iii) P(C(I)) = P(S). 

(4 E(C(<)) = E(d). 

(4 E(P(2)) = E(L). 

A last interesting question is how Definition 6 relates to the construc- 

tion of a preference relation P*( 1) which can be found in Alchourron, 

Girdenfors and Makinson [2], p. 519. Let N(K, A) be the set of all M 

in M(K) such that K A A G M, and N(K) the set of all M in M(K) 

such that K 1 A E M for some A. Note that N(K, A) 5 M(K, A) u 

{K): Let M E N(K, A); then K 2 A c_ M and, without loss of 
generality, M E M(K, B); if B 4 K then M = K and we are done; if 

B E K then, by (C5), A -+ B E K L A c M, hence, since M V B, 

A $ M. So, by Lemma 2.4 of [2], M E M(K, A). 
P*(l) is deGned on 2K; if we abbreviate it by Q* it can be intro- 

duced as follows: M <* M’ if and only if M E M(K), M’ E N(K) 

and for all A, if M E N(K, A) and M’ E M(K, A) then M’ E N(K, A). 

Since both C(P*( A)) = -I (see [2]) and C(P(2)) = A (corollary 

(i) above), one may expect that P*(l) and P(A) show some agree- 

ment. Obviously it is only interesting to compare the restrictions of 
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P*(L) and P(A) to M(K). I could not prove: nor do I think it is 

true that in general P*( -) and P(-) are identical within the whole 

range of M(K). However, we can get the following result: 

THEOREM 5. Let 2 he a contraction function over a knolc+edge set 

K. If < = P(z) and 6* = P*(A), then A4 6 M’ if3^M 6* M’,for 

ali M in X(K) - {K) and M’ in N(K). 

Sketch ofproof. Let M E N(K) - {K] and M’ E N(K). We have 
to show that 

(*I for all A 4 M’ there is a B 4 M such that A $ K I A & B 

if and only if 

(**) for all C, if M E M(K, C) and M’ E M(K, C) 

then M’ E N(K, C). 

If M’ = K, then (*) is true, since A 4 K 2 A & B for all A $ K and 

arbitrary B: and (**) is true as well, since K E M(K, C) implies that 

M(K, C) = {Kj. Let us now turn to the principal case M’ # K. 

To set that (*) implies (**). suppose for rcductio that (*) holds but 

not (**), the latter meaning that M E N(K, C), M’ E M(K. C) and 

M’ 4 N(IY, C) for some C, As K A C $L M’, we can choose a D 

such that D E K I C and D $ M’. Since C, D E K, C. D # M’ and 

M’ E M(K). we get, by an argument already used in the proof of 

Theorem 3, C v D 6 M’. By (*), there is a B # M such that C v D 4 

K - (C v D) & B. Next we show that B # K - B & C: by (C4), 

B $ K z B & C or C 4 K - B & C; in the first case we are done and 

in the second case (C8) gives us K - B & C c K - C, and since 

K - C c A4 and B 4 M, we get B $ K - B & C. From C v D $ 

K - (C v D) & B and B 4 K 2 B & C. WC conclude with the help 

of a transitivity argument taken from [5]. p. 94. that C v D $ K 2 

(C v D) & C. This means, by (C6), C v D 4 K 1 C. But as we 

assumed D E K A C, we have a contradiction with (Cl). 

Conversely, to set that (**) implies (*), suppose for reductio that 

(**) holds, but not (*). The latter means that there is an A q! M’ such 

that A E K 1 A & B for all B $ M. Choose such an A. Without loss 

of generality, let M E N(K) - {K 1 be in N(K, E). Hence M E M(K, E), 

so E 4 M, hence A E K 2 A & E. By (C 1) and (C4), then, E $ K A 

A & E, hence, by (C8), K - A & E c K 2 E. Since K 2 E G M, 
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also K 2 A & E G M. But as A 4 M’, also A & E 4 M’, hence by 

Lemma 2.4 of [2] M’ E M(K, A & E). Thus (**) gives us K L A & 

EEM’.B~~AEK- A&EandA$M’,soKA A&E$M’, 

and we have a contradiction. 0 

For finite knowledge sets the agreement between P*(A) and P( 2) is 

almost perfect: 

COROLLARY. Let L he u contraction/unction over afinite knowledge 

set K. If < = P(A) und <* = P*(A) then M d M’ 18M <* M’ 

for all M in M(K) - {K} and M’ in M(K). 

Proof. In view of Theorem 5 it suffices to show that M(K) c N(K) 

for finite K. Let M E M(K). We have to show that K - A E M for 

some A. Since K is finite, K - M, too, is partitioned into finitely many 

equivalence classes by Cn. Let A bc the disjunction A, v . . . v A, 

of representatives of these equivalence classes. We show that in fact 

K - A E M. Let B E K A A. By (C4) and (Cl), B V A. So, by con- 

struction of A, B 4 K - M. But as B E K by (C2), we get B E M. (It 

is possible to show that even K 1 A = M.) 0 

5. REMARKS ON SIMPLE REVISIONS 

At the end of Section 2 we noted that it is easier to conceive EE- 

relations on L then P-relations on 2L, but that EE-contraction func- 

tions are not very perspicuous. In many contexts, however, one is 

interested in contraction functions only as a means of obtaining 

revisions. We base the following considerations on the advice of the 

Levi identity which tells us that a revision function + = R(A) over a 

knowledge set K is to be constructed from a contraction function - 

over K by putting K -& A = Cn((K 2 1 A) u {A}) for all sentences 

A. In the case of an EE-contraction function 1, then, it is possible to 

specify a very simple “withdrawal function” \ over K (the term is due 

to Makinson [S]) which is revision-equivalent over K in the sense that 

R(\) = R(L). We make use of EE-cuts which have been helpful in 

simplifying some proofs of the last section. 
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DEFINITION 7. If 5 is an EE-relation on L, then the associated 

withdrawal function \, = W(I) over K is given by 

K\,A = 

i 

S, = (B: A < B}, if YA, 

K, if IA. 

It is easy to see that ‘I~, has nearly all the properties of a contraction 

function: 

LEMMA 6. Let 5 be an EE-relation on L (with respect to a knowl- 

edge set K). Then ‘t,, = W(I) satisfies (Cl)-(C4) and (C6)-(Cl?). but 

not ((3). 

Proof: For FA we have K(,A = K, and it is easy to verify (Cl)- 

(C8). So let VA. Then, by (E6) and (E2), S,, # a. We saw in Section 

4 that non-empty cuts are knowledge sets, so (Cl) is satisfied. (C2) 

and (C3) follow from (E5). (C4) follows from the reflexivity of < 

(which in turn is due to (E2)). (C6) follows from (E3). For (C7). 

assume that C E K\ A n Kit< B, i.e., A < C and B < C. By (E3), 

A & B I A, hence, by (El), A & B < C, so C E K: A & B. (Note 

that even K’: A u K’t: B E K\,A & B and that K\ A & B = K’<\, A 

or K\ A & B = K’l,, B.) For (C8), assume that A 4 K\ A & B and 

C E K’,,A & B, i.e., A < A & B and A & B < C. Thus, by (El), 

A -c C, hence CE K/A. 

We give a counterexample to (C5). Let A, B E L such that tiA and 

A V B. WC consider K = Cn({A: B}) and define 5 on L by putting 

T 5 C 5 T for C E LT, I I C I I for C 4 K. I < C < T for 

C E K - LT, C I D and D I C for C, D E K - LT, and then 

taking the transitive closure. It is easy to check that this generates an 

EE-relation on L. We find that Cn((K\, A) u (A}) = Cn({ C: A < C 1 u 

{A)) = Cn(LT u {A)) = Cn((A]). Since by assumption K = 

Cn({A, B)) and A tf B, then, K is not a subset of Cn((K!,, A) u [A)). 

Given ‘;, = W(I) and - = C(I) for some EE-relation I on L, 

it is clear that K\ A E K 2 A: if A < B then B E K by (E5) and 

A < A v B by (E3) and (El). But K\ A gives up too many sentences 
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(see the counterexample to (C5) just given). The violation of the 

recovery postulate (C5) is a violation of the idea of minimal loss of 

information (see [8] for a thorough discussion of recovery). It is 

interesting to observe, however, that \ is revision-equivalent to -: 

LEMMA 7. Let I he an EE-relation on L. Then R( W( -<)) = 

R(C( g 1). 
Proof. We have to show that Cn(.S,, u (1 A)) = Cn((K n {B: A < 

A v B)) u (1 A}). We already know that S, 5 K A (B: A < 

A v B}), so it remains to show that RHS c LHS. Suppose that 

C E RHS, i.e., that there arc B,, . . . , B,, such that Bi E K and 

A <A v B,foralli= I,..., nandB ,,..., B,,,iAtC(iA 

may be redundant). Then obviously A v B,, . . . , A v B,, A v 

1 A 1 A v C. Since we may drop the premise A v 1 A and since 

A v B,ESAforalli= I,..., n, WC find that A v C E Cn(S,), so 

C E Cn(S, u {i A}). 0 

The upshot of Lemma 7 is that it is very easy to perform EE-revisions, 

i.e., revisions obtained from IX-contractions via the Levi identity. 

In order to go to K $ A, jwst keep all those sentences of K that are 

epistemically better entrenched than 1 A, add A and take the deductive 

closure. There is no trouble with intricate comparisons of disjunctions 

as in Definition 2. This appears to be a very perspicuous and manag- 

able method of constructing revisions of knowledge bases. 

6. REMARKS ON ITERATED REVISIONS 

So far WC have investigated transitions from some knowledge set K 
to a revised knowledge set K + A. On closer inspection, however, it 

comes out that we started out from K together with an EE-relation < 

with respect to K but ended up with a bare set of sentences. There is 

no guidance at all what to do if we were to revise K 4 A in a second 

step. WC need an IX-relation <A with respect to K + A to accom- 

plish iterated revisions. To put it differently. it is not knowledge sets 

that have to be revised but EE-relations.” We can indeed get some- 

thing like revisions of EE-relations in the Gardenfors model, but they 

are not perfect. I believe the most suitable suggestion is this: 



CONSTRUCTING CONTRACTIONS AND REVISIONS 171 

DEFINITION 8. Let < be an EE-relation on L (with respect to a 

knowledge of set K). Then the revision <,i of 5 is given by 

B I,, C if and only if A + B 5 A + C. 

To form an idea of how this definition works, we note the following 

properties of IA : 

LEMMA 8. Let I be an EE-r-elation on L (with respect to knowledge 

set K). 

(i) Then sA satisfies (El)-(H). 

(ii) Let i 1 A. Then IA and K + A satisfi (E5) if‘ and only f 

K + A = K -j-* A where +* = R(C(<)). 

(iii) Let VA. Theta I~,, does not satisfy (E6). 
ProqJ: (i) It is straightforward to show that <.A inherits (El)-(E4) 

from the corresponding postulates for I. 

(ii) Let s,~ and K + A satisfy (E5). That is, 

(“1 C cA B for some C if and only if t3 E K j- A. 

By Definition 8, the LHS of (*) means that A + C < A + B for 

some C which, by (E3), is equivalent to 1 A < A + B, or A ---f 

B E S..,,4. We recall from Section 4 that the asumption VT A implies 

that S,,j # 0 is a theory. So A -+ B E S,, is equivalent to B E 

Cn(-L u {Al). Comparing this with the RHS of (*), we can 

transform the postulate (ES) for I,,, and K + A into K + A = 

Cn(S.,, u (A}). By Lemma 7, this means that K + A = K +* A 

where -j-* = R(C(<)), and WC are done. 

(iii) By (E3), A 4 B I A -+ A for all B, hence B srl A for all B, 

despite the assumption that VA. So I,, violates (E6). cl 

The only point that does not fit into the nice picture is mentioned 

in part (iii). On the one hand, I do not think that the violation of 

maximality is very annoying. (E6) is a limiting case postulate which 

could be dropped if some suitable technical changes were made at 

other places in the revision model. If there are contingent A’s such 

that A 5 I (the A’s outside K), why shouldn’t there be contingent 

A’s such that T d A? Candidates for sentences pretending to maximal 
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epistemic entrenchment are ‘Bachelors are unmarried’, ‘Penguins are 

birds’, or ‘F = m * a’ for an advocate of Newtonian mechanics. 

On the other hand, the way how Definition 8 invalidates maximality 

is dissatisfying. Evidently, A is a greatest element under I”, by 
t A --, A and (E3). So A is put on the same level as the theorems 

of the logic Cn in K j- A. Worse, A cannot lose this extraordinary 

status through later revisions, which is again due to Definition 8. For 

instance, we cannot make plausible statements about (K + A) + 1 A. 
Because A is extraordinary in K + A, the EE-revision (K -j- A) + 
in is Cn((B: A cA B) u (iA}) = Cn(iA), while intuitively we 

rather expect (K + A) -/- 1 A = K j- 1 A if tfi A. Difficulties like 

this arc, I believe, not to be ascribed in some awkwardness of Defini- 

tion 8, but to the fundamental limitations of the purely relational EE- 

revision model. Corresponding difficulties are known in probability 

theory, where standard conditionalization gives PA(A) = 1, and no 

later conditionalization of P,, will push the probability of A down any 

more. A well-known solution of this problem is to employ the Jeffrey 

conditionalization PA,o: = aPA + (I - a)P,, for some certainty factor 

a between 0 and 1. It seems that in order to tackle the analogous 

problem for non-probabilistic revisions the purely relational structure 

of knowledge bases must be enriched to an ordinal one. This task 

is accomplished by Spohn’s [9, lo] theory of ordinal conditional 

functions.’ 

NOTES 

’ Isaac Levi made me realize that there arc contexts where the recovery postulate (CS) 

is problematic. In such contexts the constructions to bc discussed do not seem appro- 

priate. Compare [g]. 

2 In [3] and [4], M(K) is dehncd as lJ { M(K, A): A E K and t/A}, and in [2] as 

U{M(K, A): A E K}. 

3 In many contexts (PO) is not really essential By defining K A A as tJ {n {M’ E M(K, A): 

M’ > M): M E M(K, A)} one could dispense with (PO) and nevertheless get most of 

the things desired. I shall keep (PO), though, partly for the sake of simplicity and partly 

bccausc I need it in the proof of my central Theorem 3. 

’ (E4’) is not needed for the proof of this result. It is also remarkable that (PO) is not 

even mentioned in Gardcnfors [3]. 

’ The concept of an EEcut is inspired by, but not identical with the concept of a cut 

in Grove 161, p. 165. 
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’ The concept of a knowledge set is. in a sense, superth~ous. One could take EE- 

relations on L as primitive and define associated knowledge sets K # L by K = S, 

Similarly, taking P-relations < on ZL or contraction functions z from L to 2’. as pri- 

mitive, one could get knowledge sets K # L by putting K = n(M E ZL: L & M ) and 

K = ~(1) rcspcctively. 

r I want to thank Isaac Levi and David Makinson for a number of helpful comments. 
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