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Two-microphone Separation of Speech Mixtures
Michael Syskind Pedersen, Member, IEEE, DeLiang Wang, Fellow, IEEE, Jan Larsen, Senior Member, IEEE,

and Ulrik Kjems, Member, IEEE

Abstract—Separation of speech mixtures, often referred to as
the cocktail party problem, has been studied for decades. In
many source separation tasks, the separation method is limited
by the assumption of at least as many sensors as sources. Further,
many methods require that the number of signals within the
recorded mixtures be known in advance. In many real-world
applications these limitations are too restrictive. We propose
a novel method for underdetermined blind source separation
using an instantaneous mixing model which assumes closely
spaced microphones. Two source separation techniques have been
combined, independent component analysis (ICA) and binary time-
frequency masking. By estimating binary masks from the outputs
of an ICA algorithm, it is possible in an iterative way to extract
basis speech signals from a convolutive mixture. The basis signals
are afterwards improved by grouping similar signals. Using two
microphones we can separate in principle an arbitrary number
of mixed speech signals. We show separation results for mixtures
with as many as seven speech signals under instantaneous
conditions. We also show that the proposed method is applicable
to segregate speech signals under reverberant conditions, and
we compare our proposed method to another state-of-the-art
algorithm. The number of source signals is not assumed to be
known in advance and it is possible to maintain the extracted
signals as stereo signals.

Index Terms—Underdetermined speech separation, ICA, time-
frequency masking, ideal binary mask.

I. INTRODUCTION

THE problem of extracting a single speaker from a mixture

of many speakers is often referred to as the cocktail

party problem [1], [2]. Human listeners cope remarkably

well in adverse environments, but when the noise level is

exceedingly high, human speech intelligibility also suffers. By

extracting speech sources from a mixture of many speakers,

we can potentially increase the intelligibility of each source

by listening to the separated sources.

Blind source separation addresses the problem of recovering

N unknown source signals s(n) = [s1(n), . . . , sN (n)]T from

M recorded mixtures x(n) = [x1(n), . . . , xM (n)]T of the

source signals. n denotes the discrete time index. Each of the

recorded mixtures xi = xi(n) consists of Ns = fsT samples,

where fs is the sampling frequency and T denotes the duration

in seconds. The term ‘blind’ refers to that only the recorded

mixtures are known. The mixture is assumed to be a linear

superposition of the source signals, sometimes with additional

noise, i.e.,

x(n) = As(n) + ν(n), (1)
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where A is an M×N mixing matrix. ν(n) is additional noise.

Also, A is assumed not to vary as function of time. Often, the

objective is to estimate one or all of the source signals. An

estimate y(n) of the original source signals can be found by

applying an (pseudo) inverse linear operation, i.e.,

y(n) = Wx(n), (2)

where W is an N × M separation matrix. Notice that this

inversion is not exact when noise is included in the mixing

model. When noise is included as in (1), y(n) is a nonlinear

function of x(n) [3]. In this paper, the inverse is approximated

by a linear system.

In real environments, a speech signal does not only arrive

from a single direction. Rather, multiple reflections from the

surroundings occur as delayed and filtered versions of the

source signal. In this situation, the mixing model is better

approximated by a convolutive mixing model. The convolutive

FIR mixture is given as

x(n) =
K−1
∑

k=0

Aks(n − k) + ν(n) (3)

Here, the source signals are mixtures of filtered versions of

the anechoic source signals. The filters are assumed to be

causal and of finite length K . Numerous algorithms have been

proposed to solve the convolutive problem [4], but few are able

to cope with underdetermined as well as reverberant conditions

[5]–[9].

Independent Component Analysis (ICA) describes a class

of methods that retrieve the original signals up to an arbitrary

permutation and scaling [10]. Successful separation relies on

assumptions on the statistical properties of the source signals.

To obtain separation, many ICA methods require that at most

one source be Gaussian. Many algorithms assume that the

source signals are independent or the source signals are non-

Gaussian [11]–[14]. Other methods are able to separate the

source signals using only second order statistics. Here, it is

typically assumed that the sources have different correlation

[15]–[17] or the source signals are non-stationary [18], [19].

Blind source separation algorithms have been applied in many

areas such as feature extraction, brain imaging, telecommuni-

cations, and audio separation [10].

ICA methods have several drawbacks. Often, it is required

that the number of source signals is known in advance and only

few have addressed the problem of determining the number of

sources in a mixture [20], [21]. Further, standard formulation

requires that the number of source signals does not exceed the

number of microphones. If the number of sources is greater

than the number of mixtures, the mixture is called under-

determined (or overcomplete). In this case, the independent
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components cannot be recovered exactly without incorporating

additional assumptions, even if the mixing process A is known

[10]. Additional assumptions include knowledge about the

geometry, or detailed knowledge about the source distribu-

tions [22]. For example, the source signals are assumed to

be sparsely distributed - either in the time domain, in the

frequency domain or in the time-frequency (T-F) domain [8],

[23]–[26]. Sparse sources have a limited overlap in the T-F

domain. The validity of non-overlapping sources in the T-

F domain comes from the observation that the spectrogram

of a mixture is approximately equal to the maximum of

the individual spectrograms in the logarithmic domain [27].

When the source signals do not overlap in the time-frequency

domain, high-quality reconstruction can be obtained [8]. The

property of non-overlapping sources in the T-F domain has

been denoted as the W-disjoint orthogonality [28]. Given the

short-time Fourier transform (STFT) of two speech signals

Si(ω, t) and Sj(ω, t), the W-disjoint orthogonality property

can be expressed as

Si(ω, t)Sj(ω, t) = 0, ∀i 6= j, ∀ω, t, (4)

where t is the time frame index and ω is the discrete frequency

index. This property holds, for example, when tones are

disjoint in frequency.

However, there is overlap between the source signals but

good separation can still be obtained by applying a binary

time-frequency mask to the mixture [24], [8]. In computational

auditory scene analysis [29], the technique of T-F masking

has been commonly used for many years (see e.g. [30]).

Here, source separation is based on organizational cues from

auditory scene analysis [31]. Binary masking is consistent

with perceptual constraints regarding human ability to hear

and segregate sounds [32]. Especially, time-frequency masking

is closely related to the prominent phenomenon of auditory

masking [33]. More recently the technique has also become

popular in the ICA community to deal with non-overlapping

sources in the T-F domain [28]. T-F masking is applicable

to source separation/segregation using one microphone [30],

[34]–[36] or more than one microphone [8], [24], [37]. T-F

masking is typically applied as a binary mask. For a binary

mask, each T-F unit (the signal element at a particular time

and frequency) is either weighted by one or by zero. In order

to reduce artifacts, soft masks may also be applied [38]. Also

by decreasing the downsampling factor in the signal analysis

and synthesis, a reduction of musical noise is obtained [39].

An advantage of using a T-F binary mask is that only a

binary decision has to be made [32]. Such a decision can

be based on clustering from different ways of direction-of-

arrival estimation [8], [24], [28], [37], [40]. ICA has been used

in different combinations with the binary mask [40]–[42]. In

[40], separation is performed by removing N − M signals

by masking and then applying ICA in order to separate the

remaining M signals. In [41], ICA has been used the other

way around. Here, ICA is applied to separate two signals by

using two microphones. Based on the ICA outputs, T-F masks

are estimated and a mask is applied to each of the ICA outputs

in order to improve the signal to noise ratio (SNR).

In this paper, we propose a novel approach to separating

an arbitrary number of speech signals. Based on the output

of a square (2 × 2) ICA algorithm and binary T-F masks,

our approach iteratively segregates signals from a mixture

until an estimate of each signal is obtained. Our method is

applicable to both instantaneous and convolutive mixtures. A

preliminary version of our work has been presented in [43],

where we demonstrated the ability of our proposed framework

to separate up to six speech mixtures from two instantaneous

mixtures. In [44] it has been demonstrated that the approach

can be used to segregate stereo music recordings into single

instruments or singing voice. In [45] we described an extension

to separate convolutive speech mixtures.

The paper is organized as follows. In Section II, we

show how instantaneous real-valued ICA can be interpreted

geometrically and how the ICA solution can be applied to

underdetermined mixtures. In Sections III and IV we de-

velop a novel algorithm that combines ICA and binary T-

F masking in order to separate instantaneous as well as

convolutive underdetermined speech mixtures. In Section V,

we systematically evaluate the proposed method and compare

it to existing methods. Further discussion is given in Section

VI, and Section VII concludes the paper.

II. GEOMETRICAL INTERPRETATION OF INSTANTANEOUS

ICA

We assume that there is an unknown number of acoustical

source signals but only two microphones. It is assumed that

each source signal arrives from a distinct direction and no

reflections occur, i.e., we assume an anechoic environment

in our mixing model. We assume that the source signals are

mixed by an instantaneous time-invariant mixing matrix as

in Eq. (1). Due to delays between the microphones, instanta-

neous ICA with a real-valued mixing matrix usually is not

applicable to signals recorded at an array of microphones.

Nevertheless, if the microphones are placed at the exact same

location and have different gains for different directions, the

separation of delayed sources can be approximated by the

instantaneous mixing model [46]. Hereby, a combination of

microphone gains corresponds to a certain directional pattern.

The assumption that the microphones are placed at the exact

same location can be relaxed. A similar approximation of

delayed mixtures to instantaneous mixtures is provided in [47].

There, the differences between closely spaced omnidirectional

microphones are used to create directional patterns, where

instantaneous ICA can be applied. In the AppendixA, we show

how the recordings from two closely spaced omnidirectional

microphones can be used to make two directional microphone

gains.

Therefore, a realistic assumption is that two directional

microphone responses recorded at the same location are avail-

able. For evaluation purposes, we have chosen appropriate

microphone responses; the frequency independent gain re-

sponses are chosen as functions of the direction θ as r1(θ) =
1 + 0.5 cos(θ) and r2(θ) = 1 − 0.5 cos(θ), respectively. The

two microphone responses are shown in Fig. 1. Hence, instead

of having a mixing system where a given microphone delay
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Fig. 1. The two directional microphone responses are shown as function of
the direction θ.

corresponds to a given direction, a given set of microphone

gains corresponds to a certain direction, and the mixing system

is given by

A(θ) =

[

r1(θ1) · · · r1(θN )
r2(θ1) · · · r2(θN )

]

. (5)

For the instantaneous case, the separation matrix W can

be regarded as direction-dependent gains. For an M × M
separation matrix, it is possible to have at most M − 1 null

directions, i.e., directions from which the interference signal

is canceled out, see e.g. [48], [49]. Signals arriving from other

directions are not completely canceled out, and they thus have

a gain greater than −∞ dB.

Now consider the case where N ≥ M = 2. When there are

only two mixed signals, a standard ICA algorithm only has two

output signals y(n) = [y1(n), y2(n)]T . Since the number of

separated signals obtained by (2) is smaller than the number

of source signals, y does not contain the separated signals.

Instead, if the noise term is disregarded, y is another linear

superposition of the source signals, i.e.

y = Gs, (6)

where the weights are given by G = WA instead of just A

as in (1). Thus, G just corresponds to another weighting of

each of the source signals depending on θ. These weights

make y1(n) and y2(n) as independent as possible even though

y1(n) and y2(n) themselves are not single source signals. This

is illustrated in Fig. 2. The figure shows the two estimated

spatial responses from G(θ) in the underdetermined case. The

response of the m’th output is given by gm(θ) = |wT
ma(θ)|,

where wm is the separation vector from the m’th output and

a(θ) = [r1(θ), r2(θ)]
T is the mixing vector for the arrival

direction θ [48]. By varying θ over all possible directions,

directivity patterns can be created as shown in Fig. 2. The

estimated null placement is illustrated by the two round dots

placed at the perimeter of the outer polar plot. The lines
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Fig. 2. The polar plots show the gain for different directions. ICA is applied
with two sensors and seven sources. The two dots at the outer perimeter show
the null directions. We see that each row of the 2×2 ICA solution can make
just one null direction in the interval 0◦ ≤ θ ≤ 180◦ . Symmetric nulls exist
in the interval 180◦ ≤ θ ≤ 360◦ . The lines pointing out from the origin
denote the true direction of the seven numbered speech sources. The ICA
solution tends to place the null towards sources spatially close to each other,
and each of the two outputs represents a group of spatially close signals.

pointing out from the origin illustrate the direction of the seven

source signals. Here, the sources are equally distributed in the

interval 0◦ ≤ θ ≤ 180◦. As shown in the figure, typically the

nulls do not cancel single sources out. Rather, a null is placed

at a direction pointing towards a group of sources which are

spatially close to each other. Here, it can be seen that in the

first output, y1(n), the signals 5, 6 and 7 dominate and in the

second output, y2(n), the signals 1, 2 and 3 dominate. The last

signal, 4 exists with almost equal weight in both outputs. As

we show in Section III, this new weighting of the signals can

be used to estimate binary masks reliably. Similar equivalence

has been shown between ICA in the frequency domain and

adaptive beamforming [49]. In that case, for each frequency,

Y(ω) = G(ω)S(ω).

III. BLIND SOURCE EXTRACTION WITH ICA AND BINARY

MASKING

A. Algorithm for instantaneous mixtures

The input to our algorithm is the two mixtures x1 and x2

of duration Ns. The algorithm can be divided into three main

parts: a core procedure, a separation stage and a merging

stage. The three parts are presented in Fig. 3, Fig. 4 and Fig. 5,

respectively.

1) Core procedure: Fig. 3 shows the core procedure. The

core procedure is performed iteratively for a number of cycles

in the algorithm. The inputs to the core procedure are two input
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Fig. 3. Flowchart showing the core procedure of the algorithm.
The algorithm has three input signals: The two input mixtures xa =
[xa(0), xa(1), · · · , xa(Ns)] and xb = [xb(0), xb(1), · · · , xb(Ns)], and a
binary mask which has been applied to the two original mixtures in order to
obtain xa and xb. Source separation by ICA is applied to the two original
signals in order to obtain y1 and y2. ŷ1 and ŷ2 are obtained by normalizing the
two signals with respect to the variance. The re-scaled signals are transformed
into the T-F domain, where the two binary masks are obtained by comparing
the corresponding T-F units of the two T-F signals and multiplying by the
input binary mask to prevent re-introduction of already masked T-F units.
The two estimated masks are then applied in the T-F domain to the original
signals x1 → X1(ω, t) and x2 → X2(ω, t). The output consists of the two
estimated binary masks and the four masked signals.

mixtures xa and xb and a binary mask (step A), which has been

applied to the original signals x1 and x2 in order to obtain

xa and xb. In the initial application of the core procedure,

xa = x1 and xb = x2, and BM is all ones.

As described in the previous section, a two-input two-output

ICA algorithm is applied to the input mixtures, regardless

of the number of source signals that actually exist in the

mixture (step B). The two outputs y1 and y2 from the ICA

algorithm are arbitrarily scaled (step C). Since the binary

mask is estimated by comparing the amplitudes of the two

ICA outputs, it is necessary to solve the scaling problem. In

[43], we solved the scaling problem by using the knowledge

about the microphone responses. Here we use a more ‘blind’

method to solve the scaling ambiguity. As proposed in [10],

we assume that all source signals have the same variance and

the outputs are therefore scaled to have the same variance. The

two re-scaled output signals, ŷ1 and ŷ2 are transformed into

the frequency domain (step D), e.g. by use of the STFT so

that two spectrograms are obtained:

ŷ1 → Y1(ω, t) (7)

ŷ2 → Y2(ω, t), (8)
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Fig. 4. The separation stage. Separation is performed iteratively by the
core procedure as described in Fig. 3. The stopping criterion is applied to
each set of outputs from the core procedure. If the output consists of more
than one speech signal, the core procedure is applied again. If the output
consists of only a single source signal, the output and its corresponding mask
are stored. The core procedure is applied to the outputs iteratively until all
outputs consist of only a single signal. The outputs are stored either as a
candidate for a separated stereo sound signal ŝ or a separated stereo signal
of poor quality p̂.

where ω denotes the frequency and t the time window index.

From the two time-frequency signals, two binary masks are

estimated. The binary masks are determined for each T-F unit

by comparing the amplitudes of the two spectrograms (step

E):

BM1(ω, t) =

{

1, if |Y1(ω, t)| > τ |Y2(ω, t)|;
0, otherwise.

∀ω, t,(9)

BM2(ω, t) =

{

1, if |Y2(ω, t)| > τ |Y1(ω, t)|;
0, otherwise.

∀ω, t,(10)

where τ is a parameter. The parameter τ in (9) and (10)

controls how sparse the mask should be, i.e., how much of

the interfering signals should be removed at each iteration. If

τ = 1, the two estimated masks together contain the same

number of retained T-F units (i.e. equal to 1) as the previous

mask. If τ > 1, the combination of the two estimated masks is

more sparse, i.e. having fewer retained units, than the previous

binary mask. This is illustrated in Fig. 6. In general, when

τ > 1, the convergence is faster at the expense of a sparser

resulting mask. When the mask is sparser, musical noise

becomes more audible. The performance of the algorithm is

considered for τ = 1 and τ = 2. We do not consider the case

where 0 < τ < 1 as some T-F units would be assigned the

value ‘1’ in both estimated masks.

In order to ensure that the binary mask becomes sparser for
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Fig. 5. Flowchart showing the steps of the merging stage. The details of
the separation stage in step ‘a’ are shown in Fig. 3 and in Fig. 4. From
the separation stage, the outputs shown in step ‘b’ are available. ŝ1, . . . , ŝk

denote the k separated signals, and p̂1, . . . , p̂l denotes the l separated signals
of poor quality. BM denotes the corresponding binary mask of the estimated
signal. The outputs from the main algorithm are further processed in order to
improve the separated signals. Masks of output signals which are correlated
are merged. Also masks output signals which are correlated with signals of
poor quality are merged with these masks. A background mask is estimated
from T-F units that have not been used so far. This mask is used to execute the
main algorithm again. If the background mask has not changed, the segregated
signals are not changed any further and the algorithm stops.

every iteration, a simple logical AND operation between the

previous mask and the estimated mask is applied.

Next, each of the two binary masks is applied to the original

mixtures in the T-F domain (step F ), and by this non-linear

processing, some of the speech signals are attenuated by one

of the masks while other speakers are attenuated by the other

mask. After the masks have been applied to the signals, they

are reconstructed in the time domain by the inverse STFT (step

G).

Time-frequency decomposition can be obtained in many

ways, of which the STFT is only one way. The STFT has

a linear frequency scale. A linear frequency scale does not

accord well with human perception of sounds. The frequency

representation in the human ear is closer to a logarithmic

scale. The frequency resolution at the low frequencies is much

higher than that at the high frequencies [33]. Therefore, T-

F decomposition, where the frequency spacing is logarithmic

may be a better choice than a linear scale. T-F decomposition

based on models of the cochlea are termed cochleagrams

[29]. Different filterbanks can be used in order to mimic the

cochlea, including the Gammatone filterbank [50]. Frequency

warping of a spectrogram is another option, e.g. to fit the Bark

frequency scale [51].
2) Separation stage: Fig. 4 shows the separation stage,

i.e. how the core procedure is applied iteratively in order

to segregate all the source signals from the mixture. At the

beginning, the two recorded mixtures are used as input to the

core procedure. The initial binary mask, BM(0) has the value

‘1’ for all T-F units. A stopping criterion is applied to the two

sets of masked output signals. The masked output signals are

divided into three categories defined by the stopping criterion

in Section IV:

1) The masked signal is of poor quality.

2) The masked signal consists of mainly one source signal.

3) The masked signal consists of more than one source

signal.

In the first case, the poor quality signal is stored for later

use and marked as a poor quality signal. We denote these

signals as p̂. When we refer to a signal of poor quality, we

mean a signal whose mask only contains few T-F units. Such a

signal is distorted with many artifacts. In the second case, the

signal is stored as a candidate for a separated source signal. We

denote those signals as ŝ. In the third case, the masked signal

consists of more than one source. Further separation is thus

necessary, and the core procedure is applied to the signals. T-

F units that have been removed by a previous mask cannot

be re-introduced in a later mask. Thus, for each iteration,

the estimated binary masks become sparser. This iterative

procedure is followed until no more signals consist of more

than one source signal.
3) Merging stage: The objective of our proposed method is

to segregate all the source signals from the mixture. Because

a signal may be present in both ICA outputs, there is no

guarantee that two different estimated masks do not lead

to the same separated source signal. In order to increase

the probability that all the sources are segregated and no

source has been segregated more than once, a merging stage

is applied. Further, the merging stage can also improve the

quality of the estimated signals. The merging steps are shown

in Fig. 5. The output of the separation stage (step a) is

shown in step b. The output of the algorithm consists of

the k segregated sources, ŝ1, . . . , ŝk, the l segregated signals

of poor quality, p̂1, . . . , p̂l, and their corresponding binary

masks. In the merging stage, we identify binary masks that

mainly contain the same source signal. A simple way to decide

whether two masks contain the same signal is to consider the

correlation between the masked signals in the time domain.

Notice that we cannot find the correlation between the binary

masks. The binary masks are disjoint with little correlation.

Because we have overlap between consecutive time frames,

segregated signals that originate from the same source are

correlated in the time domain.

In step c, the correlation coefficients between all the sep-

arated signals are found. If the normalized correlation coeffi-

cient between two signals is greater than a threshold τC1, a

new signal is created from a new binary mask as shown in step

d and e. The new mask is created by applying the logical OR

operation to the two masks associated with the two correlated
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1=τ

2=τ

Fig. 6. The first two iterations for the estimations of the binary masks. Black indicates ‘1’, and white ‘0’. For each iteration, two new masks are estimated
by comparison of the ICA output as shown in equations (9) and (10). The previous mask ensures that no T-F units are re-introduced. The plot above shows
the case of τ = 1. When τ = 1, the estimated masks contain the same T-F units as the mask in the previous iteration. The plot below shows the case of
τ = 2. Here the two estimated masks together contain less T-F units than the binary mask at the previous iteration. Therefore τ can be used to control the
convergence speed. The separation performance with the τ = 1 and τ = 2 is presented in Table V and VI, respectively.

signals. Here, we just find the correlation coefficients from one

of the two microphone signals and assume that the correlation

coefficient from the other channel is similar.

Even though a segregated signal is of poor quality, it might

still contribute to improve the quality of the extracted signals.

Thus, the correlation between the signals with low quality

(energy) and the signals that contain only one source signal

is found (step f). If the correlation is greater than a threshold

τC2, the mask of the segregated signal is expanded by merging

the mask of the signal of poor quality (step g and h). Hereby

the overall quality of the new mask should be higher, because

the new mask is less sparse. After the correlations between

the output signals have been found, some T-F units still

have not been assigned to any of the source signal estimates.

As illustrated in Fig. 7, there is a possibility that some of

the sources in the mixture have not been segregated. In the
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Fig. 7. As in Fig. 2 the polar plots show the gain for different directions.
Comparison between the gains determines the binary masks. Within the
shaded areas, the gain is almost equal. Source signals that arrive from a
direction close to where the gains are almost equal will (depending on the
parameter τ ) either exist in both masked signals or in none of the masked
signals. Therefore, the algorithm may fail to segregate such source signals
from the mixture.

direction where the gains from the two ICA outputs are almost

equal, there is a higher uncertainty on the binary decision,

which means that a source in that area may appear in both

outputs. Furthermore, if τ > 1 some T-F units in the shaded

area of Fig. 7 are assigned the value ‘0’ in both binary masks.

Therefore, sources are assumed to exist in the T-F units which

have not been assigned to a particular source yet. Thus, a

background mask is created from all the T-F units which have

not been assigned to a source (step i). The background mask is

then applied to the original two mixtures, and possible sounds

that remain in the background mask are hereby extracted. The

separation algorithm is then applied to the remaining signal to

ensure that there is no further signal to extract. This process

continues until the remaining mask does not change any more

(step j). Notice that the final output signals are maintained as

two signals.

B. Modified algorithm for convolutive mixtures

In a reverberant environment, reflections from the signals

generally arrive from different directions. In this situation,

the mixing model is given by (3). Again, we assume that

the sounds are recorded by a two-microphone array with

directional responses given in Fig. 1. A simple reverberant

environment is illustrated in Fig. 8. Here three sources s1(n),
s2(n) and s3(n) are impinging the two-microphone array and

direction-dependent gains are obtained. Also one reflection

from each of the sources is recorded by the directional micro-

phones: α1s1(n−k1), α2s2(n−k2) and α3s3(n−k3). In this

environment, we can write the mixture with an instantaneous

mixing model x = As with s = [α3s3(n−k3), s1(n), α2s2(n−

�����

���������
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Fig. 8. A simple reverberant environment with three sources each having
one reflection. As in Fig. 1 the impinging signals are recorded by a two-
microphone array with directional responses, so that each direction corre-
sponds to a certain set of directional microphone responses. Here, each
reflection can be regarded as a single source impinging the microphone array.

k2), s3(n), α1s1(n − k1), s2(n)]T and

A(θ) =

[

r1(θ1) · · · r1(θ6)
r2(θ1) · · · r2(θ6)

]

. (11)

We can therefore apply the iterative instantaneous ICA al-

gorithm to the mixture, and we can segregate the convolu-

tive mixture into numerous components, as independent as

possible, where each component is a source or a reflection

impinging from a certain direction. Similarly, a merging stage

can determine if two segregated components originate from

the same source.

When the method is applied to reverberant mixtures, we ob-

serve that the estimated binary masks becomes more frequency

dependent so that the binary mask for some frequencies

mainly contains zeroes and for other frequency bands mainly

contains ones. This results in band-pass filtered versions of

the segregated signals. For example, one binary mask mainly

contains the high-frequency part of a speech signal, while

another mask mainly contains a low-frequency part of the same

speech signal. This high-pass and low-pass filtered versions are

poorly correlated in the time-domain. In order to merge these

band-pass filtered speech signals that originate from the same

source, we compute the correlation between the envelopes

of the signals instead. This approach has successfully been

applied in frequency domain ICA in order to align permuted

frequencies [52], [53]. The following example shows that the

envelope correlation is a better merging criterion than just

finding the correlation between the signals, when the signals

are bandpass-filtered.

Two speech signals A and B with a sampling rate of

10 kHz are each convolved with a room impulse response

having T60 = 400 ms. Both signals are divided into a high-

frequency (HF) part, and a low frequency (LF) part. Hereby

four signals ALF, AHF, BLF, and BHF are obtained. The two

LF signals are obtained from binary masks which contain ones
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for frequencies below 2500 Hz and zeros otherwise, and the

two HF signals are obtained from binary masks which contain

ones for frequencies above 2500 Hz and zeros otherwise. We

now find the correlation coefficients between the four signals

and the envelopes. The envelope can be obtained in different

ways. The envelope E of the signal x(n) can be calculated as

[54]

E(x(n)) = |x(n) + jH(x(n))|, (12)

where H(x(t)) denotes the Hilbert transform, and j denotes

the imaginary unit. Alternatively, we can obtain a smoother

estimate Ê as

Ê(x(n)) = Ê(x(n− 1))+ α(n)
(

|x(n)| − Ê(x(n− 1))
)

, (13)

where

α =

{

0.04, if |x(n)| − Ê(x(n − 1)) > 0;

0.01, if |x(n)| − Ê(x(n − 1)) < 0.
(14)

The above values of α have been found experimentally. The

attack time and release time of the low-pass filter have been

chosen differently in order to track the onsets easily. We

initialize (13) by setting Ê(x(0)) = 0.

To prevent the DC component of the envelope from con-

tributing to the correlation, the DC components are removed

from the envelopes by a high-pass filter, before the correlation

coefficient between the envelopes is computed. In Table I,

the correlation coefficients between the four signals have been

found, as well as the correlations between the envelopes and

the smoothed envelopes. It is desirable that the correlation

between signals that originate from the same source be high

while the correlation between different signals be low. As it

can be seen, the correlation coefficients between the signals

do not indicate that ALF and AHF (or BLF and BHF) belong

to the same source signal. When the correlation coefficients

between the envelopes are considered, the correlations between

ALF and AHF (or BLF and BHF) are a little higher than the

cross-correlation between the source signals. The best result is

obtained for the correlation between the smoothed envelopes.

Here the correlations between ALF and AHF (or BLF and

BHF) are significantly higher than the correlations between the

different sources. In the reverberant case, we thus merge masks

based on correlation between the smoothed envelope. We have

also tried to apply the envelope-based merging criterion in

the instantaneous case, but found that the simple correlation-

based criterion gives better results. The reason, we suspect, is

that the temporal fine structure of a signal that is present in

the instantaneous case but weakened by reverberation is more

effective than the signal envelope for revealing correlation.

IV. STOPPING CRITERION

As already mentioned, it is important to decide whether the

algorithm should stop or the processing should repeat. The

algorithm should stop when the signal consists of only one

source or when the mask is too sparse (hence the quality of

the resulting signal will be poor). Otherwise, the separation

procedure should continue. When there is only one source in

the mixture, the signal is expected to arrive only from one

direction and thus the rank of the mixing matrix is one. We

TABLE I
CORRELATION BETWEEN HIGH- AND LOW-PASS FILTERED SPEECH

SIGNALS, THE ENVELOPE OF THE SIGNALS AND THE SMOOTHED

ENVELOPE OF THE SIGNALS.

ALF AHF BLF BHF

ALF 1 0.0006 0.0185 0.0001
AHF 1 0.0001 0.0203
BLF 1 0.0006
BHF 1

E(ALF) E(AHF) E(BLF) E(BHF)
E(ALF) 1 0.0176 0.0118 0.0131
E(AHF) 1 0.0106 0.0202
E(BLF) 1 0.0406
E(BHF) 1

Ê(ALF) Ê(AHF) Ê(BLF) Ê(BHF)

Ê(ALF) 1 0.0844 0.0286 0.0137

Ê(AHF) 1 0.0202 0.0223

Ê(BLF) 1 0.0892

Ê(BHF) 1

propose a stopping criterion based on the covariance matrix

of the masked sensor signals. An estimate of the covariance

matrix is found as

Rxx = 〈xxT 〉 =
1

Ns

xxT , (15)

where Ns is the number of samples in x. By inserting (1),

and assuming that the noise is independent with variance σ2,

the covariance can be written as function of the mixing matrix

and the source signals:

Rxx = 〈(As + ν)(As + ν)T 〉 (16)

= A〈ssT 〉AT + 〈νν
T 〉 (17)

= A〈ssT 〉AT + σ2I (18)

= Ψ + σ2I, (19)

where Ψ = ARssAT of size M × M . We assume that

the masked sensor signal consists of a single source if the

condition number (based on the 2-norm) [55] is greater than

a threshold τc, i.e.

cond(Rxx) > τc. (20)

A high condition number indicates that the matrix is close to

being singular. Since Rxx is symmetric and positive definite,

cond(Rxx) = max eig(Rxx)/ min eig(Rxx), where eig(Rxx)
is the vector of eigenvalues of Rxx. Because the desired

signals are speech signals, we bandpass filter the masked

mixed signals before we calculate the covariance matrix, so

that only frequencies where speech dominates are considered.

The cutoff frequencies of the bandpass filter are chosen to be

500 and 3500 Hz.

In order to discriminate between zero and one source signal,

we consider the power of the masked signal. If the power of

the masked signal has decreased by a certain amount compared

to the power of the original mixture, the signal is considered

to be of poor quality. We define this amount by the parameter

τE , which is measured in dB.

This stopping criterion is applied for instantaneous as well

as convolutive mixtures. In the case of convolutive mixtures,

the stopping criterion aims at stopping when the energy of
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the segregated signal mainly comes from a single direction,

i.e. the iterative procedure should stop when only a single

reflection from a source remains in the mixture. Note that,

as illustrated in Fig. 8, our algorithm for convolutive mixtures

treats each reflection as a distinct sound source. Because many

reflections have low energy compared to the direct path, a high

number of segregated signals of poor quality are expected in

the reverberant case.

V. EVALUATION

A. Evaluation Metrics

When using a binary mask, it is not possible to reconstruct

the speech signal perfectly, because the signals partly overlap.

An evaluation method that takes this into account is therefore

used [56]. As a computational goal for source separation, the

ideal binary mask has been suggested [32]. The ideal binary

mask for a signal is found for each T-F unit by comparing

the energy of the signal to the energy of all the interfering

signals. Whenever the signal energy is higher within a T-F

unit, the T-F unit is assigned the value ‘1’ and whenever the

combined interfering signals have more energy, the T-F unit

is assigned the value ‘0’. The ideal binary mask produces the

optimal SNR gain of all binary masks in terms of comparing

with the entire signal [34].

As in [34], for each of the separated signals, the percentage

of energy loss PEL and the percentage of noise residue PNR

are calculated:

PEL =

∑

n

e2
1(n)

∑

n

I2(n)
(21)

PNR =

∑

n

e2
2(n)

∑

n

O2(n)
, (22)

where O(n) is the estimated signal, and I(n) is the signal

re-synthesized after applying the ideal binary mask. e1(n)
denotes the signal present in I(n) but absent in O(n) and

e2(n) denotes the signal present in O(n) but absent in I(n).
The performance measure PEL can be regarded as a weighted

sum of the T-F unit power present in the ideal binary mask, but

absent in the estimated mask, while the performance measure

PNR can be regarded as a weighted sum of the T-F unit power

present in the estimated binary mask, but absent in the ideal

binary mask.

Also the output signal-to-noise ratio (SNRo) can be mea-

sured. Here the SNRo is defined using the re-synthesized

speech from the ideal binary mask as the ground truth

SNRo = 10 log10

[

∑

n

I2(n)

∑

n

(I(n) − O(n))2

]

. (23)

If instead the original signal is used as the ground truth in the

numerator in (23), the relatively low target energy from the T-F

units that have been assigned the value ‘0’ will also contribute.

Because there is good perceptual correlation between the

true speech signal and the resynthesized speech signal from

the ideal mask [32], we should not let the inaudible values

of the true signal contribute disproportionately to the SNR

estimation. Therefore, it is better to use the ideal mask as the

ground truth. Also the signal-to-noise ratio before separation,

the input SNR (SNRi), is calculated. The SNRi is the ratio

between the desired signal and the interfering signals in the

recorded masked mixtures. The SNR gain is measured in dB

by

∆SNR = SNRo − SNRi. (24)

If we instead were using the original signals as ground truth,

the SNR gain would be about 1-2 dB lower (see also [34]).

B. Setup and parameter choice

For evaluation, twelve different speech signals - six male

and six female - from eleven different languages have been

used. All speakers raised voice as if they were speaking in

a noisy environment. The duration of each of the signals is

five seconds and the sampling frequency is fs = 10 kHz.

All the source signals have approximately the same loudness.

Separation examples and Matlab source code are available

online [57], [58]. The signal positions are chosen to be seven

positions equally spaced in the interval 0◦ ≤ θ ≤ 180◦ as

shown in Fig. 2. Hereby, the minimum angle between two

signals is 30◦. During the experiments, each mixture is chosen

randomly and each source is randomly assigned to one of the

seven positions.

We have experimented with several different random mix-

tures. Sometimes the method fails in separating all the mix-

tures. In those cases, typically two segregated signals are

merged because they are too correlated, resulting in N−1 seg-

regated signals, where one of the segregated signals consists

of two source signals which are spatially close to each other.

Alternatively, one source signal may occur twice resulting

in N + 1 separated signals. Therefore, as another success

criterion we also count the number of times where all N
sources in the mixture have been segregated into exactly N
signals and each of the N sources are dominating in exactly

one of the segregated signals. We call the ratio “correctness

of detected source number” or “Correct #” in the result tables.

We then calculate the average performance from those where

the number of sources has been correctly detected when

the algorithm stops. Although not all signals are correctly

separated, it is still useful for some applications to recover

some of the signals. Subjective listening could determine

which of the source signals in the mixture the segregated

signal is closest to. Here we use an automatic method to

determine the pairing between the segregated signal and a

source signal by comparing the corresponding estimated mask

of the segregated signal and the ideal masks of different source

signals. The source signal whose corresponding ideal mask is

closest (in terms of most number of ones in common) to the

estimated mask is determined to correspond to the segregated

source. This method correlates well with subjective listening.

Different instantaneous ICA algorithms can be applied to the

method. For evaluation we use an implementation of the IN-
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TABLE II
ROBUSTNESS OF τC AND τE FOR INSTANTANEOUS MIXTURES OF N = 4

AND N = 6 SIGNALS.

τC

N = 4 N = 6
τE 2000 3000 4000 2000 3000 4000

15.45 15.34 15.24 13.85 14.04 13.87

15 10/10 10/10 9/10 6/10 5/10 5/10

15.34 15.23 15.18 13.91 13.94 14.06

20 10/10 10/10 10/10 8/10 9/10 6/10

15.64 15.19 14.36 14.39 13.86 14.06

25 4/10 4/10 5/10 1/10 4/10 6/10

∆SNR and the number of times

(out of the ten cases) where all signals have been segregated

FOMAX ICA algorithm [13] which uses the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) optimization method [59], [60].

Unless otherwise stated, the parameter τ in Equations (9) and

(10) is set to τ = 1.

1) Choice of thresholds: Different thresholds have to be

chosen. The thresholds have been determined from initial

experiments as described below.

Regarding the two correlation thresholds, τC1 and τC2

shown in Fig. 5, our experiments show that most correlations

between the time signals are very close to zero. Two candidates

for separated signals are merged if the correlation coefficient

is greater than 0.1. If τC1 is increased, some signals may not

be merged even though they mainly contain the same source.

If τC2 is decreased, the probability of merging different source

signals is increased. The low energy signals are even less

correlated with the candidates for separated signals. Therefore,

we have chosen τC2 = 0.03. If τC2 is increased, the masks

become sparser, and more artifacts occur. If τC2 becomes

smaller, noise from other sources becomes more audible.

The thresholds in the stopping criterion are estimated from

the initial experiments too. The condition number related

threshold is chosen to be τC = 3000. The signal is considered

to contain too little energy when the energy of the segregated

signal has decreased to τE = −20 dB, when the power of a

recorded mixture is normalized to 0 dB.

The robustness of the two thresholds τC and τE has been

evaluated. τC has been evaluated for the values 2000, 3000

and 4000. Likewise, τE has been evaluated for the values

15, 20 and 25 dB. For each pair of τC and τE ten different

random speech mixtures drawn from the pool of twelve speech

signals are segregated. The experiment has been performed

for mixtures consisting of four or six speech signals. In each

case, ∆SNR is measured. Also the number of times (out of

ten) where exactly all the sources in the mixture are been

segregated is found. The results are reported in Table II. As

it can be seen, the ∆SNR does not vary much as function of

the two thresholds. The number of times where the method

fails to segregate exactly N speech signals from the mixture

is minimized for τC = 3000 and τE = 20 dB, which will be

used in the evaluation.

The algorithm could be applied to a mixture several times,

each time with different thresholds. Such a procedure could

increase the chance of extracting all the sources from the

mixture.

TABLE III
PERFORMANCE FOR DIFFERENT WINDOW LENGTHS

Window length PEL(%) PNR(%) ∆SNR Correct #

256 (25.6 ms) 9.17 11.38 13.56 44/50

512 (51.2 ms) 6.07 8.62 15.23 46/50

1024 (102.4 ms) 6.86 9.92 14.75 46/50

The window length is given in samples and in milliseconds.

The DFT length is four times the window length.

The number of signals in each instantaneous mixture is N = 4.

TABLE IV
COMPARISON BETWEEN JADE AND INFOMAX ICA ALGORITHMS.

Algorithm PEL(%) PNR(%) ∆SNR Correct #

JADE 6.20 8.86 15.17 46/50

INFOMAX 6.07 8.62 15.23 46/50

Instantaneous mixtures consisting of four sources have been used.

2) Window function: In [8], the Hamming window is found

to perform slightly better than other window functions. In the

following, the Hamming window will be used.

3) Window length: Different window lengths have been

tried. The overlap factor is selected to be 75%. An overlap

factor of 50% has also been considered, but better performance

is obtained with 75% overlap.

With an overlap of 75% the separation has been evaluated

for window lengths of 256, 512 and 1024 samples, which with

fs = 10 kHz give window shifts of 12.8, 25.6 and 51.2 ms,

respectively. For a Hamming window the 3 dB bandwidth of

the main lobe is 1.30 samples [61]. The frequency (spectral)

resolution is thus 50.8, 25.4 and 12.7 Hz, respectively. The

DFT length is four times the window length. Hence, the

spectrogram resolution is 513, 1025 and 2049, respectively.

By selecting a DFT length longer than the window length,

the spectrogram becomes smoother, and when listening to the

segregated signals, the quality becomes much better too. When

the DFT size is longer than the window size, there is more

overlap between the different frequency bands. Furthermore,

artifacts from aliasing are reduced by zero-padding the window

function.

The results are shown in Table III. The average performance

is given for fifty random mixtures, each consisting of four

speech sources. The highest SNR improvement is achieved for

a window length of 512. A similar performance is achieved

for the window length of 1024, while the window length of

256 performs a little worse. In the following experiments, we

use a window length of 512.

4) ICA algorithm: We have chosen to use the INFOMAX

algorithm [13] for evaluation, but other ICA algorithms could

be used also. To examine how much the performance of

our method depends on the chosen ICA algorithm, we have

compared the INFOMAX and the JADE algorithm [62] in the

ICA step. In both cases, the code is available online [59],

[63]. The two algorithms have been applied to the same fifty

mixtures each consisting of four signals drawn from the pool

of twelve signals. The results are given in Table IV. As it can

be seen, the performance of our method does not depend much

on whether the chosen ICA algorithm is the INFOMAX or the

JADE algorithm.
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TABLE V
EVALUATION WITH RANDOM INSTANTANEOUS MIXTURES CONSISTING OF

N SIGNALS.

N PEL(%) PNR(%) SNRi SNRo ∆SNR Correct #

2 1.01 2.00 0 18.92 18.92 47/50

3 2.99 4.86 -3.95 12.50 16.45 46/50

4 6.07 8.62 -5.98 9.26 15.23 46/50

5 10.73 13.02 -7.40 5.56 14.27 44/50

6 14.31 13.63 -8.39 5.25 13.64 44/50

7 18.34 22.43 -9.24 4.24 13.48 41/50

The parameter τ = 1.

TABLE VI
EVALUATION WITH RANDOM INSTANTANEOUS MIXTURES CONSISTING OF

N SIGNALS.

N PEL(%) PNR(%) SNRi SNRo ∆SNR Correct #

2 3.43 0.50 0 18.22 18.22 50/50

3 7.36 2.60 -3.96 11.10 15.06 46/50

4 12.26 4.17 -5.89 8.81 14.70 42/50

5 19.81 6.21 -7.32 6.59 13.91 40/50

6 25.91 8.81 -8.36 5.31 13.67 23/50

7 30.52 11.86 -9.12 3.00 13.46 4/50

The parameter τ = 2.

C. Separation results for instantaneous mixtures

Tables V and VI show the average separation performance

for mixtures of N signals for τ = 1 and τ = 2. For each N ,

the algorithm has been applied fifty times to different speaker

mixtures from the pool of twelve speakers at N of the seven

random positions.

As it can be seen, the proposed algorithm is capable of

separating at least up to seven source signals. It can also be

seen that the probability of recovering all N speech signals

decreases as N increases. Also, the quality of the separated

signals deteriorates when N increases. When N increases, the

T-F domain becomes less sparse because of higher overlap

between the source signals. When the performance for τ = 1
in Table V is compared with that for τ = 2 in Table VI, it can

be seen that the performance is better for τ = 1. However the

algorithm with τ = 1 uses more computation time compared

to τ = 2. As it can be seen in Table V, the algorithm fails to

separate two sources from each other in three cases. This is

probably because the masks at some point are merged due to

a wrong decision by the merging criterion. In Fig. 9, the ideal

binary masks for a source from an example mixture of three

speech signals are shown, along with the estimated mask is

shown. As it can be seen, the estimated mask is very similar

to the ideal masks.

1) Stationarity assumption: The duration of the mixture is

important for separation. It is required that the source signals

remain at their positions while the data is recorded. Otherwise

the mixing matrix will vary with time. Therefore, there is a

tradeoff between the number of available samples and the time

duration during which the mixing matrix can be assumed to

be stationary. Mixtures containing four speech signals have

been separated. The duration T is varied between 1 and 5

seconds. The average performance has been found from fifty

different mixtures. Since the speech mixtures are randomly

picked, one second is selected as the lower limit to ensure that
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Fig. 9. Separation example. A segregated speech signal from a mixture of
three speech signals. The two upper masks show the ideal binary mask for each
of the two directional microphones. For this estimated signal, PEL = 1.38%,
PNR = 0.46%, and ∆SNR = 20.98 dB. Notice, unless the ideal masks from
both microphones are exactly the same, PEL and PNR are always greater than
zero. Perceptually, the segregated signal sounds clean without any artifacts.
The separation quality is similar for the two other signals from the mixture.

TABLE VII
EVALUATION OF SEPARATION PERFORMANCE AS FUNCTION OF THE

SIGNAL LENGTH T .

T PEL(%) PNR(%) SNRi SNRo ∆SNR Correct #

1 7.53 8.83 -6.38 9.44 15.83 34/50

2 7.85 8.23 -5.98 9.00 14.88 43/50

3 6.87 9.69 -6.04 8.80 14.85 46/50

4 7.57 9.05 -6.04 8.81 14.86 46/50

5 6.07 8.62 -5.98 9.26 15.23 46/50

Instantaneous mixtures consisting of four sources have been used.

all four speech signals are active in the selected time frame.

The separation results are shown in Table VII. Fifty mixtures

of four source signals have been separated and the average

performance is shown. As it can be seen, the probability of

recovering all the source signals decreases when less data

is available. On the other hand, the performance does not

increase further for data lengths above three seconds. By

listening to the separated signals, we find that among the

mixtures where all sources have been successfully recovered,

there is no significant difference in the quality of the separated

signals.

2) Different loudness levels: In the previous simulations,

all the speech signals are approximately equally strong. Now

we test the separation performance in situations where the

signals in the mixture have different levels of loudness. The

mixtures consist of four speech signals, drawn from the pool

of twelve signals. Before mixing, the first speech signal is

multiplied by 1, the second speech signal is multiplied by 0.5,

and the remaining two speech sources are multiplied by 0.25.

The average performance from fifty simulations is found. The
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TABLE VIII
EVALUATION OF SEPARATION PERFORMANCE AS FUNCTION OF ADDITIVE

MICROPHONE NOISE.

Noise PEL(%) PNR(%) SNRi SNRo ∆SNR Correct #

-10 dB 15.29 15.52 -6.51 5.95 12.43 19/50

-20 dB 7.42 10.26 -6.02 8.37 14.39 45/50

-30 dB 6.24 8.53 -5.99 9.27 15.26 46/50

-40 dB 6.23 8.72 -5.97 9.19 15.16 47/50

-50 dB 6.39 8.15 -5.98 9.29 15.27 45/50

-60 dB 6.04 8.62 -5.98 9.27 15.25 46/50

Instantaneous mixtures consisting of four sources have been used.

TABLE IX
EVALUATION OF DIRECTIONAL MICROPHONE APPROXIMATION.

Mic. dist. PEL(%) PNR(%) ∆SNR Correct #

d = 1 cm 7.63 8.84 14.83 17/50

Ideal case 6.07 8.62 15.23 46/50

Anechoic mixtures consisting of four sources have been used.

two strongest sources are segregated in all the examples. In 25

of the 50 simulations, all of the four signals are segregated. On

average ∆SNR is 16.57 dB, PEL = 6.65% and PNR = 14.64%.

When we compare to the more difficult case in Table V where

all four speakers have equal loudness, we see that the average

∆SNR here is 1 dB better.

3) Microphone noise: In the previous simulations, noise

is omitted. We now add white noise to the directional mi-

crophone signals with different noise levels. The simulation

results are given in Table VIII. The noise level is calculated

with respect to the level of the mixtures at the microphone.

The mixtures without noise are normalized to 0 dB. As it can

be seen from the table, noise levels of up to -20 dB can be

well tolerated.

D. Separation results for anechoic mixtures

As mentioned in Section II, directional microphone gains

can be obtained from two closely-spaced microphones. Signals

impinging at a two-microphone array have been simulated

and the directional microphone gains have been obtained

as described in the AppendixA. The distance between the

microphones is chosen as d = 1 cm. Hereby an instantaneous

mixture is approximated from delayed sources. With this setup,

fifty mixtures each consisting of four speech signals drawn

from the pool of twelve speakers have been evaluated. The

results are given in Table IX. Because the microphone gain

is slightly frequency-dependent, the performance deteriorates

compared to the ideal case where the gain is frequency

independent, especially for the frequencies above 4 kHz. This

is illustrated in Fig. 10. This might be explained by the fact that

the approximation kd ≪ 1 (described in the Appendix) does

not hold for higher frequencies. Fortunately, for the perception

of speech, the higher frequencies are less important. It can

also be seen that the number of times where the exactly four

sources have been segregated is decreased. In many cases one

source is segregated more than once, which is not merged in

the merging stage because the correlation coefficient is too

low.
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Fig. 10. Separation example. A segregated speech signal from a mixture
of four speech signals. The speech signal impinges on an array consisting
of two omnidirectional microphones spaced 1 cm apart. The two upper
masks show the ideal binary masks for each of the two omnidirectional
microphones. Because the directional gains are slightly frequency dependent,
the performance for the high frequencies is deteriorated compared to the ideal
case when the microphone gain is not frequency dependent, as shown in Fig. 9.

E. Separation results for reverberant recordings

As described in Section III, the method can be applied

to recordings of reverberant mixtures. We use recordings

from a hearing aid with two closely-spaced, vertically placed

omnidirectional microphones. The hearing aid is placed in the

right ear of a Head and Torso Simulator (HATS) [64]. Room

impulse responses are estimated from different loudspeaker

positions. The source signals were then created by convolving

the room impulses with the clean speech signals from the pool

of twelve speakers.

The impulse responses are found in a reverberant room

where the room reverberation time was T60 = 400 ms. Here

reflections from the HATS and the room exist. The microphone

distance is 12 mm. The room dimensions were 5.2×7.9×3.5 m

and the distance between the microphones and the loudspeak-

ers were 2 m. Impulse responses from loudspeaker positions

of 0◦, 90◦, 135◦, and 180◦ are used. The configuration is

shown in Figure 11. Fifty different mixtures consisting of

four speakers from the pool of twelve speakers are created.

The parameters of the algorithm have to be changed. When

reverberation exists, the condition number never becomes as

high as the chosen threshold of τC = 2000. Therefore we need

much lower thresholds. The separation performance is found

for different values of τC . The remaining thresholds are set to

τE = 25, τC1 = 0.1 and τC2 = 0.05, with parameter τ = 1.

The separation results are provided in Table X. Four sources

are not always segregated from a mixture. Therefore we count

how many times the algorithm manages to segregate 0, 1, 2,

3 or all four sources from the mixture. This is denoted as
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Fig. 11. Room configuration. The Head and Torso Simulator (seen from
above) is placed in the middle of a room with a reverberation time of 400 ms.
The two-microphone array is placed at the right ear. The distance between the
microphones is 12 mm. The four sources arrive from positions of 0◦, 90◦ ,
135◦ , and 180◦. The distance from the center of the head to each of the
loudspeakers was 2 m. The room dimensions were 5.2 × 7.9 × 3.5 m.

‘freq.’ in the table. We find the average PEL, PNR and ∆SNR

for all these cases. It can be seen that often three of the four

signals are segregated from the mixture. The average ∆SNR is

around 6 dB. Even though the separation is not as good as in

anechoic cases, it is worth noting that instantaneous ICA in the

time domain may be used to segregate convolutive mixtures.

Another option is to apply a convolutive ICA algorithm

[19] instead of an instantaneous ICA method. This was done

in [45]. The advantage of using a convolutive algorithm

compared to a instantaneous algorithm is that the convolutive

algorithm is able to segregate sources, with larger microphone

distances. Still, we have to assume that the convolutive algo-

rithm at each step is able to segregate the sources into two

groups, where some sources dominate in one group and other

sources dominate in the other group. The stopping criterion

from Section IV which is used to discriminate between one and

more-than-one signal performs worse under the reverberant

condition. Even though the criterion is applied to narrow

frequency bands, the performance becomes worse as reported

in [65]. In [45], we used a single-microphone criterion based

on the properties of speech. There are some advantages of

applying an instantaneous ICA as opposed to applying a

convolutive ICA algorithm. The instantaneous algorithm is

computationally less expensive. Further, frequency permuta-

tions which exist in many convolutive algorithms [19] are

avoided.

The method used here cannot directly be compared to the

method used in [45] which was applied with a much larger

microphone distance. In [45], artificial room impulse responses

were used with T60 = 160 ms, and here we have used recorded

room impulses with T60 = 400 ms. The SNR gains obtained

by the two methods are approximately the same.

TABLE X
SEPARATION OF CONVOLUTIVE MIXTURES CONSISTING OF FOUR

SIGNALS.

τC = 200
# seg. PEL(%) PNR(%) ∆SNR Freq.

0 – – – 0/50

1 – – – 0/50

2 – – – 0/50

3 56.30 45.74 6.22 29/50

4 65.21 49.85 5.57 21/50

τC = 250

0 – – – 0/50

1 7.65 93.32 -5.20 1/50

2 45.61 49.19 6.73 1/50

3 56.42 48.90 6.01 30/50

4 62.90 50.32 5.62 18/50

τC = 300

0 – – – 0/50

1 – – – 0/50

2 29.11 53.02 5.38 4/50

3 57.68 47.12 6.05 32/50

4 64.58 51.00 5.58 14/50

τC = 350

0 – – – 0/50

1 – – – 0/50

2 36.86 53.85 5.56 9/50

3 54.83 47.63 5.97 30/50

4 65.02 49.55 5.71 11/50

τC = 400

0 – – – 0/50

1 – – – 0/50

2 41.86 52.88 5.40 7/50

3 54.71 48.09 5.92 31/50

4 64.16 50.06 5.56 12/50

F. Comparison with other methods

Several other methods have been proposed for separation

of an arbitrary number of speech mixtures with only two

microphones by employing binary T-F masking [8], [24],

[66]. In [24], speech signals were recorded binaurally and

the interaural time difference (ITD) as well as the interaural

intensity difference (IID) are extracted. The speech signals

are separated by clustering in the joint ITD-IID domain.

Separation results for three-source mixtures are given. An SNR

gain of almost 14 dB is achieved. The gain also depends on

the arrival directions of the source signals. Similarly, in the

DUET algorithm described in [8], speech signals are separated

by clustering speech signals in the amplitude/phase domain.

In [8], the DUET algorithm was evaluated with synthetic

anechoic mixtures, where amplitude and delay values are ar-

tificially chosen, as well as real reverberant recordings. These

methods also have the advantage that the number of sources

in the mixture need not be known in advance. In [24], the 128

frequency channels are (quasi) logarithmically distributed with

center frequencies in the range of 80 Hz and 5000 Hz, while

the frequency channels are linearly distributed in our proposed

method and in [8] with a much higher frequency resolution.

In [40], the mask estimation is based on direction-of-arrival

(DOA) techniques combined with ICA. The DOA technique

is used to subtract N − M sources, and the ICA algorithm

is applied to the remaining M sources in the mixture. The

method may be applied with binary masks, but in order to
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reduce musical noise, more continuous masks based on the

directivity patterns have been applied. The method is shown

for separation of mixtures containing up to four speech signals.

In contrast to [40], our method separates speech mixtures

by iteratively extracting individual source signals. Similar to

other multi-microphone methods our method relies on spatially

different source locations, but unlike the previous methods, our

method uses ICA to estimate the binary masks by iteratively

estimating independent subsets of the mixtures. While methods

based on DOA may sweep all possible directions in order

to estimate the null directions, our proposed ICA technique

automatically steers the nulls. Our approach can be used to

iteratively steer the nulls in settings with more sources than

microphones. In [41], binary masks are also found based on

the ICA outputs. Our method differs from the method in [41]

for our method is able to segregate more sources than mixtures.

Another method for extraction of multiple speakers with

only two microphones is presented in [67]. This method is

based on localization of the source signals followed by a

cancellation part where for each time frame different nulls

are steered for each frequency. Simulations under anechoic

conditions show subtraction of speech signals in mixtures

containing up to six equally loud source signals. In [67] the

SNR is found with the original signals as ground truth. An

SNR gain of 7–10 dB was reported. Our method gives a

significantly higher ∆SNR.

The microphone placement is different in our method com-

pared to the microphone placement in the DUET algorithm

[8]. Therefore, in order to provide a fair comparison between

our proposed and the DUET algorithm, we have implemented

the DUET algorithm for demixing approximately W-disjoint

orthogonal sources by following the stepwise description in

[8].

1) Comparison with DUET in the instantaneous case:

The DUET algorithm has been applied to the same set of

instantaneous mixtures that were used in Table V and VI. The

results of the DUET algorithm for separation of 3–6 sources

are reported in Table XI. When comparing the separation

results in Table XI with the results from our proposed method

in Table V and VI, it can be seen that our proposed method

gives a better ∆SNR. Note that our ∆SNR is different from

the signal-to-interference ratio used in [8] and tends to be more

stringent. Furthermore, our method is better at estimating the

exact number of sources, as the Correct # column indicates.

The histogram smoothing parameter in the DUET algorithm

provides a delicate trade-off. If the histogram is smoothed too

much, it results in sources that merge together. If the histogram

is smoothed too little, erroneous peaks appear resulting in

too high an estimate of the number of sources. The best

performing setting of the smoothing parameter is used in our

implementation.

2) Comparison with DUET for convolutive mixtures: The

DUET algorithm has been applied to the same synthetic rever-

berant data set that was used in Section V-E. The separation

performance can be found in Table XII. When comparing the

results of the first parte in Table X and Table XII we find that

the performance of the DUET algorithm and our proposed

method is generally similar. Both algorithms have difficulties

TABLE XI
EVALUATION OF THE DUET ALGORITHM WITH RANDOM INSTANTANEOUS

MIXTURES CONSISTING OF N SIGNALS.

N PEL(%) PNR(%) SNRi SNRo ∆SNR Correct #

3 26.61 20.04 -3.94 3.17 7.11 11/50

4 36.44 23.21 -5.77 2.04 7.63 20/50

5 39.42 22.95 -7.25 1.73 8.98 10/50

6 52.80 40.97 -8.20 0.30 8.51 1/50

TABLE XII
SEPARATION OF CONVOLUTIVE MIXTURES CONSISTING OF FOUR SIGNALS

WITH THE DUET ALGORITHM.

# seg. PEL(%) PNR(%) ∆SNR Freq.

0 – – – 0/50

1 – – – 0/50

2 – – – 0/50

3 65.28 29.92 5.80 7/50

4 82.56 37.79 5.55 43/50

in finding the exact number of sources under reverberant

conditions. The DUET is able to extract all four sources in

43 of the 50 experiments, while our method is able to extract

all sources in 21 of the 50 experiments. The lower number

of extracted sources in our proposed method is caused by

our merging criterion which often tends to merge different

sources. On the other hand, the SNR gain is a little higher for

our method. In the remaining 29 experiments we are able to

segregate three of the four sources, again with a higher SNR

gain than the DUET algorithm.

In summary, our comparison with DUET suggests that the

proposed method produces better results for instantaneous

mixtures and comparable results for convolutive mixtures.

By listening to our results and those published in [8], the

quality of our results seems at least as good as the quality

of the separated signals of [8]. In terms of computational

complexity, our method depends on the number of sources

in the mixtures, whereas the complexity of the DUET algo-

rithm mainly depends on the histogram resolution. We have

chosen a histogram resolution of 101 × 101 and a smoothing

kernel of size 20 × 20. With this histogram resolution, the

DUET algorithm and our proposed method take comparable

amounts of computing time, for convolutive mixtures about 20

minutes per mixture on average on an HP 320 server. For the

instantaneous case, our algorithm is faster; for example, with

three sources, it takes about 4:30 min (τ = 1) and 3:40 min

(τ = 2) to segregate all the sounds from a mixture, and about

10 min (τ = 1) and 7 min (τ = 2) to segregate all the sounds

when the instantaneous mixture consists of seven sources.

VI. DISCUSSION

In this paper directional microphones placed at the same

location are assumed. This configuration allows the mixing

matrix to be delay-less, and any standard ICA algorithm

can therefore be applied to the problem. The configuration

keeps the problem simple and still realistic. As shown in

Section V-D, the algorithm may still be applied to delayed

mixtures without significant changes. Alternatively, the ICA

algorithm can be modified in order to separate delayed mix-

tures (see e.g. [4]). Since beamformer responses are used to de-
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Fig. 12. A typical high-frequency microphone response. The response is
given for the frequency of 4000 Hz, and a distance of 20 cm between the
microphones. The half-wavelength at 4000 Hz is λ/2 = 4.25 cm. Since four
whole half-wavelengths fit between the microphones, four nulls appear in the
interval 0◦ ≤ θ ≤ 180◦ . Such a beampattern cannot efficiently be used to
estimate the binary mask.

termine the binary masks, the microphone distance cannot be

too big. If the distance between the microphones is greater than

half the wavelength, spatial aliasing occurs, and frequency-

dependent null directions and sidelobes occur. An example of

such multiple null directions and sidelobes is shown in Fig. 12.

Therefore, for large microphone distances, the performance is

expected to decrease, especially at high frequencies. A solution

to this problem could be to use the envelope of the mixed

high-frequency signal as ICA input directly.

By only using instantaneous ICA in the reverberant case, we

assume that the sources can be divided into many independent

components that can be merged afterwards. However, this

assumption has some limitations. Sometimes, the independent

components are very sparse, and hence it is difficult to apply

reliable grouping. A way to better cope with this problem

and the delays may be to apply a convolutive separation

algorithm instead of an instantaneous separation step. Still,

we believe it is an advantage to use instantaneous source

separation compared to convolutive source separation because

it is computationally much simpler - it only has four values

to estimate, whereas convolutive ICA has thousands of filter

coefficients to estimate.

When binary time-frequency masks are used, artifacts (mu-

sical noise) are sometimes audible in the segregated signals,

especially when the masks are sparse. The musical noise

degrades the perceptual quality of the segregated signal. Mu-

sical noise is caused by several factors. The binary mask

can be regarded as a time-variant gain function multiplied to

the mixture in the frequency domain. This corresponds to a

circular convolution in the time domain. Therefore artifacts

due to aliasing occur. From an auditory point of view, musical

noise appears when separated T-F regions are isolated from

each other. As a result, the sound of such an isolated region

becomes an audible tone, which does not group with the

other sounds in the auditory scene. In order to reduce musical

noise, it has been suggested to use continuous masks [40]. By

listening to the signals, we have observed that a mask created

by combining masks produced with different thresholds and

weighted by the thresholds results in less musical artifacts. In

our case, a more graded mask could be obtained by finding

masks using different parameters τ and weighting the T-F units

of the masks with the corresponding thresholds or simply by

smoothing the binary mask in time and in frequency.

Our method has also been applied to separate stereo music.

Stereo signals are often constructed by applying different gains

to the different instruments on the two channels. Sometimes

stereo signals are created with directional microphones placed

at the same location with an 90◦ angle between the directional

patterns. Our method is able to segregate single instruments

or vocal sounds from the stereo music mixture [44].

In the evaluation the source directions are limited to seven

different directions uniformly distributed on a half-circle. In

a real environment, speech signals may arrive from closer

directions. Also, with only two microphones, it is not possible

to distinguish the two half-planes divided by the microphone

array. If two arrival angles become too close, the source signals

can no longer be segregated and two spatially close sources

may be considered as a single source by the stopping criterion.

When two sources are treated as a single source depends on

the number of sources in the mixture. In the evaluation, it

becomes harder to segregate all N sources as N increases.

Also the level of background/microphone noise influences the

spatial resolution.

Several issues in our proposed method need further inves-

tigation. Different criteria have been proposed in order to

decide when the iterations should stop and when different

binary masks should be merged. These criteria need to set

many parameters and many experiments are needed on order

to optimize these parameters. Furthermore, the optimal param-

eters most likely depend on a given setting, e.g. the number

of sources in the mixture or the amount of reverberation. The

stopping criterion was proposed for the instantaneous mixing

case but applied to reverberant mixtures too. A more robust

stopping criterion in the convolutive case would be a subject

for future work. Our grouping criterion in the convolutive

case is based on correlation between different envelopes. One

could interpret the grouping problem as a problem similar

to a frequency permutation problem known in blind source

separation (see e.g. [68]). The merging criterion may be more

reliable if it is combined with other cues, such as DOA

information.

VII. CONCLUSION

We have proposed a novel method for separating instan-

taneous and anechoic mixtures with an arbitrary number of

speech signals of equal power with only two microphones.

We have dealt with underdetermined mixtures by applying

ICA to produce independent subsets. The subsets are used to

estimate binary T-F masks, which are then applied to separate

original mixtures. This iterative procedure continues until the

independent subsets consist of only a single source. The seg-

regated signals are further improved by merging masks from
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correlated subsets. Extensive evaluation shows that mixtures

of up to seven speech signals under anechoic conditions can

be separated. The estimated binary masks are close to the

ideal binary masks. The proposed framework has also been

applied to speech mixtures recorded in a reverberant room.

We find that instantaneous ICA applied iteratively in the time

domain can be used to segregate convolutive mixtures. The

performance of our method compares favorably with other

methods for separation of underdetermined mixtures. Because

the sources are iteratively extracted from the mixture the

number of sources does not need to be assumed in advance;

except for reverberant mixtures our method gives a good

estimate of the number of sources. Further, stereo signals are

maintained throughout the processing.

APPENDIX

DIRECTIONAL GAINS

The two directional gain patterns can be approximated

from two closely-spaced omnidirectional microphones. The

directional response from two microphones can be written as

r(θ) = s1e
j kd

2
cos(θ) + s2e

−j kd

2
cos(θ), (25)

where s1 and s2 are the microphone sensitivities. k = 2π/λ =
2πf/c is the wave number. f is the acoustic frequency and

c = 343 m/s is the speed of sound traveling in the air at

20◦C. θ is the angle between the microphone array line and

the source direction of arrival and d is the distance between

the two microphones. If kd ≪ 1, the microphone response

can be approximated by [69]

r(θ) ≈ A + B cos(θ), (26)

where A = s1 + s2 and B = j

kd
(s1 − s2). Here,

s1 =
1

2
A −

j

kd
B (27)

s2 =
1

2
A +

j

kd
B. (28)

In the Laplacian domain, s = jω, we have

s1 =
1

2
A +

c

sd
B (29)

s2 =
1

2
A −

c

sd
B. (30)

For discrete signals, we use the bilinear transform [70]

s = 2fs

1 − z−1

1 + z−1
, (31)

where fs is the sampling frequency. The two discrete micro-

phone sensitivities are therefore

s1 =
(Afsd + cB) + (cB − Afsd)z−1

2fsd(1 − z−1)
(32)

s2 =
(Afsd − cB) − (cB + Afsd)z−1

2fsd(1 − z−1)
(33)

It can be seen that the denominators in (32) and (33) have a

root on the unit circle. In order to ensure stability, we modify

the denominator with a factor λ so that

s1 =
(Afsd + cB) + (cB − Afsd)z−1

2fsd(1 − λz−1)
(34)

s2 =
(Afsd − cB) − (cB + Afsd)z−1

2fsd(1 − λz−1)
(35)

We choose λ = 0.75. λ controls the gain that amplifies the low

frequencies. The choice of λ is not very important, because

the signals are used for comparison only.

In order to obtain the directional patterns in Fig. 1 we can

find A and B by solving (26) for two different gains. For

r(0) = 1 and r(π) = 0.5, we obtain A = 0.75 and B = 0.25.

For r(0) = 0.5 and r(π) = 1, we obtain A = 0.75 and

B = −0.25.
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[64] “Brüel & Kjær Head and Torso Simulator, Type 4128.”
[65] F. Asano, Y. Motomura, H. Asoh, and T. Matsui, “Effect of PCA in blind

source separation,” in Proceedings of the Second International Workshop

on ICA and BSS, P. Pajunen and J. Karhunen, Eds., Helsinki, Finland,
June 19–22 2000, pp. 57–62.

[66] N. Roman, S. Srinivasan, and D. L. Wang, “Binaural segregation in
multisource reverberant environments,” J. Acoust. Soc. Amer., vol. 120,
no. 6, pp. 4040–4051, 2006.

[67] C. Liu, B. C. Wheeler, W. D. O’Brien Jr., C. R. Lansing, R. C.
Bilger, D. L. Jones, and A. S. Feng, “A two-microphone dual delay-line
approach for extraction of a speech sound in the presence of multiple
interferers,” J. Acoust Soc. Amer., vol. 110, pp. 3218–3231, 2001.

[68] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise
method for solving the permutation problem of frequency-domain blind
source separation,” IEEE Trans. Speech and Audio Processing, vol. 12,
no. 5, pp. 530–538, September 2004.

[69] S. C. Thompson, “Directional patterns obtained from two or three
microphones,” Knowles Electronics,” Technical Report, September 29
2000.

[70] J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Prentice-
Hall, 1996.

Michael Syskind Pedersen received the M.Sc. de-
gree in 2003 from the Technical University of Den-
mark (DTU). In 2006 he obtained his Ph.D. degree
from the department of Informatics and Mathemat-
ical Modelling (IMM) at DTU. In 2005 he was
a Visiting Scholar at the Department of Computer
Science & Engineering at The Ohio State University,
Columbus, OH. Michael’s main areas of research
are multi-microphone audio processing and noise
reduction. Since 2001 Michael has been employed
with the hearing aid company Oticon.

DeLiang Wang (M’90-SM’01-F’04) received the
B.S. degree in 1983 and the M.S. degree in 1986
from Peking (Beijing) University, Beijing, China,
and the Ph.D. degree in 1991 from the University
of Southern California, Los Angeles, CA, all in
computer science.

From July 1986 to December 1987 he was with
the Institute of Computing Technology, Academia
Sinica, Beijing. Since 1991, he has been with the
Department of Computer Science & Engineering and
the Center for Cognitive Science at The Ohio State

University, Columbus, OH, where he is currently a Professor. From October
1998 to September 1999, he was a visiting scholar in the Department of
Psychology at Harvard University, Cambridge, MA.

Dr. Wang’s research interests include machine perception and neurodynam-
ics. He is a recipient of the 1996 U.S. Office of Naval Research Young
Investigator Award. Dr. Wang served as the President of the International
Neural Network Society in 2006.

Jan Larsen received the M.Sc. and Ph.D. degrees in
electrical engineering from the Technical University
of Denmark (DTU) in 1989 and 1994. Dr. Larsen is
currently Associate Professor of Digital Signal Pro-
cessing at Informatics and Mathematical Modelling,
DTU. Jan Larsen has authored and co-authored
more than 100 papers and book chapters within
the areas of nonlinear statistical signal processing,
machine learning, neural networks and datamining
with applications to biomedicine, monitoring sys-
tems, multimedia, and webmining.

He has participated in several national and international research programs,
and has served as reviewer for many international journals, conferences,
publishing companies and research funding organizations. Further he took
part in conference organizations, among others, the IEEE Workshop on
Machine Learning for Signal Processing (formerly Neural Networks for Signal
Processing) 1999–2007. He is past chair of the IEEE Machine Learning for
Signal Processing Technical Committee of the IEEE Signal Processing Society
(2005-2007), and chair of IEEE Denmark Section’s Signal Processing Chapter
(2002-). He is a senior member of The Institute of Electrical and Electronics
Engineers. Other professional committee participation includes: Member of
the Technical Committee 14: Signal Analysis for Machine Intelligence of the
International Association for Pattern Recognition, 2006-; Steering committee
member of the Audio Signal Processing Network in Denmark, 2006-. Edi-
torial Board Member of Signal Processing, Elsevier, 2006-2007; and guest
editorships involves IEEE Transactions on Neural Networks; Journal of VLSI
Signal Processing Systems; and Neurocomputing.

Ulrik Kjems was born March 1971, he obtained
his Master of Science degree in Electrical Engi-
neering at the Technical University of Denmark
(DTU) February 1995, and his Ph.D. at the Section
for Digital Signal Processing at the Department of
Mathematical Modelling, also at DTU. His Ph.D.
research areas have been functional and anatomical
brain scans and deformable models of the brain,
followed by 2 year post doc position working with
statistical models of functional activation patterns
in brain scans. From 2000 he has been a design

engineer at Oticon Denmark, developing audio processing algorithms, working
with source separation, beam forming, noise reduction and compression
algorithms for hearing aids.


