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Abstract
Schemes for optical-state truncation of two cavity modes are analysed. The
systems, referred to as the nonlinear quantum scissors devices, comprise two
coupled nonlinear oscillators (Kerr nonlinear coupler) with one or two of them
pumped by external classical fields. It is shown that the quantum evolution of
the pumped couplers can be closed in a two-qubit Hilbert space spanned by
vacuum and single-photon states only. Thus, the pumped couplers can behave
as a two-qubit system. Analysis of time evolution of the quantum entanglement
shows that Bell states can be generated. A possible implementation of the
couplers is suggested in a pumped double-ring cavity with resonantly enhanced
Kerr nonlinearities in an electromagnetically induced transparency scheme.
The fragility of the generated states and their entanglement due to the standard
dissipation and phase damping are discussed by numerically solving two types
of master equations.

1. Introduction

Methods for preparation and manipulation of nonclassical states of light have become an
important research area in quantum optics [1], especially in relation to possible optical
implementations of quantum computers and systems for quantum communication and quantum
cryptography [2]. Among the various schemes for optical-qubit generation, the so-called
quantum scissors device of Pegg et al [3] produces a superposition of vacuum and single-
photon states, c0|0〉 + c1|1〉, by optical-state truncation of an input single-mode coherent light.
The Pegg et al quantum scissors device was studied in numerous papers (see, e.g., [4–10]),
and tested experimentally by Babichev et al [11] and Resch et al [12]. This simple scheme
and its generalizations for truncation of an input optical state to a superposition of d Fock
states (the so-called qudits) [8, 10] are based on linear optical elements, and thus referred
to as the linear quantum scissors devices. Optical-state ‘truncation’ can also be achieved in
systems comprising nonlinear elements (e.g., Kerr media) [13, 14], and thus will be referred
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to as the nonlinear quantum scissors devices. The above-mentioned schemes are restricted to
the single-mode optical truncation. Here, by generalizing our former scheme [15], we present
a realization of nonlinear quantum scissors for optical-state truncation of two cavity modes by
means of a pumped nonlinear coupler.

Two-mode nonlinear couplers have become, shortly after their introduction by Jensen
[16] and Maier [17], one of the important topics of photonics due to their wide potential
applications and relative simplicity (see, e.g., reviews [18, 20]). Among the various types
of the nonlinear optical couplers, those based on Kerr effect have attracted special interest
both in classical [16–19] and quantum [21–28] regimes. The Kerr nonlinear couplers can
exhibit variations of self-trapping, self-modulation and self-switching effects. In quantum
regime, they can also generate sub-Poissonian and squeezed light [22–26]. Possibilities of
entanglement generation were also studied in nonlinear couplers operating by means of the
Kerr effect [27, 28] or degenerate parametric down-conversion [29].

Here, we analyse Kerr nonlinear couplers, which can be modelled by systems composed
of two quantum nonlinear oscillators linearly coupled to each other and placed inside a double-
ring cavity. We discuss two schemes based on the coupler with an external excitation of a
single mode and the coupler with two modes pumped. We show that the states generated in
the excited nonlinear couplers under suitable conditions can be limited to a superposition of
only vacuum and single-photon states, c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉. We compare the
possibilities of generation of maximally entangled states by the couplers excited in single and
two modes. We also discuss the effects of dissipation on the fidelity of truncation and suggest
a method to achieve strong Kerr interactions at low intensities in our system.

2. Coupler pumped in a single mode

We consider a system, referred to as the pumped Kerr nonlinear coupler, which consists of
two nonlinear oscillators, with Kerr nonlinearities χa and χb, linearly coupled to each other
and additionally linearly coupled to an external classical field. In this section, we assume that
the field is coupled to one of the oscillators only. Thus, the system can be described by the
following Hamiltonian [15] (h̄ = 1):

Ĥ = Ĥ 0 + Ĥ 1,

Ĥ 0 = ωaâ
†â + ωbb̂

†b̂,

Ĥ 1 = Ĥ
(a)
nonl + Ĥ

(b)
nonl + Ĥ int + Ĥ

(a)
ext ,

(1)

where

Ĥ
(a)
nonl + Ĥ

(b)
nonl = χa

2
(â†)2â2 +

χb

2
(b̂†)2b̂2, (2)

Ĥ int = εâ†b̂ + ε∗âb̂†, (3)

Ĥ
(a)
ext = αâ† + α∗â, (4)

and â (b̂) is the bosonic annihilation operator corresponding to the mode a (b) of frequency
ωa (ωb). Hamiltonian (1) for Ĥ

(a)
ext = 0 describes the standard nonlinear coupler [21–28]

composed of two Kerr nonlinear oscillators linearly coupled to each other, where the parameter
ε is the strength of this coupling. However, our model differs from the standard one by
inclusion of the extra term Ĥ

(a)
ext , which describes linear coupling between the driving single-

mode classical field (say, with frequency ω
(a)
ext ) and the cavity mode a. The parameter α

describes the strength of this coupling and is proportional to the classical field amplitude.
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Figure 1. A realization of the two-mode nonlinear quantum scissors device via a pumped nonlinear
coupler in a double-ring cavity. Symbols are explained in the text.

A possible physical realization of the model is presented in figure 1, where an external pump,
described by Ĥ

(b)
ext , is off in the present analysis. Kerr media, marked by Ĥ

(a)
nonl and Ĥ

(b)
nonl, are

linearly coupled as described by the grey central region corresponding to Ĥ int.
The evolution of our system in the interaction picture can be described by the Schrödinger

equation

i
d

dt
|ψ(t)〉 = Ĥ 1|ψ(t)〉, (5)

where

|ψ(t)〉 =
∞∑

m,n=0

cmn(t)|mn〉. (6)

Thus, the complex probability amplitudes cmn(t) satisfy the set of equations of motion:

i
d

dt
cmn = [χam(m − 1) + χbn(n − 1)]cmn + εcm−1,n+1

√
m(n + 1)

+ ε∗cm+1,n−1

√
(m + 1)n + αcm−1,n

√
m + α∗cm+1,n

√
m + 1. (7)

A superficial analysis of (7) could lead to a conclusion that the evolution of the system pumped
by classical external field cannot be restricted to two lowest photon-numer states, but will also
include states with a greater number of photons. However, by generalizing the method of
single-mode nonlinear quantum scissors proposed in [13] (for a review, see [30, 31]), we have
observed in [15] that evolution can be restricted to only four states, |00〉, |10〉, |01〉 and |11〉,
as a result of degeneracy of Hamiltonians Ĥ

(a)
nonl and Ĥ

(b)
nonl. By assuming that the couplings |α|

and |ε| are much smaller than the Kerr nonlinearities χa and χb, we can interpret the evolution
between the four states as resonant transitions, while the negligible evolution to other states as
out of resonance, analogously to the single-mode case [31]. This phenomenon can be shown
explicitly as follows: under the assumption of χa, χb � max(|ε|, |α|) and short evolution
times, equation (7), for m, n �= 0, 1, can be approximated by

i
d

dt
cmn ≈ [χam(m − 1) + χbn(n − 1)]cmn (8)

which has the simple solution

cmn(t) ≈ exp{−i[χam(m − 1) + χbn(n − 1)]t}cmn(0) (9)

By setting the initial condition cmn(0) = 0 for m, n �= 0, 1, one gets cmn(t) ≈ 0. By contrast,
for m, n ∈ {0, 1}, the terms proportional to χa and χb are vanishing due to the degeneracy
of the Kerr Hamiltonian and so the remaining terms proportional to ε and α are significant.
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Thus, the ideally ‘truncated’ two-mode state generated in the system has the following simple
form:

|ψ(t)〉cut = c00(t)|00〉 + c01(t)|01〉 + c10(t)|10〉 + c11(t)|11〉, (10)

where the evolution of cmn, precisely given by (7), can approximately be described by the
following equations:

i
d

dt
c00 = α∗c10, i

d

dt
c01 = ε∗c10 + α∗c11,

i
d

dt
c11 = αc01, i

d

dt
c10 = εc01 + αc00.

(11)

Hereafter, in equations for the probability amplitudes under the discussed assumptions, the sign
‘=’ should be understood as ‘≈’. Although approximate equations (11) are independent of
χa , our derivation clearly shows that the Kerr nonlinearity plays a crucial role in the truncation
process. By assuming that both oscillators are initially in vacuum states, |ψ(t = 0)〉 = |00〉,
and the parameters α and ε are real, we find the following solutions of (11) for the time-
dependent probability amplitudes:

c00 = 1

2γ
[(γ − ε) cos τ1 + (γ + ε) cos τ2], c01 = α

γ
(cos τ1 − cos τ2),

c10 = − i(γ + ε)�2

4αγ
(sin τ1 + sin τ2), c11 = − i

2γ
(�2 sin τ1 − �1 sin τ2),

(12)

where �j =
√

2[2α2 + ε2 + (−1)j−1εγ ], γ =
√

4α2 + ε2, and τj = �j t/2 for j = 1, 2. Note
that the solution for c10 can be written in a more symmetric form since the properties hold:
(γ + ε)�2 = (γ − ε)�1 = 2

√
α2(γ 2 − ε2). In a special case of equal couplings α and ε,

(12) simplifies to our former solution [15]:

c00 = cos(
√

5τ) cos(τ ) +
1√
5

sin(
√

5τ) sin(τ ), c01 = − 2√
5

sin(
√

5τ) sin(τ ),

c10 = −i
2√
5

sin(
√

5τ) cos(τ ), c11 = −i cos(
√

5τ) sin(τ ) +
i√
5

sin(
√

5τ) cos(τ ),

(13)

where τ = αt/2. To estimate the quality of the optical-state truncation (up to single-photon
states) of the generated light, we apply fidelity as a measure of discrepancy between the ideally
truncated two-qubit state ρ̂cut = |ψ(t)〉cut cut〈ψ(t)|, given by (10), and the actually generated
output state ρ̂(t) = |ψ(t)〉〈ψ(t)| calculated numerically from

|ψ(t)〉 = exp(−iĤ t)|00〉 (14)

for a large (practically infinite-dimensional) two-mode Hilbert space. Specifically, in our
numerical analysis, we have chosen the dimension equal to 20 for each subspace associated
with single mode of the field. The fidelity, also referred to as the Uhlmann’s transition
probability for mixed states, is defined by

F(ρ̂, ρ̂cut) = {Tr[(
√

ρ̂cutρ̂
√

ρ̂cut)
1/2]}2. (15)

By assuming that one of the states is pure (say |ψ〉cut), then (15) simplifies to F =
cut〈ψ |ρ̂|ψ〉cut. Instead of fidelity, the Bures distance DB(ρ̂||ρ̂cut) = 2 − 2

√
F(ρ̂, ρ̂cut) (see,

e.g., [32]) is often applied as a measure of discrepancy between the states. Note that the Bures
distance satisfies the usual metric properties including symmetry DB(ρ̂||ρ̂cut) = DB(ρ̂cut||ρ̂),
contrary to the quantum Kullback–Leibler ‘distance’ (quantum relative entropy) often used
in the quantum-information context [32]. General expression (15) will be applied in our
description of the effect of damping on the optical-state truncation in section 4. In this section,
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Figure 2. Fidelity between the actually generated state |ψ(t)〉 and the ideally truncated state
|ψcut(t)〉 if the coupling strengths are (a) ε = α and (b) ε = α/10 for the system pumped in one
mode with β = 0 (dashed curves), and that pumped in two modes with β = α (solid), β = −α

(dotted), β = iα (dot-dashed curves). In figures 2–7, we assume that the nonlinearity coefficients
are χa = χb = 108 rad s−1, α = χa/200, and the coupler is initially in two-mode vacuum
state |00〉.

we are focused on pure-state truncation, for which equation (15) simplifies to the familiar
expression F = ||〈ψ(t)|ψ(t)〉cut||2, where the ideally truncated state |ψ(t)〉cut is given by (10)
and the actually generated state |ψ(t)〉 is calculated numerically from (14). The fidelity for
perfect truncation is equal to one. Figure 2 clearly indicates that the fidelity of truncation using
the pumped coupler is close to one for short times and the coupling strengths much smaller
than nonlinearity parameters (|α|, |ε| 
 χa,b). The numerical results shown in figure 2
confirm the validity of our analytical approach at least for short evolution times. Thus, we
can refer to the system as a kind of nonlinear (as operating by means of Kerr nonlinearity)
quantum scissors device.

Solutions for the probability amplitudes of the truncated states enable simple calculation
of quantum entanglement, which is one of the most fundamental resources of quantum
information theory [2]. It is well known that the entanglement of a bipartite pure state,
described by a density matrix ρ̂ = |ψ〉〈ψ |, can be described by the von Neumann entropy of
either the reduced density matrix ρ̂a = Trbρ̂ or ρ̂b = Traρ̂ or, equivalently, by the Shannon
entropy of the squared Schmidt coefficients pi [32]:

E(ρ̂) = −Tr(ρa log2 ρa) = −Tr(ρb log2 ρb)

= −
N∑

i=1

pi log2 pi ≡ h(p1, . . . , pN−1). (16)

This measure is often referred for bipartite pure states to as the entropy of entanglement. In a
special case of two qubits in a pure state, the entropy of entanglement E ranges from zero for a
separable state to 1 ebit for a maximally entangled state, and it is simply given in terms of the
binary entropy h(p) = −p log2 p − (1 − p) log2(1 − p). In fact, for a general two-qubit pure
state, given by (10) with arbitrary amplitudes cmn (m, n = 0, 1), the entropy of entanglement
given by (16) can simply be calculated as

E(t) ≡ E(|ψ(t)〉cut) = E(2|c00(t)c11(t) − c01(t)c10(t)|), (17)
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Figure 3. Evolution of the entropy of entanglement E of the generated states |ψ(t)〉 (dots) and
the desired truncated states |ψcut(t)〉 (solid curves) by the coupler pumped in a single mode with
(a) β = 0 and in two modes with (b) β = α, (c) β = −α, (d) β = iα, where α = ε.

where

E(x) ≡ h
(

1
2

(
1 +

√
1 − x2

))
(18)

and h is the binary entropy. If the probability amplitudes cmn(t) evolve according to (12), then
the evolution of the entropy of entanglement is given by

E(t) = E

 ∑
j=1,2

�j

γ 2

{
ε cos

(
1

2
�3−j t

)
− [ε + (−1)j γ ] cos

(
1

2
�j t

)}
sin

(
1

2
�3−j t

) .

(19)

Solution (19) further simplifies by assuming real α = ε; then the amplitudes cmn are given by
(13). Thus, we obtain

E(t) = E
(

1
5 {[4 + cos(

√
5αt)] sin(αt) −

√
5 cos(αt) sin(

√
5αt)}). (20)

Figures 3(a) and 4(a) show the plots of the entropy of entanglement for the case discussed
here, i.e., for the single-mode pumped coupler with the coupling parameters |α| and |ε| much
smaller than the nonlinearities χa = χb. We see in figure 3(a) that the rapid oscillations
in time (with a period T1 = π/|α|) are modulated by oscillations of low frequency (with
period T2 = 8π/|α|). As a consequence, their maxima are of various values but some of
them approach 1 ebit corresponding to the formation of Bell states. To show this explicitly,
we represent the generated state in the basis |ψ〉 = ∑4

j=1 bj |Bj 〉 spanned by the Bell-like
states

|B1〉 = |11〉 + i|00〉√
2

, |B2〉 = |00〉 + i|11〉√
2

,

|B3〉 = |01〉 − i|10〉√
2

, |B4〉 = |10〉 − i|01〉√
2

,

(21)
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Figure 4. Evolution of the entropy of entanglement E for the coupler pumped in (a) single mode
(β = 0) and (b) two modes (β = α) using line styles and parameters same as in figure 3 except
ε = α/10. On this figure scale, evolutions of E for β = −α can be described by the same curve
as in figure (b), while the entropy of entanglement for β = iα is negligible as less than 5 × 10−4.
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Figure 5. Probabilities |bi |2 for finding the coupler pumped in a single mode with ε = α in the
Bell states |B1〉 and |B3〉 (solid curves) as well as |B2〉 and |B4〉 (dashed curves).
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Figure 6. Probabilities for finding the single-mode pumped coupler with ε = α/10 in the Bell
states. Same symbols as in figure 5.

which differ from the standard Bell states only by the phase factor i. Clearly,
∑

j |Bj 〉〈Bj | = 1
and E(|Bj 〉) = 1 for i = 1, . . . , 4, so states (21) will shortly be referred to as the
Bell states. Figures 5 and 6 show the probabilities for the generation of the Bell states
as a function of time for the single-mode driven couplers, when the initial state is the
two-mode vacuum state. It is seen that states |B1〉 and |B2〉, being superpositions of
|00〉 and |11〉, are generated with a high accuracy. In detail, the maxima of (20) occur
approximately at times t (m, n) = 1

2 [(2m − 1)T1 + (2n − 1)T2] if α = ε. Since the
frequencies of oscillations in (20) are incommensurate, by waiting long enough dissipation
(assuming no), we can achieve 1 ebit with high precision. For example, in the first four
periods of T2, one could observe the generation of entangled states approaching Bell state
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|B1〉 with E[t (1, 1)] = 0.994 and E[t (1, 2)] = 0.997 ebits, and approaching |B2〉 with
E[t (2, 3)] = 0.992 and E[t (2, 4)] = 0.998. Note that only the first period is shown in
figures 3(a) and 5(a), for which the highest entanglement of 0.994 ebits occurs approximately
at the time t (1, 1) = 4.5 × 10−6. Thus, we can effectively treat our system as a source
of maximally entangled states. On the other hand, the Bell states |B3〉 and |B4〉, being
superpositions of |10〉 and |01〉, are not generated if the initial state is vacuum and ε = α. This
conclusion can be drawn by observing that the probabilities for |B3〉 and |B4〉 can reach only
0.8 in figure 5(b). However, by relaxing the condition of equal couplings ε and α, as shown
in figure 6(b), Bell states |B3〉 and |B4〉 can be generated from vacuum with high precision in
the dissipation-free system.

Hitherto, we have assumed that both cavity modes were initially in vacuum states. Now,
we analyse a more general evolution when the cavity modes are initially not only in vacuum
but also in single-photon Fock states, i.e., |ψ(0)〉 ≡ |ψ(kl)(0)〉 = |kl〉, where k, l = 0, 1.
Thus, by assuming as usual that |α| = |ε| 
 χa, χb, the evolutions of the initial states are
found to be

|ψ(01)(τ )〉cut = c01|00〉 + c̃00|01〉 + c̃11|10〉 + c10|11〉,
|ψ(10)(τ )〉cut = c10|00〉 + c̃11|01〉 + c̃00|10〉 + c01|11〉,
|ψ(11)(τ )〉cut = c11|00〉 + c10|01〉 + c01|10〉 + c00|11〉

(22)

in terms of the time-dependent amplitudes cmn(τ ) given by (13) and

c̃00(τ ) = cos(
√

5τ) cos(τ ) − 1√
5

sin(
√

5τ) sin(τ ),

c̃11(τ ) = −i cos(
√

5τ) sin(τ ) − i√
5

sin(
√

5τ) cos(τ ),

(23)

where, as usual, τ = αt/2. Please note that c̃jj (τ ) and cjj (τ ) differ in sign. We find that
the generalized expression for the entropies of entanglement for the initial states |kl〉 with
k, l = 0, 1 reads as

E(kl)(t) = E
(

1
5 [4 + cos(

√
5αt)] sin(αt) − (−1)k−l

√
5 cos(αt) sin(

√
5αt)

)
, (24)

which implies that

E(00)(t) = E(11)(t), E(01)(t) = E(10)(t). (25)

It is worth noting that our system for the initial states |01〉 or |10〉 quasi-periodically evolves
into the Bell states |B3〉 and |B4〉 with high precision but does not evolve into |B1〉 or |B2〉
assuming α = ε. This is in contrast to the evolutions of the initial states |00〉 (see figure 5) or
|11〉 also for ε = α. For brevity, we will not present any graphs of the evolutions of the initial
states |01〉, |10〉 and |11〉, which would correspond to figures 2–5 plotted for the initial vacua.

The above solutions for the initial single-photon states are included for the completeness
of our mathematical approach to show that, in principle, all Bell states can be generated in our
system even for ε = α. But it should be stressed that the system with the initial Fock states is
much more experimentally challenging than that assuming initially the vacuum states only. In
spite of experimental difficulty, our system enables generation of the one-photon Fock states
from vacuum assuming no coupling ε between the modes, which corresponds to having two
independent pumped cavities with nonlinear Kerr media. A possibility of producing single-
photon states in such systems was demonstrated in [13] (for a review, see [31] and references
therein).
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3. Coupler pumped in two modes

This section is devoted to the most general scheme presented in figure 1, namely that involving
two external excitations. We assume here that both modes of the coupler are excited by external
fields, whereas for the case discussed previously we assumed that only one of the modes was
coupled to the external field. The Hamiltonian describing such system is of the form

Ĥ 1 = Ĥ
(a)
nonl + Ĥ

(b)
nonl + Ĥ int + Ĥ

(a)
ext + Ĥ

(b)
ext, (26)

which is the same as that defined by (1)–(4), except for the extra term given by

Ĥ
(b)
ext = βb̂† + β∗b̂ (27)

corresponding to the coupling of the cavity mode b with an external driving single-mode
classical field (say, with frequency ω

(b)
ext ), where the parameter β describes the strength of this

interaction being proportional to the classical field amplitude. The evolution of our system,
described by Hamiltonian (26), can be given by the Schrödinger equation from which we
find the following set of equations for the amplitudes cmn(t) of the wavefunction (6) in the
interaction picture:

i
d

dt
cmn = [χam(m − 1) + χbn(n − 1)]cmn + εcm−1,n+1

√
m(n + 1) + ε∗cm+1,n−1

√
(m + 1)n

+ αcm−1,n

√
m + α∗cm+1,n

√
m + 1 + βcm,n−1

√
n + β∗cm,n+1

√
n + 1. (28)

Analogously to the analysis in the former section, we assume short evolution times as well
as the couplings |α|, |β| and |ε| to be much smaller than the Kerr nonlinearities χa and χb.
Then, equation (28) for m, n �= 0, 1 can be approximated by (8) with the solution (9), which
vanishes for the initial condition cmn(0) = 0. Thus, under the above assumptions, the infinite
set of equations (28) reduces to the following four equations:

i
dc00

dt
= α∗c10 + β∗c01, i

dc01

dt
= ε∗c10 + α∗c11 + βc00,

i
dc10

dt
= εc01 + αc00 + β∗c11, i

dc11

dt
= αc01 + βc10.

(29)

Assuming that at the time t = 0 both oscillator modes are in the vacuum states, i.e., c00 = 1
and c01 = c10 = c11 = 0, we can obtain analytical solutions of (29). To solve (29) we need
to find zeros of a fourth-order polynomial and, hence, the solutions in their general form are
rather complicated and unreadable. However, if we assume that all coupling constants are real
and the couplings with two external fields are of the same strength (α = β), then the solutions
become much simpler and easier to interpret. Thus, under these assumptions, the solutions
are found to be

c00 = 1

2

{
1 +

[
cos

(
λt

2

)
+ i

ε

λ
sin

(
λt

2

)]
e−iεt/2

}
,

c01 = c10 = −i2
α

λ
sin

(
λt

2

)
e−iεt/2,

c11 = c00 − 1,

(30)

where we have introduced the effective coupling constant λ =
√

16α2 + ε2. As in the case
discussed in the previous section, the system dynamics is closed within the finite set of n-
photon states. Figure 2 shows that for the assumed parameters and evolution times shorter
than 5 × 10−6 s, the fidelity between the ideally truncated states and the actually generated
states by means of the coupler pumped in two modes deviates from 1 by the values less than
0.03 in figure 2(a) or even < 6 × 10−4 in figure 2(b). This again confirms the validity of
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Figure 7. Probabilities for finding the coupler pumped in two modes with α = β and ε = α/10 in
the Bell states. Same symbols as in figure 5.

our analysis and justifies referring to this system as a kind of a quantum scissors device. For
the parameters assumed in figure 2, truncation with higher fidelity is usually observed for the
coupler pumped in a single mode rather than in two modes. In the latter case, the truncation
fidelity depends on the relative phase between the pumping-field couplings α and β. Note
that state |ψcut〉 for β = ±α, in contrast to β = iα, can directly be calculated from solution
(12). For brevity, we have not presented here an analogous solution for β = iα, but we have
used it for plotting the corresponding curves in figures 2 and 3(d). It is seen, by comparing
figures 2(a) and 2(b), that by decreasing ε in comparison to α, the fidelity of truncation can
be improved for β �= 0. Thus, pumping the coupler in two modes can lead sometimes to
truncation better than that for the system driven in a single mode as presented in figure 2(b)
by the dot-dashed curve corresponding to β = iα and ε = α/10.

The evolution of the pure-state entanglement, given by (16), generated in the coupler
pumped in two modes can be calculated from (17) with the probability amplitudes given by
(30). Thus, we obtain

E(t) = E
(

1

2

∣∣∣∣1 − e−iεt

λ2
[16α2 + ε2 cos(λt) + iελ sin(λt)]

∣∣∣∣) . (31)

Figures 3(b)–(d) and 4(b) show the evolution of the entropy of entanglement measured in
ebits as a function of time for the system pumped in two modes in comparison to the results
for the single-mode driven coupler shown in figures 3(a) and 4(a). It is seen that the first
maximum in figures 3(b)–(d) is the highest, in contrast to the case shown in figure 3(a) for the
single-mode pumping. Nevertheless, the most important fact is that the value of the entropy of
entanglement E can approach unity to a high precision. So, as in the case of the single-mode
pumping, the two-mode driven system effectively generates Bell states. To find which Bell
states are generated, we can also transform the resulting wavefunction into the Bell basis.
Thus, figure 7 depicts the probabilities for the four Bell states. As expected from the form of
our analytical solutions for cmn (m, n = 0, 1), the entanglement occurs for the states |00〉 and
|11〉, and leads to the generation of the states |B1〉 and |B2〉 (with some unimportant global
phase factor). Clearly, the highest peaks of the entropy E(t) and those of the probabilities
|b1,2(t)|2 of the Bell state generation occur at the same evolution times, as seen by comparing
figures 3(a) with 5(a), 4(a) with 6(a), and 4(b) with 7. Analysis of the evolutions of the
probabilities |b1,2(t)|2 and the entropy of entanglement E(t) for relatively longer times reveals
that the oscillations are modulated and some long-time oscillations occur in the system,
which can be interpreted as a result of quantum beats. It is seen from (31) that two various
frequencies appear in our solution and one of them is considerably greater than the other,
e.g., the effective coupling constant λ is

√
17 times greater than the internal coupling constant
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of the coupler ε = α. We are not presenting here dissipation-free evolutions exhibiting
modulated oscillations at times longer than those in figure 4. It would be meaningless since
the entanglement is lost at such evolution times due to dissipation, which inevitably occurs in
real physical implementations of the coupler, as will be discussed in the next section.

Although our analysis, including all figures, is focused on evolution of the initial vacuum
states, we present shortly some results for other states too. We find that the evolution of the
initial Fock state |ψ(kl)(0)〉 = |kl〉 with k, l = 0, 1 is of the form (22) but with the probability
amplitudes cmn(τ ) given by (30) and c̃mn(τ ) equal to

c̃00(τ ) = 1

2

{
eiεt + e−iεt/2

[
cos

(
λt

2

)
− i

ε

λ
sin

(
λt

2

)]}
,

c̃11(τ ) = c̃00(τ ) − eiεt .

(32)

With the help of these formulae, we can calculate the entropies of entanglement explicitly as

E(kl)(t) = E
(

1
2 |1 − λ−2 exp[−i(2|k − l| + 1)εt]

+ [16α2 + ε2 cos(λt)(−1)k−l iελ sin(λt)]|) (33)

implying the same properties as those given by (25) for the single-mode excited system. We
point out that both single- and two-mode pumped couplers for α = ε and the initial states |01〉
or |10〉 evolve into the Bell states |B3〉 and |B4〉 but do not evolve into |B1〉 or |B2〉. This is
contrary to the evolutions of the initial vacuum states (or |11〉) as, for example, presented in
figures 5 and 7.

4. Dissipation

In more realistic description both fields a and b lose their photons from the cavities. According
to the standard techniques in theoretical quantum optics, dissipation of our system can be
modelled by its coupling to reservoirs (heat baths) as described by the interaction Hamiltonian

Ĥ = Ĥ 1 + Ĥ loss, (34)

Ĥ loss = ̂af̂ (â, â†) + ̂bf̂ (b̂, b̂†) + h.c., (35)

where

̂a =
∞∑

j=0

g
(a)
j ĉ

(a)
j , ̂b =

∞∑
j=0

g
(b)
j ĉ

(b)
j (36)

are the reservoir operators; ĉ(a,b)
j are the boson annihilation operators of the reservoir oscillators

coupled with mode a or b, respectively; g
(a,b)
j are the coupling constants of the interaction with

the reservoirs; Ĥ 1 is given either by (1) or (26) dependent on the analysed system. We assume
two kinds of functions f̂ (â, â†) and f̂ (b̂, b̂†) to describe standard damping and dephasing.

The standard description of a damped system is obtained for (35) with f̂ (â, â†) = â† and
f̂ (b̂, b̂†) = b̂†, or explicitly

Ĥ loss = ̂aâ
† + ̂†

aâ + ̂bb̂
† + ̂

†
bb̂, (37)

corresponding to energy transfer between the system and reservoirs. It should be stressed that
the process described by (37) leads to the combined effect of amplitude and phase damping.
The evolution in the Markov approximation of the reduced density operator ρ̂ of the two cavity
modes after tracing out over the reservoirs can be described in the interaction picture by the
following master equation (see, e.g., [33])

dρ̂

dt
= −i[Ĥ 1, ρ̂] + L̂lossρ̂, (38)
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where the Liouvillian

L̂lossρ̂ = γa

2
([âρ̂, â†] + [â, ρ̂â†]) +

γb

2
([b̂ρ̂, b̂†] + [b̂, ρ̂b̂†])

+ γan̄a[[â, ρ̂], â†] + γbn̄b[[b̂, ρ̂], b̂†] (39)

is the usual loss term corresponding to Ĥ loss, given by (37); γk is the damping rate of the kth
(k = a, b) (ring) cavity, and n̄k = [exp(h̄ωk/kBT ) − 1]−1 is the mean number of thermal
photons at the reservoir temperature T. We will analyse both ‘noisy’ reservoirs (at T > 0
implying n̄a, n̄b > 0) and ‘quiet’ reservoirs (at T ≈ 0, so n̄a = n̄b ≈ 0). The latter
assumption implies that diffusion of fluctuations from the reservoirs into the system modes
is negligible. But still this simplified master equation describes the loss of photons from the
system modes to the reservoirs.

One can raise some doubts [34] against using Liouvillian (39) in a description of lossy
anharmonic oscillator models given by (2). Also the approximation of T = 0 in (39) is
problematic. Nevertheless, master equation (38) with Liouvillian (39) and Hamiltonian Ĥ 1

set to Ĥ
(a)
nonl was used in a number of works both for T > 0 (see, e.g., [35–38]) but also for

T = 0 (see, e.g., [33, 35, 38–41]). Moreover, the same master equation, given by (38) for
Ĥ 1 set to (2), for coupled anharmonic oscillators was applied in, e.g., [37, 42]. Liouvillian
(39) for T = 0 was also used in ([33] p 210) to describe a model essentially similar to ours
comprising a nonlinear system, in which two quantized field modes in a cavity interact with
a classical pump field. The standard Liouvillian for T = 0 was also used in [43] to describe
a system of Kerr nonlinearity, given by Ĥ

(a)
nonl, and a parametric amplifier driven by a pulsed

classical field. Nevertheless, it should be noted that a realistic master equation for the Kerr
medium [44, 45] is more complicated.

Phase damping (also referred to as dephasing) can be described by (35) assuming
f̂ (â, â†) = â†â and f̂ (b̂, b̂†) = b̂†b̂, which gives the following loss Hamiltonian [33]:

Ĥ loss = (
̂a + ̂†

a

)
â†â +

(
̂b + ̂

†
b

)
b̂†b̂. (40)

This interaction can be interpreted as a scattering process, where the number of photons
remains unchanged contrary to the interaction described by (37). Phase damping is essential
in a fully quantum picture of dissipation of our system. As a simple generalization of the
Gardiner–Zoller master equation for a single harmonic oscillator ([33], equation (6.1.15)), we
describe the phase damping of our two-mode nonlinear system by master equation (38) for
the Liouvillian

L̂lossρ̂ = γa

2
(2n̄a + 1)[2â†âρ̂â†â − (â†â)2ρ̂ − ρ̂(â†â)2]

+
γb

2
(2n̄b + 1)[2b̂†b̂ρ̂b̂†b̂ − (b̂†b̂)2ρ̂ − ρ̂(b̂†b̂)2], (41)

which is significantly different from (39).
To analyse dissipative evolution, governed by master equations (38) for Liouvillians (39)

and (41), we apply standard numerical procedures for solving ordinary differential equations
with constant coefficients as an exponential series.

The entropy of entanglement E, given by (16), is valid for qudits of arbitrary dimension
in a pure state, but it fails to determine the entanglement of a system in a mixed state. Thus,
for a two-qubit mixed state ρ̂, we have to apply a more general measure, e.g., the Wootters
measure of entanglement of formation given by [46]

EF (ρ̂) = E(C(ρ̂)), (42)

where E is given by (18) with the argument being the concurrence C defined as

C(ρ̂) = max

{
2 max

i
λi −

4∑
i=1

λi, 0

}
, (43)
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Figure 8. Effect of the standard damping, described by (38) and (39) for quiet reservoirs, on (a)
the entanglement of formation and (b) fidelity F(ρ̂, ρ̂cut) of the states generated in the single-
mode pumped coupler from the truncated two-qubit mixed states for χa = χb = 108 rad s−1,

α = χa/20, ε = α/2, and the damping constants γa = γb equal to 0 (solid), χa/500 (dashed), and
χa/200 (dot-dashed curves). Large dots in figure (a) correspond to the exact solution.

and λi are the square roots of the eigenvalues of ρ̂
(
σ̂ (a)

y ⊗ σ̂ (b)
y

)
ρ̂∗(σ̂ (a)

y ⊗ σ̂ (b)
y

)
, while σ̂ (k)

y is
the Pauli spin matrix of the kth qubit (k = a, b). It is well known that the entanglement of
formation goes into the entropy of entanglement for any two-qubit pure states. Examples of
evolution of the entanglement of formation and fidelity for the dissipative systems are shown in
figures 8–11 both for quiet and noisy reservoirs. By analysing the figures, the most important
observation is that the generated two-qubit entangled states are very fragile to the leakage
of photons from the cavities in the analysed couplers. Our system is more fragile to losses
described by the standard master equation, given by (38) and (39), rather than the losses due to
only phase damping as described by the Gardiner–Zoller master equation, given by (38) and
(41). Inclusion of reservoir noise, at least for the assumed low mean numbers n̄ ≡ n̄a = n̄b

of thermal photons, does not cause a dramatic deterioration of fidelity and entanglement in
comparison to the losses caused by coupling the system to the zero-temperature reservoirs.
Note that we have chosen n̄ = 1 in the dephasing model shown in figure 11 and much smaller
value of n̄ in the standard dissipation model in figure 9. The reason is that for the latter
dissipation model, the number of photons in the system can be increased by absorbing thermal
photons from the reservoirs. If this absorption of thermal photons exceeded the loss of the
system photons to the reservoirs then the generated fields could not be approximated as two-
qubit states and the Wootters function EF , given by (42), would fail to be a good entanglement
measure. For the parameters chosen in figure 9, the generated states are well approximated by
two-qubit density matrices and thus its entanglement of formation is well described by (42).
By contrast, the number of system photons is not affected by the reservoirs in the dephasing
model; thus (42) can be used for any number n̄ of thermal photons.
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Figure 9. Same as in figure 8 but for noisy reservoirs with mean number n̄a = n̄b = 0.1 of thermal
photons.
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Figure 10. Effect of the phase damping described by (38) and (41) assuming quiet reservoirs for
the same parameters as in figure 8.

Finally, it should be noted that the fragility of our system to dissipation seems to be a
serious drawback from an experimental point of view. Nevertheless, a method which enables
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Figure 11. Same as in figure 10 but for noisy reservoirs with n̄a = n̄b = 1, which is 10 times
more than in figure 9.
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Figure 12. Level structure of atoms in the Schmidt–Imamoǧlu system [48, 49] exhibiting a
resonantly enhanced Kerr nonlinearity in mode a. An analogous figure can be drawn for mode b.

a significant improvement of the entanglement robustness of the generated states has recently
been suggested for a similar system [47].

5. Discussion and conclusions

One of the crucial conditions for the successful truncation and generation of the Bell states
in our scheme concerns the couplings |α|, |β| and |ε| to be much smaller than the Kerr
nonlinearities χa and χb. This implies that the Kerr interaction should be strong at very low
light intensities. Thus, it is desirable to discuss an implementation, in which such stringent
conditions can experimentally be satisfied. A possible realization can be based on the effect
of the electromagnetically induced transparency (EIT) or atomic dark resonances, as proposed
by Schmidt and Imamoǧlu [48, 49] (see also [50]) and observed experimentally [51, 52].
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The Schmidt–Imamoǧlu EIT scheme can be realized in a low density system of four-level
atoms, which level structure is shown in figure 12, exhibiting giant resonantly enhanced Kerr
nonlinearity at very low intensities. The atoms are placed in cavity a (and analogously in cavity
b) tuned to frequency ωa of the mode a resonant with the transition |1〉 ↔ |3〉 and detuned
by �ωa of the transition |2〉 ↔ |4〉. The EIT effect is created by a classical pumping field
of frequency ω

(a)
ext resonant with the transition |2〉 ↔ |3〉. By assuming |g13|2natom

/
�2

a < 1
(see [50]), all the atomic levels can adiabatically be eliminated, which results in the following
formula for the Kerr nonlinearity [49]:

2χa ∼ 3h̄ω2
a

2ε0Va

Re
(
χ(3)

a

) = 3
∣∣g(a)

13

∣∣2∣∣g(a)
24

∣∣2

�2
a�ωa

natom, (44)

where χ(3)
a is third-order nonlinear susceptibility, gij = µij

√
ωi/(2h̄ε0Va) are the coupling

coefficients, �a is the Rabi frequency of the classical driving (and coupling) field, µij is
the electric dipole matrix element between the states |i〉 and |j 〉, natom is the total number
of atoms contained in the cavity of volume Va , and ε0 is the permittivity of free space. By
replacing subscript a by b in (44), an analogous expression for χb can be obtained. By
putting the stringent limit on the required cavity parameters [50], Imamoǧlu et al estimated
χa ∼ 108 rad s−1 [49]. Note that some quantum information applications of these giant
Kerr nonlinearities have already been studied [9, 53–56]. More details about application of
the Schmidt–Imamoǧlu scheme of resonantly enhanced Kerr nonlinearity in the analysis of
dissipation effects on entanglement generation are given by one of us in [57].

It is worth stressing the differences between the present paper and our former works.
(i) In [15, 47], only the single-mode pumped systems were studied. Here, we analyse also
two-mode pumped systems, which is basically a different model. (ii) The model described
in [47] is crucially different from the one used here as was based on the two-mode nonlinear
interaction term Ĥ int = εâ2†b̂2 + h.c.. In the present work, as well as in [15], we apply the
two-mode linear interaction Hamiltonian Ĥ int = εâ†b̂ + h.c., which is the same (by neglecting
the pump terms Ĥ

(a)
ext and Ĥ

(b)
ext ) as that used in [21–28]. The other novelties of the present

work in comparison to [15, 47] can be summarized as follows: (1) for a single-mode pumped
system, we found a new generalized solution (12), which, in a special case of equal couplings α

and ε, simplifies to our former solution obtained in [15]. (2) Analytical approximate solutions
were found here for various initial Fock states |n〉. In [15, 47], solutions were given for initial
vacuum states only. (3) Here, we describe a possible realization of the model based on the
effect of the electromagnetically induced transparency. (4) In the present numerical analysis
based on the EIT scheme, in comparison to [15, 47], more realistic parameters were chosen
for the coupling constants, Kerr nonlinearities, and damping constants. (5) The deterioration
of the fidelity of the generated Bell states due to the standard dissipation and phase damping
was analysed here using two types of master equations both for quiet and noisy reservoirs.
By contrast, analysis of losses in [15] was limited to the standard master equation and for the
quiet reservoir only. No effect of dissipation was studied in [47]. (6) In the present letter,
the entanglement of formation was calculated analytically for dissipation-free systems and
calculated numerically for dissipative systems. No analytical formulae were given in [15],
while the entanglement of formation was not at all studied in [47]. (7) The quality of truncation
was described here, but it was not studied in [15, 47]. The discrepancy between the really
generated states and the exact truncated states was measured here by the fidelity.

In conclusion, we have described a realization of the generalized two-mode optical-
state truncation of two coherent modes via a nonlinear process. Our system is a two-mode
generalization of the single-mode nonlinear quantum scissors device described in [13]. We
have described an implementation of the Kerr nonlinear couplers, where resonantly enhanced
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nonlinearities can be achieved in the Schmidt–Imamoǧlu EIT scheme. We have compared
Kerr nonlinear couplers linearly excited in one or two modes by external classical fields.
We have shown under the assumption of the coupling strengths to be much smaller than
nonlinearity parameters χa and χb that the optical states generated by the couplers are
the two-qubit truncated states spanned by vacuum and single-photon states. Although our
approximate solutions of the Schrödinger equation are independent of χ -constants, the Kerr
nonlinearity plays a crucial role in the physics as we have derived from the complete χ -
dependent Hamiltonian. In fact, the Kerr interaction is the mechanism in our model, which
enables truncation of the generated state at some energy level. By contrast, the system without
the Kerr nonlinearities and pumped by an external field would gain more and more energy. To
confirm our predictions, we have compared ‘exact’ (accurate up to double-precision) direct
numerical solutions of the Schrödinger equation and compared with our approximate analytical
solutions. The discrepancies between the exact and approximate solutions are relatively small,
as shown by the fidelities in figures 2–4. We have demonstrated that our system initially in
a vacuum state or single-photon Fock states |mn〉 (m, n = 0, 1) evolves into Bell states. We
have discussed the fragility of the entanglement of formation of the generated states due to the
standard dissipation and dephasing in the two distinct master equation approaches.
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[40] Peřinová V and Lukš A 1988 J. Mod. Opt. 35 1513
[41] Milburn G J, Mecozzi A and Tombesi P 1989 J. Mod. Opt. 36 1607
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[48] Schmidt H and Imamoǧlu A 1996 Opt. Lett. 21 1936
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