Two models of learning iterated dependencies.

Denis Béchet!, Alexandre Dikovsky!, and Annie Foret?

I LINA UMR CNRS 6241, Université de Nantes, France
Denis.Bechet@univ-nantes.fr,
Alexandre.Dikovsky@univ-nantes.fr
2 IRISA, Université de Rennesl, France
Annie.ForetQirisa.fr

Abstract. We study the learnability problem in the family of Categorial
Dependency Grammars (CDG), a class of categorial grammars defining
unlimited dependency structures. CDG isatisfying a reasonable condition
on the iterant dependencies are shown to be incrementally learnable in
the limit.

1 Introduction

The idea of inference of grammars in a family C is as follows. With every grammar
G € Cisrelated an “observation set” ¢(G) of G. It may be the language L(G) or
an image of constituent or dependency structures generated by G. An algorithm
A is an inference algorithm for C if, for every grammar G € C, A applies to
the training sequences for G, i.e. to enumerations o of &(G) and, for every
initial subsequence o[i] = {s1,...,s;} of o, it returns a hypothetical grammar
A(oli]) = G; € C. Alearns a target grammar G € C if on any training sequence
o for G A stabilizes on a grammar A(c[T]) = G.> The grammar lim A(c[i]) =
11— 00
A(o[T]) returned at the stabilization step is the 1imit grammar. A learns C if
it learns every grammar in C. C is learnable if there is an inference algorithm
learning C.

The author of this concept E.M. Gold [9] considered ¢(G) = L(G). In this
case they say that the grammars are learned from strings. They are learned
from structures if ¢(G) is a structure set of G. These concepts were inten-
sively studied (see excellent surveys in [1] and [11]). Most results are pessimistic.
In particular, any family of grammars generating all finite languages and at
least one infinite language (as it is the case of all classical grammars) is not
learnable from strings. Nevertheless, due to several sufficient conditions of learn-
ability, such as finite elasticity [16,13] and finite thickness [15], some
interesting positive results were obtained. In particular, k-rule string and term
generating grammars are learnable from strings for every k [15] and k-rigid
(i.e. assigning no more than k types per word) classical categorial grammars

3 A stabilizes on o on step T means that T is the minimal number ¢ for which there
is no t1 > t such that A(o[t1]) # A(o[t]).

(CG) are learnable from so called “function-argument” structures and also from
strings [4, 11].

In this paper we study the learnability problem in the family of Categorial
Dependency Grammars (CDG) introduced in [8]. CDG is a class of categorial
grammars defining unlimited dependency structures. In [5] it is shown that,
in contrast with the categorial grammars, the rigid (i.e. 1-rigid) CDG are not
learnable. This negative effect is due to the use of iterated subtypes. On the other
hand, it is also shown that the k-rigid CDG with iteration-free types are learn-
able from the so called “dependency nets” (an analogue of the function-argument
structures adapted to CDG) and also from strings. However, the iteration-free
CDG cannot be considered as an acceptable compromise because real applica-
tion CDG use iterated dependencies. Below we propose a pragmatic solution of
the learnability problem for CDG with iterated dependency subtypes. It consists
in limiting the family of CDG to the grammars satisfying a strong condition on
the so called iterated, i.e. unlimited repeatable dependencies (those of noun mod-
ifiers and of verb circumstantials). Intuitively, in the grammars satisfying this
condition, the iterated dependencies and the dependencies repeatable at least K
times for some fixed K are indiscernible. This constraint, called below K-star-
revealing, is more or less generally accepted in the traditional dependency syntax
(cf. [12], where K = 2). For the class of K-star-revealing CDG, we show an algo-
rithm which incrementally learns the target CDG from the dependency structures
in which the iteration is not marked. We compare this new model of learning
grammars from structures with the traditional one as applied to iterated depen-
dencies. As one might expect, the CDG with unlimited iterated dependencies
are not learnable from input functor/argument-like structures. Moreover, this is
true even for the rigid CDG.

2 Background

2.1 Categorial Dependency Grammars

Categorial dependency grammars [7] may be seen as an assignment to words
of first order dependency types of the form: ¢ = [I,,\...\l1\g/r1/.../rn]F.
Intuitively, w + [o\d\B]" means that the word w has a left subordinate through
dependency d (similar for the right subtypes [a/d/B]F). The head subtype g in
w — [a\g/B]F intuitively means that w is governed through dependency g. In
this way ¢ defines all local (projective) dependencies of a word.

FEzample 1. For instance, the assignment:
in — [c—copul /prepos—in], the — [det], Word — [det\pred]
beginning — [det\prepos—in], was — [c—copul\S/pred]

determines the projective dependency structure in Fig. 1.

c-copul
det

prepos-in
/rf’ﬂ?gha
PSRN FTN

in the beginning was the Word

Fig. 1. Projective dependency structure

The intuitive meaning of subtype P, called potential, is that it defines the distant
(non-projective, discontinuous) dependencies of the word w. P is a string of
polarized valencies, i.e. of symbols of four kinds: ,/ d (left negative valency d),
N\ d (right negative valency d), \ d (left positive valency d), /' d (right positive
valency d). Intuitively, v =\ d requires a subordinate through dependency d
situated somewhere on the left, whereas the dual valency v =, d requires a
governor through the same dependency d situated somewhere on the right. So
together they describe the discontinuous dependency d. Similar for the other
pairs of dual valencies. For negative valencies ,/ d, \ d are provided special kind
of subtypes #(, d), #(\, d). Intuitively, they serve to check the adjacency of
a distant subordinate through discontinuous dependency d to a host word. The
dependencies of these types are called anchor. An elementary dependency type
is either a local dependency name d or its iteration d+ or an anchor type #(v).

Ezample 2. For instance, the assignment:
elle — [pred]

la — [#(/ clit—a—obj)]<clit-a—obi

lui — [#(,/ clit—3d—obj)]< clit-3dbj

a — [#(/ clit—3d—obj)\#(,/ clit—a—obj)\pred\S/aux]
donnée —s [aux]\clit—Bd—obj\clit—a—obj

determines the non projective DS in Fig. 2.

red clit-a-obj
ﬁ “wljt-3d-0B}

elle la lui a donnee .

(fr. *she itg—fem to him has given)
Fig. 2. Non-projective dependency structure

Definition 1. Let w = aj...a, be a string, W be the set of all occurrences
of symbols in w and C = {dy,...,dn} be a set of dependency names. A graph

D = (W, E) with labeled arcs is a dependency structure (DS) of w if it has a
root, i.e. a node ag € W such that (i) for any node a € W, a # ag, there is a
path from ag to a and (ii) there is no arc (a’,d,ap).* An arc (a1,d,a2) € E is
called dependency d from ay to ay. The linear order on W induced by w s the
precedence order on D.

Definition 2. Let C be a set of elementary dependency types (sometimes also
called local dependency names) and V be a set of valency names.

The expressions of the form /v, \ v, \\v, /v, where v € V, are called
polarized valencies. \ v and /v are positive, /v and \,v are negative; \ v
and /v are left, /v and v are right. Two polarized valencies with the same
valency name and orientation, but with the opposite signs are dual.

An expression of one of the forms #(,/ v), #(\\v), v € V, is called anchor
type or just anchor. An expression of the form d* where d € C, is called iterated
dependency type.

Elementary dependency types, iterated dependency types and anchor types
are called primitive.

An expression of the form t = [l,,\ .. . \U\H/ ... /r1.../rs] in which m,n >

0, l1,...,lm,7r1, ..., are primitive types and H is either an elementary de-
pendency type or an anchor type, is called basic (or local) dependency type.
liy...ylm and ry,..., 1, are respectively left and right argument subtypes of t.

When H is not empty, it is called head subtype of t (or head type for short).
A (possibly empty) string P of polarized valencies is called potential.®
A dependency type (or a category) is an expression BY in which B is a
basic dependency type and P is a potential. CAT(C, V) and B(C) will denote
respectively the set of all dependency types over C and V and the set of all basic
dependency types over C.

CDG are defined using the following calculus of dependency types ©

L. o[C\p)*: - [g)

I CP[C\p)™ - [C\g) " P

Q' [Cc:\p)" F []”

D!. oCOPOOP | o PIPP2 if the potential (7 C)P(\ C) satisfies the
following pairing rule FA (first available):

FA : P has no occurrences of /C,\C.

L! is the classical elimination rule. Eliminating the argument subtype C # # ()
it constructs the (projective) dependency C and concatenates the potentials.
C = #(a) creates the anchor dependency. I' derives k& > 0 instances of C.
Q! serves for the case k = 0. D! creates discontinuous dependencies. It pairs

4 Evidently, every DS is connected and has a unique root.

5 In fact, the potentials should be defined as multi-sets. We define them as strings in
order to simplify definitions and notation. Nevertheless, to make the things clear,
below we will present potentials in the normal form, where all left valencies precede
all right valencies.

6 We show left-oriented rules. The right-oriented are symmetrical.

and eliminates dual valencies with name C' satisfying the rule FA to create the
discontinuous dependency C.

Definition 3. A categorial dependency grammar (CDG) is a system G = (W, C,
S, \), where W is a finite set of words, C is a finite set of elementary categories
containing the selected category S, and A, called lexicon, is a finite substitution
on W such that A(a) C CAT(C,V) for each word a € W.

For a DS D and a string x, let G(D, x) denote the relation: D is constructed
in a proof I' b S for some I' € X\(x). Then the language generated by G is the
set L(G)=4{w | 3D G(D,w)} and the DS-language generated by G is the set
AG)=4{D | Iw G(D,w)}. D(CDG) and LICDG) will denote the families of
DS-languages and languages generated by these grammars.

Ezample 3. For instance, the proof in Fig. 3 shows that the DS in Fig. 2 belongs
to the DS-language generated by a grammar containing the type assignments
shown above for the french sentence FElle la lui a donnée.

[#!(/clit —3d—oby)|<C1t34obi [Ll (s clit—3d—obj)\#!(/ clit—a—obj)\pred\S/auz] w

)

[#(/clit—a—obj)] <ok [#!(/clit—a—obj)\pred\S/auz) e *-3d-0bi .
[pred) [pred\.S/aua] <o obiA-d-ob; (%)
1
(5]] oty Aoty ®h RET—
.
T T e L")
(D! x 2)

Fig. 3. Dependency structure correctness proof

CDG are very expressive. Evidently, they generate all CF-languages. They can
also generate non-CF languages.

Ezample 4. [8]. The CDG:
a > A [A\NA]A, b= [B/CI[A\S/CIN, ¢ = C,[B\C]
generates the language {a™b"c" | n > 0}.7

Seemingly, the family £L(CDG) of CDG-languages is incomparable with mildly
context sensitive languages [10, 14] generated by multi-component TAG, linear
CF rewrite systems and some other grammars. £(CDG) contains non-TAG lan-
guages, e.g. L™ = {a}a}...a”, | n > 1} for all m > 0. In particular, it contains
the language MIX = {w € {a,b,c}" | |w|s = |w|p = |wl|.} [2], for which E.
Bach conjectures that it is not mildly CS. On the other hand, [6] conjectures
that this family does not contain the TAG language Leopy = {zx | € {a,b}*}.
This comparison shows a specific nature of the valencies’ pairing rule FA. It
can be expressed in terms of valencies’ bracketing. For this, one should interpret
/ dand d as left brackets and \ d and \,d as right brackets. A potential is
balanced if it is well bracketed in the usual sense.

CDG have an important property formulated in terms of two images of se-
quences of categories «: the local projection ||v||; and the valency projection ||7y||:
L el = llello = & llaylle = llallllv[l and [[ayljo = lall/lv]lo for a category a.
2. [|CP|; = C et ||CF||, = P for every category CF.

7 One can see that the DS may be not trees.

Theorem 1. [6,7] For a CDG G with lexicon A and a string x, © € L(G) iff
there is I' € A(z) such that ||I"||; is reduced to S without the rule D and |||, is
balanced.

On this property resides a polynomial time parsing algorithm for CDG [6, 7].

2.2 Learnability, finite elasticity and limit points

A class of languages described by a class of grammars G is learnable iff there
exists a learning algorithm ¢ from finite sets of words to G that converges &,
for any G € G and for any growing partial enumeration of L(G), to a grammar
G’ € G such that L(G) = L(G").

Learnability and unlearnability properties have been widely studied from a
theoretical point of view. A very useful property for our purpose is the finite
elasticity property of a class of languages. This term was first introduced in [16,
13] and, in fact, it induces learnability. An elegant presentation of this notion
can be found in [11].

Definition 4 (Finite Elasticity). A class £ of languages has infinite elasticity
iff (e;)ien an infinite sequence of sentences, I(L;)ien an infinite sequence of
languages of L such thatVi € N : e; & L; and {eg,...,e;—1} C L;. A class has
finite elasticity iff it has not infinite elasticity.

Theorem 2. [Wright 1989] A class that is not learnable has infinite elasticity.
Corollary 1. A class that has finite elasticity is learnable.

Finite elasticity is a very nice property because it can be extended from a class
to every class obtained by a finite-valued relation®. We use here a version of the
theorem that has been proved in [11] and is useful for various kinds of languages
(strings, structures, nets) that can be described by lists of elements over some
alphabets.

Theorem 3. [Kanazawa 1998] Let L be a class of languages over I' that has
finite elasticity, and let R C X* x I'* be a finite-valued relation. Then the class
of languages {R7'[L] = {s € X* | 3u € LA (s,u) € R} | L € L} has finite
elasticity.

Definition 5 (Limit Points). A class £ of languages has a limit point iff there
exists an infinite sequence (Ly)nen of languages in L and a language L € L such
that: Lo S Ly...C ... C L, C ... and L = J,cn Ln (L is a limit point of £).
Limit Points Imply Unlearnability. If the languages of the grammars in a class
G have a limit point then the class G is unlearnable. 10

8 In fact, it is not the output grammars that converge but their associated languages.

9 A relation R C X* x I'* is finite-valued iff for every s € £*, there are at most finitely
many u € I'* such that (s,u) € R.

10 This implies that the class has infinite elasticity.

2.3 Limit points for CDGs with iterative subtypes

In [5] it is shown that, in contrast with the classical categorial grammars, the
rigid (i.e. 1-rigid) CDG are not learnable. This negative effect is due to the
use of iterated subtypes. We recall the limit point construction of [5] concerning
iterative subtypes and discuss it later.

Limit point construction.

Definition 6. Let S, A, B be three elementary types. Grammars G, G’ are
defined as follows:
Ch=S5
Chp =0,/ A"/ B
b ={a— A,b— B,c— Cy}
G,={a— Ab— B,c— [C]]}
Gl = {ar A b Aje o [8) A7)

These constructions yield a limit point as follows [5].
Theorem 4. L(G!) = {c(b*a*)* | k <n} and L(G") = c{b,a}*

Corollary 2. The constructions show the non-learnability from strings for the
classes of (rigid) grammars allowing iterative subtypes (A*).

We observe that in these constructions, the number of iterative subtypes (A*)
is not bound.

3 Incremental Learning

Below we show an incremental algorithm strongly learning CDG from DS. This
means that A(G) serves as the observation set @(G) and that the limit grammar
is strongly equivalent to the target grammar. From the very beginning, it should
be clear that, in contrast with the constituent structure grammars and also with
the CG, the existence of such learning algorithm is not guaranteed because,
due to the iterated subtypes, the straightforward arguments of subtypes’ set
cardinality do not work. In particular, even the rigid CDG (monotonic with
respect to the subgrammar partial order (PO)) do not satisfy the finite thickness
condition. On the other hand, the learning algorithm .4 below is incremental in
the sense that every next hypothetical CDG A(c[i 4 1]) is an “extension” of the
preceding grammar A(c[i]) and it is so without any rigidity constraint.
Incremental learning algorithms are rare. Those we know, are unification based
and apply only to rigid grammars (cf. [4] and [5]). They cannot be considered as
practical (at least for the NLP) because the real application grammars are never
rigid. In the cases when the k-rigid learnability is a consequence of the rigid
learnability, it is only of a theoretical interest because the existence of a learning
algorithm is based on the Kanazawa’s finite-valued-relation reduction [11].

Our notion of incrementality is based on a partial “flexibility” order < on
CDGs. Basically, the order corresponds to grammar expansion in the sense that

G1 < G2 means that G2 defines no less dependency structures than G; and at
least as precise dependency structures as G1. This PO is the reflexive-transitive
closure of the following preorder < .

Definition 7. For a type t = [l,,\---l1\g/r1--- /mu])F a dependency name c,
i>0,0<j <m, et t& = [\ \\er NN\ h\g/ri e /ral P (i
times) and £\ = L\ - \j\ex \lj—1\ -+ -11\g/71 - -+ /ra)T. Respectively, for
0<k<nti R =1\ L\g/ri[re_1/c-Jc/ri) - Jra]F and t& P =
I\ - li\g/r1- - Jrie—1/cx Jri) -+ Jra)F. Then:
1. tgi\’j) < tg*\’j) and tgi/’k) < tg*/’k) foralli>0,0<j<mand0<k<n
2. 7 <71 for sets of types T, 7', if either:

(&) 7" =7 U{t} for a type t ¢ T or

(@) =1 U{t'} and 7' =1 U {t"}
for a set of types 79 and some types t',t" such that t' <t".
3. XA < X for two type assignments X and N, if A(w') < N (w') for a word w'
and AMw) = XN (w) for all words w # w'.
4. = is the PO which is the reflexive-transitive closure of the preorder < .

It is not difficult to prove that the expressive power of CDG monotonically grows
with respect to this PO.

Proposition 1. Let Gy and Gy be two CDG such that G1 < Ga. Then A(Gy) C

The flexibility PO < serves to define the following main notion of incremental
learning.

Definition 8. Let A be an inference algorithm for CDG from DS, o be a training
sequence for a CDG G and A(c[i]) = G; fori > 1.

1. A is monotonic on o if A(oi]) = A(clj]) for alli < j.

2. A is faithful on o if A(A(0[i])) C A(G) for alli.

3. A is expansive on o if o[i] C A(A(oli])) for all i.

Theorem 5. Let o be a training sequence for a CDG G. If an inference algo-
rithm A is monotonic, faithful, and expansive on o, and if A stabilizes on o then
lim A(o[i]) =5 G.

11— 00

Proof. Indeed, stabilization implies that lim A(c[i]) = A(c[T]) for some T.

Then A(A(o[T])) C A(G) because of faithfulness. At the same time, by expan-
oS} o] T

siveness and monotonicity, A(G) = o = |J o[i] € |J A(A(a[i])) € U A(A(a]i]))
i=1 i=1 i=1

C A(A(o[T])).

As we explain it in Section 4, the unlearnability of rigid or k-rigid CDG is due
to the use of iterated types. Such types are unavoidable in real grammars (cf.
the iterated dependency circ in Fig. 4). But in particular in the real application
grammars, the iterated types have very special properties. Firstly, the distant

/ . \
¢ e u/ de IE", Sl prepasge /

maintenant , tous Ies solrs . quand ihr avalt ramnée chez elle , |I fallalt qu’ |I entrat .

(fr. *now all the evenings when he took her home he had to enter [M.Proust])

Fig. 4. Iterated circumstantial dependency
and discontinuous dependencies are never iterated. Secondly, in natural lan-
guages, the optional constructions repeated successively several times (two or
more) are exactly those iterated. This is the resource we use to resolve the
learnability problem. To formalize these properties we need some notations and
definitions. The main definition concerns a restriction on the class of grammars
that is learned. This class corresponds to grammars where an argument that is
used at least K times in a DS must be an iterated argument. Such grammars
are called K-star revealing grammars.

Definition 9.
1. Repetition blocks (R-blocks) : For d € C,

LBdZ{.ﬁl\\.ﬁl ||’L'>0,$iE {d,dk}}

RBy= {1/ /x| i>0,2; € {d,d}}

2. Patterns: Patterns are defined exactly as types, but in the place of C, we use
G, where G is the set of gaps G = {<d> | d € C}. Moreover, for any «, 3, P
and d, [\ <d>\ <d>\B|F and [a/ <d> |/ <d> /B|¥ are not patterns.
8. Vicinity: Let D be a DS in which an occurrence of a word w has :
the incoming local dependency h (or the axziom S), the left projective dependen-
cies or anchors li, ..., 1y (in this order), the right projective dependencies or an-
chors 11, ..., m (in this order), and discontinuous dependencies p1(di),. .., pn(dn),
where p1,...,pn are polarities and dy,...,d, € V are valency names.
Then the vicinity of w in D is the type V(w, D) = [l1\ ... \le\h/Tm/ ... /m1]%,
in which P is a permutation of pi(dy),...,pn(dy) in a standard lexicographical
order, for instance, compatible with the polarity order \ < \, < ,/ < /.
4. Superposition and indexed occurrences of mazimal R-blocks :
(1) Let w be a pattern, [(1,..., 0k be R-blocks and < dy >,...,<dy > be gaps.
Then w(<dy >« p1,...,<dk>— O) is the expression resulting from 7 by the
parallel substitution of the R-blocks for the corresponding gaps.
(i1) Let E be a type or a vicinity. Then m is superposable on E if for some
<di>,...,<dp>,B1,...,0% :

-E=n(<di > (1,...,<dp>— Bi) and

- every R-block (B; is maximal in E.

A vicinity corresponds to the part of a type that is used in a DS. The super-
position, in this context, puts together in a R-block a list of dependencies with

the same name. For instance, the verb fallait in the DS in Fig. 4 has the vicin-
ity [pred\circ\circ\circ\S/a—obj]. The pattern superposable on this vicinity is
= [<pred>\ <circ>\S/ <a—obj>] and the corresponding type is obtained
through the following substitution:

m(<pred >« pred, < circ>« circ\circ\circ, <a—obj >« a—obj).
The vicinity of the participle ramenée is [auz—a/l—obj] 1% Tt is the same
as the type: [aur—a/ <l—obj > it=a=0bi(<]—obj >« [—obj).

Proposition 2. For every type (vicinity) E there is a single pattern 7 super-
posable on E and a single decomposition (R-decomposition)

E=m(<dy > B1,...,<dp > B)F
Notation:
(1) Let E be a type or a vicinity with the R-decomposition
E = 7T(<d1 >« 61, .. .,<dk><¥ 61@)1).

Then for 1 <i <k, E|, =4 (3 and
Eli — 0] =y m(<di>— B1,...,<di>—f,...,<dp>— B)F.

(i1) Let G be a CDG with lexicon A and ¢ € A(w) be a type with R-decomposition
t = m(<dy > Bi,...,<dp > B). Then Giﬁ“ﬁ] denotes the CDG with
lexicon A U {w — &[i «— f]}.

Definition 10. Let K > 1 be an integer. CDG G is K -star revealing for depen-
dency d if for every word w and every type t € A(w) or vicinity t of w in A(G),
such that t = t[i « [] for some i and 8 which has at least one occurrence
of d* or at least K occurrences of d :

GFUE'L(*d*] =, G.
G is K-star revealing if it is K -star revealing for all dependencies.

For instance, if we define the grammar G(t) by A — [a], B — [b],C' +— t, where
t is a type, then we can prove that:

— G([a*\S/a*]), G([a*\b*\a*/S]) and G([a*\b\a*\S]) are all 2-star revealing,
— G([a*\a\9)), G([a*\b*\a\S]) are both not 2-star revealing.

We see that in a K-star revealing grammar, the same iterated dependency sub-
type d* may be used in a type several times, though each occurrence must not
be in the same block with the elementary dependency type d (if any). Besides
this, there should be less than K occurrences of d in every block.

Theorem 6. The class CDGE=* of K-star revealing CDG is (incrementally)
learnable from DS.

To prove the theorem, we present an inference algorithm TGE) (see Fig. 5)
which, for every next DS in a training sequence, transforms the observed local,
distant and anchor dependencies of every word into its vicinity. At that, when

possible, it generalizes the types with repeated local dependencies by introducing
iteration. TGE) is learning CDGX~* due to the following two statements.
Algorithm TGE®) (type-generalize-expand):
Input: o[i] (¢ being a training sequence).
Output: CDG TGEX) (a[i]).
let GH = (VVH7 CH,S7)\H) where
Wy :=0; Cy :={S}; Ay :=0; k:=0

(loop) for i >0 //Infinite loop on ¢
let ofi + 1] = o[i] - D;
let (z,E) = D;

(loop) for every w € x
Wy =WgU {w};
let V(w, D) = m(<dy >« B1,...,<dp>— B)"
(loop) for j :=1,....k
if B; € LDy U RD, and length(5;) > K

then ~; := d* // generalization
else v; := 3; end end

let ty, == m(<dy > Y1,...,<dp>—)"

A (w) == Ag(w) U {ty}; // expansion

end end

Fig. 5. Inference algorithm TGE®)

Lemma 1. The inference algorithm TGE®) s monotonic, faithful and expan-

stve on every training sequence o of a K-star revealing CGD.

Proof. By definition, the algorithm TGE") is monotonic. It is expansive be-
cause for o[i], we add types to the grammar that are based on the vicinities of
the words of o[i]. Thus, oli] is a DS of TGE*)(4[i]). To prove that TGE*)
is faithful for o[i] of A(G), we must prove that A(TGE%)(5[i])) C A(G).
In fact, this property comes from the fact that G is K-star revealing. Because
A(TGE(K)) is monotonic, we only have to show that the new types introduced
by the last DS D of o[i], do not result from DS that are not in A(G). In fact, for
this DS D, TGEX) introduces the types that come from vicinities V (w/, D) =
(< d) > ﬂ{,...,<dij > ﬂij)P], 1 <j < J, where w?,1 < j < J are the
words in D. Because D € A(G), A(GU{V(w?,D),j =1,...,J}) = A(G). By
induction on the number of R-blocks 6@, we prove that when ’yij is computed
by TGE either as ﬁij or as a generalization d* (when the length of ﬁij is
greater or equal to K), D € A(G), A(GU{t/,j =1,...,J}) = A(G), where
t=mi(<d >—~ ... < dij > yij)PJ is also true. On each induction step,
J

we transform one of the 37 into a 'yij. It gy, = fy,ij, there is nothing to prove.

)) ki)
If 3], # 7j;, it means that ~/;, = d* for some d. The length of 3/; is greater
that K, thus we can apply the K-star revealing property of G to the grammar
found at the previous step : we can replace Bij by d* without changing the DS

language.

Lemma 2. The inference algorithm TGEY) stabilizes on every training se-
quence o of a K-star revealing CGD.

Proof. Because G has a finite number of types, the number of corresponding
patterns is also finite. Thus the number of patterns that correspond to the DS
in A(G) (and of course in o) is also finite. Because the R-blocks are generalized
using * by TGE") when their length is greater or equal to K, the number of
R-blocks used by TGE¥) is finite. Thus the number of generated types is finite
and the algorithm certainly stabilizes.

4 Learnability from Positive Examples

Below we study the problem of learning CDG from positive examples of struc-
tures analogous to the FA-structures used for learning of categorial grammars.

4.1 Original algorithm on functor-argument data

FA structures Let X be an alphabet, a FA structure over X' is a binary tree
where each leaf is labelled by an element of 3’ and each internal node is labelled
by the name of the binary rule.

Background - RG algorithm We recall Buszkowski’s Algorithm called RG
as in [11] it is defined for AB grammars, based on /. and \. (binary elimination
rules, like the local rules of CDG LT and L!, without potentials) :

/e:A/B,B=A and \e : B,B\A= A

The RG algorithm takes a set D of functor-argument structures as positive
examples and returns a rigid grammar RG(D) compatible with the input if there
is one (compatible means that D is in the set of functor-argument structures
generated by the grammar).

Sketch of RG-algorithm, computing RG(D):

assign S to the root of each structure

assign distinct variables to argument nodes

compute the other types on functor nodes according to /. and \.

collect the types assigned to each symbol, this provides GF (D)

unify (classical unification) the types assigned to the same symbol in GF (D),
and compute the most general unifier 0,4, of this family of types.

6. The algorithm fails if unification fails, otherwise the result is the application
of Omgu to the types of GF(D) : RG(D) = omgu(GF(D)).

G N

4.2 Functor-argument structures for CDG with iteration

The functor-argument structure and labelled functor-argument struc-
ture associated to a dependency structure proof, are obtained as below.

Definition 11. Let D be a dependency structure proof, ending in a type t. The
labelled functor-argument structure associated to D, denoted lfa;ter (D), is
defined by induction on the length of the dependency proof D considering the last
rule in D :

- if D has no rule, then it is reduced to a type t assigned to a word w, let
Zfaiter(p) = w

-if the last ruleis: ¢ [¢\ B]72 I [B]F1F2, by induction let D; be a dependency
structure proof for P and Ti= lfaiter (D) ; and let Do be a dependency structure
proof for [c\]2 and To=lfa;er(D2) : then lfa;e.(D) is the tree with root
labelled by Ll[c] and subtrees 77, 715 ;

- if the last rule is: [c* \ 872 F [B8]™2, by induction let Dy be a dependency
structure proof for [¢* \ B]"2 and To=lIfa;ser (Do) : then lfa;ie, (D) is Ty ;

- if the last rule is: ¢ [¢*\]2 = [¢*\ B]7172, by induction let D; be a
dependency structure proof for ¢ and 7= lfa;ter (D1) and let D be a depen-
dency structure proof for [¢*\ B]72 and To=lfaiter(D2) : lfaiter (D) is the tree
with root labelled by LI[C] and subtrees 77, 75 ;

- we define similarly the function Ifa;t., when the last rule is on the right,
using / and L* instead of \ and L!;

- if the last rule is the one with potentials, lfa;s.(D) is taken as the image
of the proof above.

The functor-argument structure faie,(D) is the one obtained from Ifa;se. (D)
(the labelled one) by erasing the labels [c].

Ezample 5. Let A(John)=N, A(ran)=[N\S/A*], A\(fast)=A(yesterday)= A,
then s = Lly)(John, L 4)(L"4)(ran, fast), yesterday) (labelled structure)
and s3 = L!(John, L*(L* (ran, fast), yesterday) are associated to D; below :

[N\ S/ A7) A . A
P [N\ S5/ A7) r John ran fast yesterday
N INAS] 0 (dependency structure)
S

4.3 On RG-like algorithms and iteration

Ezample 6. We consider the following functor-argument structures :

s1 = LY(John,ran)

sy = LY(John, L (ran, fast))

s3 = LY(John, L* (L* (ran, fast), yesterday)

s4 = LY(John, L* (L*(L* (ran, fast), yesterday), nearby)
An RG-like algorithm could compute the following assignments and grammar
from {s1, s2, 53} L'(John : X1,ran: X1\ S): S

L'(John : X{,L*(ran: X{\ S/ X2, fast : X2): X{\ S): S

L'(John : X7 1, L* (L (ran: X1\ S/ X" / X4, fast : X5): X?1\ S/ X7,

yesterday : X”2): X711\ S): S

. . flat rigid grammar
general form unification for 2-iteration
John X1,X{,X771 X1:X12X771 X1
X1\ S *
ran X1\ S/ X, fails Xlt}} i/ i(QX/ _
X7 \ S/X”Q / Xé w1 2 — A2 = 2
fast X, X5 Xo Xo
yesterday X7 X2 X2

Notice that the next example s4 would not change the type of ran.

In fact, such an RG-like algorithm, when the class of grammars is restricted to
rigid grammars, when positive examples are functor-argument structures (with-
out category names), cannot converge (in the sense of Gold).

This can be seen, as explained below, using the same grammars as in the limit
point construction for string languages in [5], involving * categories. In fact, the
functor-argument structures are all flat structures, with only / operators.

=8 b ={a— Ab— B,c— Cj}
C ., =C /A | B G, ={a— Ab— B,c— [C]}
il " G ={a— Ab— A c—[S/ A*]}
Positive structured examples are then of the form :
Cy Lr(cv b)a Lr(Lr(Ca b)v b)a Lr(cv a,),Lr(Lr(C, a’)a a)v Lr(Lr(Ca b)v a’)a s

Definition 12. We define flaty: and flatyr,, on words by : flaty:(x1) = x1
=flatyr, (z1) for words of length 1, and flaty:(x1.wl) = L*(z, flaty:(wl)) ;
flatyr , (lwl) = L¥ 4 (@, flatye , (wl)) ; we extend the notation flaty: and
flatys,, to sets of words (as the set of word images).

Let FL(G) denote the language of functor-arguments structures of G, we have :
Theorem 7. FL(G!) = flaty-({c(b*a*)* | k < n}) and FL(G") = flaty:(c{b,a}*)

Corollary 3. The limit point establishes the non-learnability from functor-argument
structures for the underlying classes of (rigid) grammars: those allowing iterative
categories (A*).

A limit point, for labelled functor-arguments structures. If we drop restrictions
such as k-rigid, and consider learnability from labelled functor-arguments struc-
tures, we have a limit point as follows :

Co=S

Cnt1 = (Cn [A)

GO = {GHA,CHCO}

Gn={a— A,c— [Cy],c— [Cp-a],...c— Co}

G. ={ar [Al,c—[5/ A7)}
In fact, the functor-argument structures are all flat structures, with only /
operators and always the same label A. Let LFL(G) denote the language of
labelled functor-argument structures of G, we have :

Theorem 8. LFL(G,) = flaty:, ({c a* | k <n}) and LFL(G,) = flatyr , (c a”)

Corollary 4. The limit point establishes the non-learnability from labelled functor-
argument structures for the underlying classes of grammars: those allowing iter-
ative categories (A*).

The similar question for rigid or k-rigid CDG with iteration is left open.

4.4 Bounds and string learnability

A List-like Simulation In order to simulate an iterated type such that :
[ﬂ/ a*]Poapl . aP" - [6]P0P1».,Pn

we can distinguish two types, one type a for a first use in a sequence and one
type a \ a for next uses in a sequence of elements of type a (this encodes in fact
one or more iterations of a). As in :

John ran fast yesterday nearby
n n\s/a a a\a a\a

We have two assignments for ran: in “John ran”, ran— n\ s but in “John ran-
fast, yesterday”, “ran” +— n\ s/ a. Unfortunately, this approach increases the
number of types in the lexicon: if a type has N iterated subtypes, the simulation
associates 2V types. A similar encoding is given for an extension of pregroups
in [3].

As it concerns structures, note that, however, such a simulation induces a
particular and rather unnatural dependency structure (in the example, every
adverb is subordinate to the next adverb rather than directly to the verb). It is
pertinent only for strings or for theoretical issues.

Bounds As a corollary, for a class of CDG without potentials for which the
number of iterated types is bound by a fixed IV, the simulation leads to a class
of grammars without iterated types, which is also k-rigid: the number of assign-
ments per word is bound by a large but fixed number (k = 2V). This means
that the class of rigid CDG allowing at most N iterated types is learnable from
strings.

This fact also extends to k-rigid CDG, not only to rigid (1-rigid) CDG.

5 Conclusion

In this paper, we propose a new model of incremental learning of categorial
dependency grammars with unlimited iterated types from input dependency
structures without marked iteration. The model reflects the real situation of
deterministic inference of a dependency grammar from a dependency treebank.

The learnability sufficient condition of K-star-revealing we use, is widely ac-
cepted in traditional linguistics for small K, which makes this model interesting
for practical purposes. As shows our study, the more traditional unification based
learning from function-argument structures fails even for rigid categorial depen-
dency grammars with unlimited iterated types.

On the other hand, in this paper, the K-star-revealing condition is defined in

“semantic” terms. It is an interesting question, whether one can find its syntactic
decidable formulation.

References

1.

10.

11.

12.

13.

14.

15.

16.

Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117-135 (1980)

. Béchet, D., Dikovsky, A., Foret, A.: Dependency structure grammars. In: Proc. of

the 5th Int. Conf. “Logical Aspects of Computational Linguistics” (LACL’2005).
pp. 18-34. LNAI 3492 (2005)

Béchet, D., Dikovsky, A., Foret, A., Garel, E.: Optional and iterated types for
pregroup grammars. In: Proceedings of LATA 2008: 2nd International Conference
on Language and Automata Theory and Applications, LNCS Vol. 5196 (2008)
Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49, 431-454 (1990)

Bchet, D., Dikovsky, A., Foret, A., Moreau, E.: On learning discontinuous depen-
dencies from positive data. In: Proc. of the 9th Intern. Conf. “Formal Grammar
2004” (FG 2004). pp. 1-16. Nancy, France (Aug 2004)

Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Proc. of Intern.
Conf. on Categorial Grammars. pp. 76-91. Montpellier (2004)

Dekhtyar, M., Dikovsky, A.: Generalized categorial dependency grammars. In:
Trakhtenbrot/Festschrift, pp. 230-255. LNCS 4800, Springer (2008)

Dikovsky, A.: Dependencies as categories. In: “Recent Advances in Dependency
Grammars”. COLING’04 Workshop. pp. 90-97 (2004)

Gold, E.M.: Language identification in the limit. Information and control 10, 447—
474 (1967)

Joshi, A.K., Shanker, V.K., Weir, D.J.: The convergence of mildly context-sensitive
grammar formalisms. In: Foundational issues in natural language processing. pp.
31-81. Cambridge, MA (1991)

Kanazawa, M.: Learnable classes of categorial grammars. Studies in Logic, Lan-
guage and Information, FoLLI & CSLI (1998)

Mel’¢uk, I.: Dependency Syntax. SUNY Press, Albany, NY (1988)

Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity:
Corrigendum to identification of unions. In: The fourth Annual Workshop on Com-
putational Learning Theory. p. 375. San Mateo, Calif. (1991)

Shanker, V.K., Weir, D.J.: The equivalence of four extensions of context-free gram-
mars. Mathematical Systems Theory 27, 511-545 (1994)

Shinohara, T.: Inductive inference of monotonic formal systems from positive data.
New Generation Computing 8(4), 371-384 (1991)

Wright, K.: Identifications of unions of languages drawn from an identifiable class.
In: The 1989 Workshop on Computational Learning Theory. pp. 328-333. San
Mateo, Calif. (1989)

