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Abstract: In this work, we introduce two new inertial-type algorithms for solving variational inequality

problems (VIPs) with monotone and Lipschitz continuous mappings in real Hilbert spaces. The first

algorithm requires the computation of only one projection onto the feasible set per iteration while the

second algorithm needs the computation of only one projection onto a half-space, and prior knowledge of

the Lipschitz constant of the monotone mapping is not required in proving the strong convergence

theorems for the two algorithms. Under some mild assumptions, we prove strong convergence results for

the proposed algorithms to a solution of a VIP. Finally, we provide some numerical experiments to

illustrate the efficiency and advantages of the proposed algorithms.
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1 Introduction

Let H be a real Hilbert space with the inner product 〈⋅ ⋅〉, and the induced norm ∥⋅∥. Let C be a nonempty,

closed, and convex subset in H . In this article, we consider the classical variational inequality problem

(VIP), which is to find a point ∈x C† such that

〈 − 〉 ≥ ∀  ∈Ax y x y C, 0, ,† † (1)

where →A H H: is a given operator. The solution set of VIP (1) is denoted by ( )VI C A, .

Variational inequality theory is an important tool in economics, engineering, mathematical

programming, transportation, and in other fields (see, for example, [1–8]). Many numerical methods

have been constructed for solving variational inequalities and related optimization problems, see [9–27]

and references therein.

One of the most popular methods for solving the problem (VIP) is the extragradient method (EGM).

This method was introduced by Korpelevich [28] in 1976 as follows:
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where








∈λ 0,

L

1
and PC denotes the metric projection from H onto C. The EGM was first introduced for

solving saddle point problems, after which the method was further extended to VIPs in both the Euclidean

spaces and Hilbert spaces. The convergence of the EGM only requires that the operator A is monotone and

L-Lipschitz continuous. If the solution set ( )VI C A, is nonempty, then the sequence { }xn generated by

algorithm (2) converges weakly to an element in ( )VI C A, .

In recent years, the EGM (2) has received great attention by many authors, who improved it in various

ways (see, for instance, [9,17,29–32] and references therein). In order to obtain the strong convergence of

the EGM in real Hilbert spaces, Maingé [33] proposed a modified version of the algorithm as follows:
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where →A H H: is monotone on C and L-Lipschitz continuous on H and →F H H: is Lipschitz

continuous and strongly monotone on C such that ( ) ≠ ∅VI C A, . Maingé proved that if the parameters

satisfy the conditions:

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


∈ [ ] ⊂ ∈ [ ) =→∞λ a b α α, 0, , 0, 1 , lim 0n L n n n

1
, and∑ = ∞=

∞
αn n0 , then the sequence

{ }xn converges strongly to ∈ ( )x VI C A,† , where x† is the solution of the following VIP

〈 − 〉 ≥ ∀  ∈ ( )Ax y x y VI C F, 0, , .† †

One of the drawbacks of the EGM and its modified version above is that in each iteration in the

algorithm, two projections are made onto the closed convex set C. However, projections onto a general

closed and convex set are not easily executed, a fact that might affect the efficiency and applicability of the

method.

In order to overcome the aforementioned drawback, Censor et al. [9] presented the subgradient

extragradient method, in which the second projection onto C is replaced by a projection onto a specific

constructible half-space which can be easily calculated. Their algorithm is of the form:
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.

Tseng in [32] proposed another method for solving the VIP (1), which uses only one projection in each

iteration. This method is known as the Tseng extragradient method (TEGM) and is presented as follows:
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Another shortcoming of algorithms (2), (3), (4), and (5) is the choice of stepsize. The stepsize plays an

essential role in the convergence properties of iterative methods. In the aforementioned algorithms, the

stepsizes are defined to be dependent on the Lipschitz constant L of the monotone operator. In this case, a

prior knowledge or estimate of the Lipschitz constant is required. However, in many cases, this parameter

is unknown or difficult to estimate. Moreover, the stepsize defined by the constant is often very small and

slows down the convergence rate of iterative methods. In practice, a larger stepsize can often be used and

yields better numerical results.
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Yang and Liu [34] inspired by the TEGM and the viscosity method with a simple step size proposed the

following algorithm for solving VIP (1):

Algorithm 1.1.

Step 0. Take > ∈ ∈ ( )λ x H μ0, , 0, 10 0 .

Step 1. Given the current iterate xn, compute

= ( − ( ))y P x λ F x .n C n n n

If =x yn n, then stop: xn is a solution. Otherwise, go to Step 2.

Step 2. Compute

= ( ) + ( − )+x α f x α z1n n n n n1

and
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where = + ( ( ) − ( ))z y λ F x F yn n n n n . Set ≔ +n n 1 and return to Step 1,

where →F H H: is monotone and Lipschitz continuous with constant >L 0, →f H H: is a strict

contraction mapping with constant ∈ [ )ρ 0, 1 , and { } ⊂ ( )α 0, 1n . They proved the strong convergence of the

algorithm without any prior knowledge of the Lipschitz constant of the mapping.

Very recently, Thong et al. [35] introduced a new algorithm which was a combination of the modified

TEGM and the viscosity method with inertial technique. The proposed algorithm is presented as follows.

Algorithm 1.2.

Initialization: Let ∈x x H,0 1 be arbitrary.

Iterative steps: Calculate +xn 1 as follows:

Step 1. Set = + ( − )−w x α x xn n n n n 1 and compute

= ( − )y P w λAw .n C n n

If =y wn n, then stop and yn is a solution of the VIP. Otherwise, go to Step 2.

Step 2. Compute

= ( ) + ( − )+x β f x β z1 ,n n n n n1

where = − ( − )z y λ Ay Awn n n n . Set ≔ +n n 1 and go to Step 1,

where →A H H: is monotone and Lipschitz continuous with constant >L 0, →f H H: is a contraction

mapping with contraction parameter,








∈ { } ⊂ [ )λ α α0, , 0,

L n
1

for some >α 0 and { } ⊂ ( )β 0, 1n satisfying

= ∑ = ∞→∞ =
∞

β βlim 0,n n n n1 . Under certain mild assumptions, they proved that the proposed algorithm

converges strongly to a solution of the VIP (1).

In this work, we propose iterative schemes to remedy the drawbacks highlighted above. Motivated by

the works of Yang et al. [34] and Thong et al. [35] and the current research interest in this direction, we

propose two new inertial-type algorithms for solving the VIP (1) based on the TEGM and Moudafi’s

viscosity scheme which does not require a prior knowledge of the Lipschitz constant of the monotone

operator. The inertial term ( − )−α x xn n n 1 introduced can be regarded as a procedure for speeding up the

convergence properties (see, for example, [22,23,33,36–39]). The first algorithm requires the computation
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of only one projection onto the feasible set per iteration while the second algorithm needs the computation

of only one projection onto a half-space, which is easy to compute. Under some mild conditions, we prove

strong convergence theorems for the algorithms without any prior knowledge of the Lipschitz constant of

the monotone operator. Finally, we provide some numerical experiments to show the efficiency and

advantages of the proposed algorithms. The numerical illustrations show that our proposed algorithms

with inertial effects converge faster than the original algorithms without inertial effects.

2 Preliminaries

Let H be a real Hilbert, for a nonempty, closed, and convex subset C of H, the metric projection →P H C:C

is defined, for each ∈x H , as the unique element ∈P x CC such that

∥ − ∥ = {∥ − ∥ ∈ }x P x x z z Cinf : .C

It is known that PC is nonexpansive. We denote the weak and strong convergence of a sequence { }xn to a

point ∈x H by ⇀x xn and →x xn , respectively.

Definition 2.1. A function �→f H: is said to be weakly lower semicontinuous (w-lsc) at ∈x H , if

( ) ≤ ( )
→∞

f x f xlim inf
n

n

holds for an arbitrary sequence { } =∞xn n 0 in H satisfying ⇀x xn .

Lemma 2.2. [40,41] Let ∈ ( )δ 0, 1 , for ∈x y H, , we have the following statements:

(1) |〈 〉| ≤ ∥ ∥∥ ∥x y x y, ;

(2) ∥ + ∥ ≤ ∥ ∥ + 〈 + 〉x y x y x y2 , ;2 2

(3) ∥ + ∥ = ∥ ∥ + 〈 〉 + ∥ ∥x y x x y y2 , ;2 2 2

(4) ∥ + ( − ) ∥ = ∥ ∥ + ( − )∥ ∥ − ( − )∥ − ∥δx δ y δ x δ y δ δ x y1 1 1 .2 2 2 2

Lemma 2.3. [42] Let C be a nonempty closed convex subset of a real Hilbert space H . For any ∈x H and

∈z C, we have

= ⇔ 〈 − − 〉 ≥ ∈z P x x z z y for all y C, 0 .C

Lemma 2.4. [42] Let C be a closed convex subset in a real Hilbert space H , and ∈x H . Then,

(1) ∥ − ∥ ≤ 〈 − − 〉 ∈P x P y P x P y x y for all y C, ;C C C C
2

(2) ∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ ∈P x y x y x P x for all y C.C C
2 2 2

Lemma 2.5. [43] Let { }an be a sequence of nonnegative real numbers, { }αn be a sequence in ( )0, 1 with

∑ = ∞=
∞

αn n1 , and { }bn be a sequence of real numbers. Assume that

≤ ( − ) + ≥+a α a α b for all n1 , 1,n n n n n1

if ≤→∞blim sup 0k nk for every subsequence { }ank of { }an satisfying ( − ) ≥→∞ +a alim inf 0k n nk k1
, then

=→∞alim 0n n .

Lemma 2.6. [44] If →A C H: is a continuous and monotone mapping, then ∗x is a solution of (1) if and only

if ∗x is a solution of the following problem:

∈ 〈   − 〉 ≥ ∀  ∈∗ ∗find x C such that Ay y x y C, 0, .
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3 Main results

In this work, we consider the VIP (1) under the following assumptions:

(A1) The solution set of (1) denoted by ( )VI C A, is nonempty.

(A2) The mapping A is monotone, i.e.,

〈 −    − 〉 ≥ ∀  ∈Ax Ay x y x y H, 0, , . (6)

(A3) The mapping A is Lipschitz-continuous with constant >L 0, i.e., there exists >L 0 such that

∥ − ∥ ≤ ∥ − ∥  ∀  ∈Ax Ay L x y x y H, . (7)

We take →f H H: to be a strict contraction mapping with contraction parameter ∈ [ )k 0, 1 . Let

{ } ⊂ [ )α α0,n for some >α 0 and { } ⊂ ( )β 0, 1n satisfy the following conditions:

∑= = ∞ ∥ − ∥ =
→∞ =

∞

→∞
−β β
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β
x xlim 0, and lim 0.

n
n

n
n

n

n

n

n n

1

1 (8)

Now, the first algorithm is presented as follows.

Algorithm 3.1.

Step 0. Take ∈x x H,0 1 arbitrarily, > ∈ ( )λ μ0, 0, 10 .

Step 1. Set = + ( − )−w x α x xn n n n n 1 and compute

= ( − )y P w λ Aw .n C n n n

If =y wn n, then stop and yn is the solution of the VIP (1). Otherwise, go to Step 2.

Step 2. Compute

= ( ) + ( − )+x β f x β z1n n n n n1

and
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where = + ( − )z y λ Aw Ayn n n n n . Set ≔ +n n 1 and return to Step 1.

Lemma 3.2. The sequence { }λn generated by Algorithm 3.1 is monotonically decreasing with lower bound

{ }λmin ,
μ

L 0 .

Proof. Repeating the proof as in [34] and replacing { }xn by { }wn , we obtain the desired result. □

Remark 3.3. It is clear that the limit of { }λn exists, and we denote = →∞λ λlimn n. It then follows

that >λ 0.

Now, we prove the boundedness of the sequence { }xn generated by Algorithm 3.1.

Lemma 3.4. Let { }xn be a sequence generated by Algorithm 3.1. Then, { }xn is bounded.

Proof. Suppose ∈ ( )p VI C A, . Then, by the definition of { }zn and using Lemma 2.2, we obtain
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2 2
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(9)
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Recalling that = ( − )y P w λ Awn C n n n , by Lemma 2.3, we obtain

〈 − + − 〉 ≤y w λ Aw y p, 0,n n n n n

which is equivalent to

〈 − − 〉 ≤ − 〈 − 〉y w y p λ Aw y p, , .n n n n n n (10)

Combining (9) and (10), we have
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Now, consider the limit
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Hence, combining (13), (14) and (15), we have
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Substituting (16) into (17), we obtain
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This implies that the sequence { }xn is bounded. It also follows that { } { ( )} { }z f x w, ,n n n , and { }yn are bounded. □

Lemma 3.5. Assume that { }wn and { }yn are sequences generated by Algorithm (3.1) such that

∥ − ∥ =→∞ w ylim 0n n n . If { }wnk converges weakly to some ∈z H0 , then ∈ ( )z VI C A,0 .

Proof. By the hypotheses of the lemma, we have that ⇀y zn 0k
and ∈z C0 . Since A is monotone, then by

the definition of ynk and by applying Lemma 2.3, we obtain

〈 − +   − 〉 ≥ ∀  ∈y w λ Aw z y z C, 0, .n n n n nk k k k k

This implies that

≤ 〈 −   − 〉 + 〈   − 〉
= 〈 −   − 〉 + 〈   − 〉 + 〈   − 〉
≤ 〈 −   − 〉 + 〈   − 〉 + 〈   − 〉

y w z y λ Aw z y

y w z y λ Aw z w λ Aw w y

y w z y λ Az z w λ Aw w y

0 , ,

, , ,

, , , .
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n n n n n n n n n n

n n n n n n n n n

k k k k k k

k k k k k k k k k k

k k k k k k k k k

Letting → ∞k , applying the facts that ∥ − ∥ = { }→∞ y w ylim 0,k n n nk k k
is bounded and = >→∞λ λlim 0k nk , we

have

〈   − 〉 ≥ ∀  ∈Az z z z C, 0, .0

Applying Lemma 2.6, we have that ∈ ( )z VI C A,0 . □

Lemma 3.6. Let { }xn , { }wn , { }yn , { }λn , { }βn , and μ be as defined in Algorithm 3.1 and >M 04 be some constant.

Then, the following inequality holds:


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
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( − ) − ∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ +
+

∗ + ∗β λ
μ

λ
y w x x x x β M1 1 ,n n

n
n n n n n

2
2

1
2

2 2
1

2
4 (18)

where ∈ ( )∗x VI C A, .

Proof. Let ∈ ( )∗x VI C A, , then by the definition of { }xn and using Lemma 2.2, we have
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= ∥ − ∥ + ( ∥ − ∥⋅∥ ( ) − ∥ + ∥ ( ) − ∥ ) + ( − )∥ − ∥
≤ ∥ − ∥ + ( − )∥ − ∥ +

+ ∗ ∗

∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

x x β f x β z x

β f x x β z x β β f x z

β f x x β z x

β f x f x f x x β z x

β k x x f x x β z x

β x x f x x β z x

β x x β x x f x x f x x β z x

β x x β z x β M

1

1 1

1

1

1

1

2 1

1 ,

n n n n n

n n n n n n n n

n n n n

n n n n

n n n n

n n n n

n n n n n n

n n n n n

1
2 2

2 2 2
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2 2

2 2

2 2

2 2 2

2 2
2

(19)

for some >M 02 . Substituting (11) into (19), we get
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







∥ − ∥ ≤ ∥ − ∥ + ( − )∥ − ∥ − ( − ) − ∥ − ∥ ++ ∗ ∗ ∗

+
x x β x x β w x β λ

μ

λ
y w β M1 1 1 .n n n n n n n

n
n n n1

2 2 2 2
2

1
2

2
2 (20)

From (16), we obtain

∥ − ∥ ≤ (∥ − ∥ + ) = ∥ − ∥ + ( ∥ − ∥ + ) ≤ ∥ − ∥ +∗ ∗ ∗ ∗ ∗w x x x β M x x β M x x β M x x β M2 ,n n n n n n n n n
2

1
2 2

1 1
2 2

3 (21)

for some >M 03 . Combining (20) and (21), we obtain





















∥ − ∥ ≤ ∥ − ∥ + ( − )∥ − ∥ + − ( − ) − ∥ − ∥ +

= ∥ − ∥ + − ( − ) − ∥ − ∥ +

+ ∗ ∗ ∗

+

∗

+

x x β x x β x x β M β λ
μ

λ
y w β M

x x β M β λ
μ

λ
y w β M

1 1 1

1 1 .

n n n n n n n n
n

n n n

n n n n
n

n n n

1
2 2 2

3
2

2

1
2

2
2

2
3

2
2

1
2

2
2

Hence, we have that









( − ) − ∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ +
+

∗ + ∗β λ
μ

λ
y w x x x x β M1 1 ,n n

n
n n n n n

2
2

1
2

2 2
1

2
4

where ≔ +M M M4 2 3. □

Now, we prove the convergence of Algorithm 3.1.

Theorem 3.7. Assume that (A1), (A2), and (A3) hold and the sequence { }αn is chosen such that it satisfies (8).

Then, the sequence { }xn generated by Algorithm 3.1 converges strongly to an element ∈ ( )∗x VI C A, , where

= ∘ ( )∗ ( ) ∗x P f xVI C A, .

Proof. Let ∈ ( )∗x VI C A, , then using (13) and Lemma 2.2, we obtain

∥ − ∥ = ∥ ( ) + ( − ) − ∥
= ∥ ( ( ) − ( )) + ( − )( − ) + ( ( ) − )∥
≤ ∥ ( ( ) − ( )) + ( − )( − )∥ + 〈 ( ) − − 〉
= ∥( ( ) − ( )∥ + ( − )∥( − )∥ − ( − )∥( ( ) − ( )) − ( − ) ∥
+ 〈 ( ) − − 〉
≤ ∥( ( ) − ( )∥ + ( − )∥( − )∥ + 〈 ( ) − − 〉
≤ ∥ − ∥ + ( − )∥( − )∥ + 〈 ( ) − − 〉
≤ ∥ − ∥ + ( − )∥( − )∥ + 〈 ( ) − − 〉

+ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ + ∗

∗ ∗ ∗ ∗

∗ ∗ + ∗

∗ ∗ ∗ ∗ + ∗

∗ ∗ ∗ ∗ + ∗

∗ ∗ ∗ ∗ + ∗

x x β f x β z x

β f x f x β z x β f x x

β f x f x β z x β f x x x x

β f x f x β z x β β f x f x z x

β f x x x x

β f x f x β z x β f x x x x

β k x x β z x β f x x x x

β k x x β w x β f x x x x

1

1

1 2 ,

1 1

2 ,

1 2 ,

1 2 ,

1 2 , .

n n n n n

n n n n n

n n n n n n

n n n n n n n n

n n

n n n n n n

n n n n n n

n n n n n n

1
2 2

2

2
1

2 2 2

1

2 2
1

2 2 2
1

2 2
1

(22)

By the definition of { }wn and using Lemma 2.2, we have

∥ − ∥ = ∥ + ( − ) − ∥
= ∥ − ∥ + 〈 − − 〉 + ∥ − ∥
≤ ∥ − ∥ + ∥ − ∥⋅∥ − ∥ + ∥ − ∥

∗ − ∗

∗ ∗ − −
∗ ∗ − −

w x x α x x x

x x α x x x x α x x

x x α x x x x α x x

2 ,

2 .

n n n n n

n n n n n n n n

n n n n n n n n

2
1

2

2
1

2
1

2

2
1

2
1

2

(23)

Combining (22) and (23), we obtain









∥ − ∥ ≤ ( − ( − ) )∥ − ∥ + ∥ − ∥⋅∥ − ∥ + ∥ − ∥ + 〈 ( ) − − 〉

= ( − ( − ) )∥ − ∥ + ( − ) ⋅
−
〈 ( ) − − 〉

+ ∥ − ∥( ∥ − ∥ + ∥ − ∥)

≤ ( − ( − ) )∥ − ∥ + ( − ) ⋅
−
〈 ( ) − − 〉 + ∥ − ∥

= ( − ( − ) )∥ − ∥ + ( − )
−
〈 ( ) − − 〉 +

−
⋅ ∥ − ∥

+ ∗ ∗ ∗ − − ∗ ∗ + ∗

∗ ∗ ∗ + ∗

− ∗ −

∗ ∗ ∗ + ∗ −

∗ ∗ ∗ + ∗ −

x x k β x x α x x x x α x x β f x x x x

k β x x k β
k

f x x x x

α x x x x α x x

k β x x k β
k

f x x x x Mα x x

k β x x k β
k

f x x x x
M

k

α

β
x x

1 1 2 2 ,

1 1 1
2

1
,

2

1 1 1
2

1
, 3

1 1 1
2

1
,

3

1
,

n n n n n n n n n n n n

n n n n

n n n n n n n

n n n n n n n

n n n n
n

n

n n

1
2 2

1
2

1
2

1

2
1

1 1

2
1 1

2
1 1

(24)

where ≔ {∥ − ∥ ∥ − ∥} >∈ ∗ −M x x α x xsup , 0n N n n n n 1 .
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Next, we claim that the sequence {∥ − ∥}∗x xn converges to zero. In order to establish this, by Lemma

2.5, it suffices to show that 〈 ( ) − − 〉 ≤→∞ ∗ ∗ + ∗f x x x xlim sup , 0k n 1k
for every subsequence {∥ − ∥}∗x xnk of

{∥ − ∥}∗x xn satisfying

(∥ − ∥ − ∥ − ∥) ≥
→∞

+ ∗ ∗x x x xlim inf 0.
k

n n1k k

Now, suppose that {∥ − ∥}∗x xnk is a subsequence of {∥ − ∥}∗x xn such that

(∥ − ∥ − ∥ − ∥) ≥
→∞

+ ∗ ∗x x x xlim inf 0.
k

n n1k k

Then, it follows that

(∥ − ∥ − ∥ − ∥ ) = {(∥ − ∥ − ∥ − ∥) (∥ − ∥ + ∥ − ∥)} ≥
→∞

+ ∗ ∗
→∞

+ ∗ ∗ + ∗ ∗x x x x x x x x x x x xlim inf lim inf 0.
k

n n
k

n n n n1
2 2

1 1k k k k k k

Then from Lemma 3.6, and using the facts that 






− = − >→∞
+

λ μlim 1 1 0k n
μ

λ

2 2
k

nk

2

1
2 and =→∞βlim 0k nk

, we

obtain

∥ − ∥ =
→∞

y wlim 0.
k

n nk k (25)

From (25), we get











∥ − ∥ = ∥ + ( − ) − ∥
≤ ∥ − ∥ + ∥ − ∥

≤ ∥ − ∥ + × ∥ − ∥

= + × ∥ − ∥ →

+

+

z w y λ Aw Ay w

y w λ Aw Ay

y w λ
μ

λ
w y

λ
μ

λ
y w1 0.

n n n n n n n

n n n n n

n n n
n

n n

n
n

n n

1

1

k k k k k k k

k k k k k

k k k

k

k k

k

k

k k

(26)

Also, we have that

∥ − ∥ = ∥ ( ) + ( − ) − ∥ = ∥ ( ) − ∥ →+x z β f x β z z β f x z1 0n n n n n n n n n n1k k k k k k k k k k (27)

and

∥ − ∥ = ∥ − [ + ( − )]∥ = ∥ − ∥ = ⋅ ∥ − ∥ →− − −x w x x α x x α x x β
α

β
x x 0.n n n n n n n n n n n

n

n

n n1 1 1k k k k k k k k k k k

k

k

k k (28)

Applying (26), (27), and (28), we obtain

∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ + ∥ − ∥ →+ +x x x z z w w x 0.n n n n n n n n1 1k k k k k k k k (29)

Since { }xnk is bounded, there exists a subsequence { }xnkj that converges weakly to some ∈z H0 , such that

〈 ( ) − − 〉 = 〈 ( ) − − 〉 = 〈 ( ) − − 〉
→∞

∗ ∗ ∗
→∞

∗ ∗ ∗ ∗ ∗ ∗f x x x x f x x x x f x x z xlim sup , lim , , .
k

n
j

n 0k kj (30)

By Lemma 3.5, and (25) and (28), we have ∈ ( )z VI C A,0 . Since the solution set ( )VI C A, is a closed, convex

subset and f is a strict contraction, the mapping ∘( )P fVI C A, is a contraction mapping. Hence, by the

Banach contraction mapping principle, there exists a unique element ∈ ( )∗x VI C A, such that

= ∘ ( )∗ ( ) ∗x P f xVI C A, . By Lemma 2.3, we have

〈 ( ) −    − 〉 ≤ ∀  ∈ ( )∗ ∗ ∗f x x z x z VI C A, 0, , . (31)

Hence, it follows from (31) that

〈 ( ) −    − 〉 = 〈 ( ) −    − 〉 ≤
→∞

∗ ∗ ∗ ∗ ∗ ∗f x x x x f x x z xlim sup , , 0.
k

n 0k (32)
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Combining (29) and (32), we have

〈 ( ) −    − 〉 ≤ 〈 ( ) −    − 〉 + 〈 ( ) −    − 〉

= 〈 ( ) −    − 〉 ≤
→∞

∗ ∗ + ∗
→∞

∗ ∗ +
→∞

∗ ∗ ∗

∗ ∗ ∗

f x x x x f x x x x f x x x x

f x x z x

lim sup , lim sup , lim sup ,

, 0.

k
n

k
n n

k
n1 1

0

k k k k

(33)

Thus, by (33), ∥ − ∥ =→∞ −x xlim 0n
α

β n n 1
n

n

, (24) and Lemma 2.5, we have ∥ − ∥ =→∞ ∗x xlim 0n n as required. □

We next propose our second algorithm. Suppose C is a nonempty convex set which satisfies the

following conditions:

(B1) The set C is given by

= { ∈ ( ) ≤ }C x H h x: 0 ,

where �→h H: is a convex and subdifferentiable function on C.

(B2) h is weakly lower semicontinuous.

(B3) For any ∈x H , at least one subgradient ∈ ∂ ( )ξ h x can be calculated, where ∂ ( )h x is defined as follows:

∂ ( ) = { ∈ ( ) ≥ ( ) + 〈 − 〉   ∀ ∈ }h x z H h u h x u x z u H: , , .

In addition, ∂ ( )h x is bounded on bounded sets.

(B4) Define the set Cn by the following half-space:

= { ∈ ( ) + 〈 − 〉 ≤ }C x H h w ξ x w: , 0 ,n n n n

where ∈ ∂ ( )ξ h wn n . By the definition of the subgradient, it is clear that ⊆C Cn.

We now present the following algorithm using the half-space defined above.

Let →f H H: be a strict contraction mapping with contraction parameter ∈ [ )k 0, 1 . Let { } ⊂ [ )α α0,n

for some >α 0 and { } ⊂ ( )β 0, 1n satisfying the following conditions:

∑= = ∞ ∥ − ∥ =
→∞ =

∞

→∞
−β β

α

β
x xlim 0, and lim 0.

n
n

n
n

n

n

n

n n

1

1

Let { }xn be a sequence generated by the following iterative process.

Algorithm 3.8.

Step 0. Take ∈x x H,0 1 arbitrarily, > ∈ ( )λ μ0, 0, 10 .

Step 1. Set = + ( − )−w x α x xn n n n n 1 and compute

= ( − )y P w λ Aw .n C n n nn

If =y wn n, then stop and yn is the solution of the VIP (1). Otherwise, go to Step 2.

Step 2. Compute

= ( ) + ( − )+x β f x β z1n n n n n1

and















=

∥ − ∥
∥ − ∥

   − ≠
+λ

μ w y

Aw Ay
λ Aw Ay

λ

min , , if 0,

, otherwise,

n

n n

n n

n n n

n

1

where = + ( − )z y λ Aw Ayn n n n n . Set ≔ +n n 1 and return to Step 1.

It is easy to extend Lemmas 3.2, 3.4, and 3.6 for Algorithms 3.1–3.8.

Lemma 3.9. The sequence { }λn generated by Algorithm 3.8 is monotonically decreasing with lower bound

{ }λmin ,
μ

L 0 .
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Lemma 3.10. Let { }xn be a sequence generated by Algorithm 3.8. Then, the sequence { }xn is bounded.

Lemma 3.11. Let { }xn , { }wn , { }yn , { }λn , { }βn , and μ be as defined in Algorithm 3.8 and >M 05 be some constant.

Then, the following inequality holds:









( − ) − ∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ +
+

∗ + ∗β λ
μ

λ
y w x x x x β M1 1 ,n n

n
n n n n n

2
2

1
2

2 2
1

2
5 (34)

where ∈ ( )∗x VI C A, .

Lemma 3.12. Assume that { }wn and { }yn are sequences generated by Algorithm (3.8) such that

∥ − ∥ =→∞ w ylim 0n n n . If { }wnj converges weakly to some ∈x Hˆ as → ∞j , then ∈ ( )x VI C Aˆ , .

Proof. Since ⇀w x̂nj , it follows that ⇀y x̂nj
as → ∞j . Since ∈y Cn nj j

, by the definition of Cn, we get

( ) + 〈 − 〉 ≤h w ξ y w, 0.n n n nj j j j

Since { }xn is bounded by Lemma 3.10, then { }wn and { }yn are also bounded, and by condition (B3) there

exists a constant >M 0 such that ∥ ∥ ≤ ≥ξ M jfor all 0nj
. So ( ) ≤ ∥ − ∥ → → ∞h w M w y j0 asn n nj j j

, and

this in turn implies that ( ) ≤→∞h wlim inf 0j nj . Using condition (B2), we have ( ) ≤ ( ) ≤→∞h x h wˆ lim inf 0j nj .

This means that ∈x Cˆ . From Lemma 2.3, we obtain

〈 − +   − 〉 ≥ ∀  ∈ ⊆y w λ Aw z y z C C, 0, .n n n n n nj j j j j j

Since A is monotone, we have

≤ 〈 −   − 〉 + 〈   − 〉
= 〈 −   − 〉 + 〈   − 〉 + 〈   − 〉
≤ 〈 −   − 〉 + 〈   − 〉 + 〈   − 〉

y w z y λ Aw z y

y w z y λ Aw z w λ Aw w y

y w z y λ Az z w λ Aw w y

0 , ,

, , ,

, , , .

n n n n n n

n n n n n n n n n n

n n n n n n n n n

j j j j j j

j j j j j j j j j j

j j j j j j j j j

Letting → ∞j , and since ∥ − ∥ =→∞ y wlim 0j n nj j
, we have

〈   − 〉 ≥ ∀  ∈Az z x z C, ˆ 0, .

Applying Lemma 2.6, we have that ∈ ( )x VI C Aˆ , . □

Now, we prove the convergence theorem for Algorithm 3.8.

Theorem 3.13. Assume that (A1), (A2), (A3), (B1), and (B2) hold. Let the sequence { }αn be chosen such that

it satisfies (8). Then, the sequence { }xn generated by Algorithm 3.8 converges strongly to an element

∈ ( )x VI C Aˆ , , where = ∘ ( )( )x P f xˆ ˆVI C A, .

Proof. From (24), we have









∥ − ∥ ≤ ( − ( − ) )∥ − ∥ + ( − )
−
〈 ( ) − − 〉 +

−
⋅ ∥ − ∥+ ∗ ∗ ∗ ∗ + ∗ −x x k β x x k β

k
f x x x x

M

k

α

β
x x1 1 1

2

1
,

3

1
,n n n n n

n

n

n n1
2 2

1 1 (35)

where ≔ {∥ − ∥ ∥ − ∥} >∈ ∗ −M x x α x xsup , 0n N n n n n 1 .

We claim that the sequence {∥ − ∥}∗x xn converges to zero. In order to establish this, by Lemma 2.5, it suffices to

show that 〈 ( ) − − 〉 ≤→∞ ∗ ∗ + ∗f x x x xlim sup , 0k n 1k
for every subsequence {∥ − ∥}∗x xnk of {∥ − ∥}∗x xn satisfying

(∥ − ∥ − ∥ − ∥) ≥
→∞

+ ∗ ∗x x x xlim inf 0.
k

n n1k k

Suppose that {∥ − ∥}∗x xnk is a subsequence of {∥ − ∥}∗x xn such that

(∥ − ∥ − ∥ − ∥) ≥
→∞

+ ∗ ∗x x x xlim inf 0.
k

n n1k k
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By applying Lemma 3.11 and following similar argument as in Theorem 3.7 we have

∥ − ∥ = ∥ − ∥ = ∥ − ∥ = ∥ − ∥ =
→∞ →∞ →∞ →∞

+y w z w x w x xlim 0, lim 0, lim 0, lim 0.
k

n n
k

n n
k

n n
k

n n1k k k k k k k k (36)

Since { }xnk is bounded, there exists a subsequence { }xnkj that converges weakly to some ∈z H0 , such that

〈 ( ) − − 〉 = 〈 ( ) − − 〉 = 〈 ( ) − − 〉
→∞

∗ ∗ ∗
→∞

∗ ∗ ∗ ∗ ∗ ∗f x x x x f x x x x f x x z xlim sup , lim , , .
k

n
j

n 0k kj (37)

By Lemma 3.12 and (36), we have ∈ ( )z VI C A,0 . Since the solution set ( )VI C A, is a closed, convex subset

and f is a strict contraction, the mapping ∘( )P fVI C A, is a contraction mapping. By the Banach contraction

mapping principle, there exists a unique element ∈ ( )∗x VI C A, such that = ∘ ( )∗ ( ) ∗x P f xVI C A, . Applying

Lemma 2.3, we have

〈 ( ) −    − 〉 ≤ ∀  ∈ ( )∗ ∗ ∗f x x z x z VI C A, 0, , . (38)

Therefore, we have that

〈 ( ) −    − 〉 = 〈 ( ) −    − 〉 ≤
→∞

∗ ∗ ∗ ∗ ∗ ∗f x x x x f x x z xlim sup , , 0.
k

n 0k (39)

From (36) and (39), we have

〈 ( ) −    − 〉 ≤ 〈 ( ) −    − 〉 + 〈 ( ) −    − 〉

= 〈 ( ) −    − 〉 ≤
→∞

∗ ∗ + ∗
→∞

∗ ∗ +
→∞

∗ ∗ ∗

∗ ∗ ∗

f x x x x f x x x x f x x x x

f x x z x

lim sup , lim sup , lim sup ,

, 0.

k
n

k
n n

k
n1 1

0

k k k k

(40)

Hence, by (40), ∥ − ∥ =→∞ −x xlim 0n
α

β n n 1
n

n

, (35), and applying Lemma 2.5, we have ∥ − ∥ =→∞ ∗x xlim 0n n ,

which is the required result. □

4 Numerical experiments

In this section, we present some numerical examples to demonstrate the efficiency of our algorithms in

comparison with Algorithms 1.1 and 1.2 in the literature. All numerical computations were carried out

using Matlab 2016(b) on an HP personal computer, 8-Gb RAM.

We choose = = ( ) =+λ β f x0.9, ,n n

x
0

1

1 5
, and =μ 0.6 and use <∥ − ∥

∥ − ∥
+ ε

x x

x x

n n1

2 1
as a stopping criterion to

terminate the algorithm in each example. The projection onto the feasible set C is computed using the

function “fmincon” in the optimization tool box. We take =θ 0.6 and choose the sequence { }αn such that























= ∥ − ∥

≠
−

−α
θ

β

x x
x x

θ

min , if ,

otherwise.

n

n

n n
n n

2

1
1

Problem 1.

The first test (also considered in [34]) is a classical example for which the usual gradient method does not

converge. The feasible set is =C Rm and ( ) =A x Mx, where M is a square ×m m matrix given by







=
− = + − >

= + − <a

j m i j i

j m i j

1, if 1 and ,

1 if 1 and 1,

0, otherwise.

i j,

For even m, the zero vector = ( … )∗x 0, , 0 is the solution of Problem 1. In this example, we take (Case I:)

=m 4, (Case II:) =m 20, and (Case III:) =m 100 and = −ε 10 4. The initial points are generated randomly

using = ( )x mrand , 10 and = × ( )x m10 rand , 11 . The numerical results are summarized in Table 1 and

Figure 1.
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Problem 2.

Suppose that = ([ ])H L 0, 12 with the inner product

∫〈 〉 ≔ ( ) ( ) ∀  ∈x y x t y t t x y H, d , ,

0

1

and the induced norm













∫∥ ∥ ≔ | ( )| ∀  ∈x x t t x Hd , .

0

1

2

Let ≔ { ∈ ∥ ∥ ≤ }C x H x: 1 be the unit ball and define the operator →A C H: by

( )( ) = { ( )}Ax t x tmax 0, .

It can be easily verified that A is 1-Lipschitz continuous and monotone on C. With these given C and A, the

solution set of the VIP (1) is given by

( ) = { } ≠ ∅VI C A, 0 .

It is known that






( ) = ∥ ∥

∥ ∥ >

∥ ∥ ≤
P x

x

x
x

x x

if 1,

if 1.
C L

L

L

2

2

2

Table 1: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 1

Dimension Algorithm 3.1 Algorithm 1.1 Algorithm 1.2

Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)

m 4= 23 6.0523 59 16.5546 29 7.6139

m 20= 22 7.4086 58 18.7391 29 8.7219

m 100= 24 15.9526 63 35.6063 31 18.4151
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Figure 1: Problem 1, left: m 4= ; middle: m 20= ; and right: m 100= .
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We test the algorithms for three different starting points and use = −ε 10 3 as a stopping criterion. The

numerical results are summarized in Table 2 and Figure 2.

Case I: =x t0
3
5 , = + −x t t5 11

3 2 ;

Case II: = (− )x texp 50 , = ( − )x t2 1 51
2 ;

Case III: = ( )x πt5 sin 20 , = ( )x tcos 2 41 .

Problem 3.

Next, we consider the Kojima-Shindo nonlinear complementarity problem, where =n 4 and the mapping

A is defined by





















( ) =

+ + + + −
+ + + + −
+ + + + −
+ + + −

A x x x x

x x x x x x

x x x x x

x x x x x x

x x x x

, , ,

3 2 2 3 6

2 10 2 2

3 2 2 9 9

3 2 3 3

.1 2 3 4

1
2

1 2 2
2

3 4

1
2

1 2
2

3 4

1
2

1 2 2
2

3 4

1
2

2
2

3 4

It is known that A is Lipschitz continuous [45]. The feasible set is = { ∈  |  + + + = }+C x x x x xR 44
1 2 3 4 . We choose

the starting points: Case I: = ( )′ = ( )′x x1, 2, 0, 1 ; 1, 1, 1, 10 1 and Case II: = ( )′ = ( )′x x2, 0, 0, 2 ; 1, 0, 1, 20 1 .

For all the starting points, we have two tests: with = −ε 10 3 and = −ε 10 6. The results are summarized in

Tables 3–4 and Figures 3–4.

Table 2: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 2

Algorithm 3.1 Algorithm 1.1 Algorithm 1.2

Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)

Case I 7 1.7756 6 1.9701 11 5.6289

Case II 7 5.0223 7 5.2426 11 7.0342

Case III 8 3.1035 8 3.1066 11 8.0202
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Figure 2: Problem 1, left: Case I; middle: Case II; and right: Case III.
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Figure 3: Problem 1, left: Case I; right: Case II.
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Figure 4: Problem 1, left: Case I; right: Case II.

Table 4: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 3, ε 10−6=

Algorithm 3.1 Algorithm 1.1 Algorithm 1.2

Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)

Case I 31 9.5930 75 22.0722 41 10.6315

Case II 31 9.5526 75 21.7023 41 11.5232

Table 3: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 3, ε 10−3=

Algorithm 3.1 Algorithm 1.1 Algorithm 1.2

Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)

Case I 15 4.4316 35 9.5863 18 4.8669

Case II 18 5.5598 36 10.1659 23 6.3572
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5 Conclusion

In this article, we introduce two modifications of the inertial TEGM with self-adaptive step size for solving

monotone VIPs. The algorithms were constructed in such a way that only one projection onto the feasible

set C was made in each iteration. The results obtained improve many known results in this direction in the

literature.
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