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Abstract: The discrete memristor has aroused increasing interest. In this paper, two discrete memris-
tors with cosine with amplitude memristance are designed based on the discrete memristor model.
The Simulink models of the two discrete memristors are built to verify that they meet the defini-
tion of the memristor. To improve the dynamic of a classic chaotic map, the discrete memristors
are introduced into two chaotic maps: a Logistic map and a Hénon Map. Through the trajectory
analysis, Lyapunov exponent, bifurcation diagram, and complexity analysis, it is shown that discrete
memristors can indeed make the dynamical behaviors of chaotic maps richer and more complex.

Keywords: discrete memristor; discrete memristor-based chaotic map; Simulink model

1. Introduction

The memristor is a basic circuit element that represents the relationship between
magnetic flux and electric charge, and has the memory function [1]. The first memristor
mathematical model was presented by Chua in 1971 [2]. However, Prof. Chua did not find
suitable materials to implement the memristor at that time. Then, in 2008, HP laboratory
realized the physical memristor model using nanoscale electronic devices [3]. Since then,
the memristor has attracted the attention of many scholars. In hardware implementation
of memristors, remarkable work has been carried out [4–9]. Moreover, the memristor is
applied in many fields such as neural networks [10–12], electrical engineering [13–15], secure
communications [16], etc.

The chaotic system is a nonlinear dynamic system that has a seemingly random ir-
regular motion [17]. Since it has the ability to generate pseudo-random sequences with
unpredictability and sensitivity, the chaotic system is often used in the field of communica-
tion security [17–20]. The memristor has natural nonlinearity, which is controlled by charge
or flux. The memristor can be used to construct the memristor circuits with complex chaotic
oscillations [21]. Therefore, the application of memristor in the chaotic system catches the
attention of many scholars. There are many theoretical studies and experimental studies
about the application of a continuous memristor [22–24]. In recent years, the application of
the discrete memristor in discrete chaotic systems has aroused increasing interest because
the discrete mode is more suitable for digital circuits and discrete systems. Based on the
fractional-order theory, He [25] designed the discrete fracmemristor and introduced it into
the Sine map to obtain the fracmemristor sine map. Bao [26] presented a discrete memristor
with cosine memductance through a sampling memristor–capacitor circuit. Bao [27] pre-
sented the discrete memristor model and discrete memristor mapping model, created four
discrete memristor maps, and studied their dynamic behaviors. Peng [28] created three
discrete memristor-based fractional-order chaotic maps based on Caputo fractional-order
difference and found they had complex dynamic behaviors. Fu [29] introduced the discrete
memristor into the Lorenz map and built the Simulink model of the map.
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Classical chaotic maps such as the Hénon map and Logistic map usually have the
weaknesses of a small parameter range and low complexity. Therefore, inspired by previous
brilliant works, this paper introduces discrete memristor model into two classical discrete
maps to improve their dynamic behavior. Moreover, this paper constructs a Simulink model
of a discrete memristor and a discrete memristor-based map. The main contributions of
this paper are as follows:

• Based on the discrete memristor model, two discrete memristors with cosine with
amplitude memristance are designed. The Simulink models of these two memristors
are constructed to verify that they meet the definition of the memristor.

• Two modified chaotic maps based on the above memristors are designed. The
Simulink models of these two discrete memristor-based maps are constructed to
verify their achievability.

• Through trajectory analysis, a Lyapunov exponent, a bifurcation diagram, and com-
plexity analysis, the dynamical behaviors of discrete memristor-based maps are eval-
uted and the role of discrete memristors are analyzed.

The structure of this paper is as follows. In Section 2, two discrete memristors with
cosine memductance are presented and their Simulink models are built. In Section 3,
a modified Logistic map based on a discrete memristor is designed and its dynamic
behaviors are analyzed. In Section 4, a modified Hénon map based on a discrete memristor
is designed and investigated. Lastly, the significant conclusions are summarized.

2. Two Discrete Memristors and Simulink Models

The definition of the discrete memristor was deduced by He [25] by introducing the
difference in the charge-controlled continuous memristor, as shown in Equation (1).{

V(tn) = M(q(tn+1)) · i(tn)

4q(tn) = k · i(tn)
, (1)

where V(tn) is the voltage of the memristor of n moment. i(tn) is the input current of n
moment and k is a constant. M(.) is the memristance.

From4q(tn) = q(tn+1)− q(tn) = k · in−1, get

q(tn) = q(t0) + k ·
n−1

∑
j=0

i(tj), (2)

where q(t0) is the initial state of the discrete memristor. Fu [29] writes the form of the
discrete memristors as shown in Equation (3).{

Vn = M(q(tn)) · i(tn)

q(tn+1) = k · in
. (3)

In the discrete mode, the memristor is equivalent to an accumulator. Then, this paper sets
the memristance M(.) as the cosine function with amplitude. That is, M(z) = Amp · cos(z)
and the discrete memristor is as shown in Equation (4).

Vn = M(q(tn)) · i(tn)

q(tn+1) = k · in

M(q(tn)) = Amp · cos(q(tn))

, (4)

where Amp is the amplitude. The relationship between the voltage v and the current i from
Equation (5) is shown.

vn+1 = in · Amp · cos(q0 + k
n−1

∑
j=0

ij), (5)
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The memristor state is controlled by the initial state q0, the parameter k, and the
amplitude Amp. This paper studies the discrete memristor by examining two sets of values:
(k, Amp) = (0.0001, 1) and (k, Amp) = (1, 0.1). The models are as Equations (6) and
(7) shown.

vn+1 = in · cos(q0 + 0.0001
n−1

∑
j=0

ij). (6)

vn+1 = in · 0.1 · cos(q0 +
n−1

∑
j=0

ij). (7)

The Simulink model of the discrete memristor model Equation (5) is exhibited in
Figure 1. The Simulink model consists of a unit delay block, a sum block, a memory block,
two gain blocks, an add block, a product block, a sine-wave block, a constant block, and a
cosine function block. The sine-wave block is the input current. A sum block and a memory
block form an accumulator. The Gain1 block and the Gain2 block represent the parameter
k and Amp, respectively. The constant block represents the initial state of memristor q0.
The XY graph block can observe the current–voltage characteristic curves. The memristor
models Equations (6) and (7) can be obtained by changing the values of Gain1 and Gain2
blocks. The sine wave block can adjust the frequency and amplitude of the input current.

Figure 1. Simulink model of discrete memristor.

To prove that the two memristors meet the definition of a memristor, the sine sig-
nals with different amplitudes and frequencies are inputted to the memristor models
through the Simulink model and the current–voltage characteristic curves are exhibited
in Figures 2 and 3. From the four subfigures, the current–voltage characteristic curves all
exhibit the pinched hysteresis loop. Set A = 5 and ω = 0.8× 10−5, 1.6 × 10−5, 3.2 × 10−5,
6.4 × 10−5, the current–voltage characteristic curves of memristor Equation (6) are shown
in Figure 2a. Set A = 0.02 and ω = 5× 10−3, 7× 10−3, 9× 10−3, 1× 10−2, the current–
voltage characteristic curves of memristor Equation (7) are shown in Figure 3a. When
the amplitudes are fixed, for both memristor models, the area of the pinched hysteresis
lobe decreases with increasing frequencies and finally degenerates into linear devices. Set
A = 3, 4, 5, 6 and ω = 8× 10−5, the current–voltage characteristic curves of memristor
Equation (6) are shown in Figure 2b. Set A = 1× 10−2, 1.5× 10−2, 2× 10−2, 2.5× 10−2

and ω = 5× 10−3, the current–voltage characteristic curves of memristor Equation (7), are
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shown in Figure 3b. When the frequencies are fixed, for both memristor models, the area of
the pinched hysteresis lobe decreases with increasing amplitudes and finally degenerates
into linear devices. Hence, the two discrete memristor models have the three fingerprints
of the memristor in [30], which can be can be further studied.

(a) (b)

Figure 2. Current–voltage characteristic curves of discrete memristor Equation (6) with: (a) A = 5
and ω = 0.8× 10−5, 1.6× 10−5, 3.2× 10−5, 6.4× 10−5; (b) A = 3, 4, 5, 6 and ω = 8× 10−5.

(a) (b)

Figure 3. Current–voltage characteristic curves of discrete memristor Equation (6) with: (a) A = 0.02
and ω = 5× 10−3, 7× 10−3, 9× 10−3, 1× 10−2; (b) A = 1× 10−2, 1.5× 10−2, 2× 10−2, 2.5× 10−2

and ω = 5× 10−3.

3. The Modified Logistic Map Based on the Discrete Memristor

In this part, the discrete memristor-based Logistic map is introduced and its Simulink
model is built. Then the dynamical behavior of the DM-Logistic map and the original
Logistic map are studied using trajectory analysis, the Lyapunov exponent, a bifurcation
diagram, and complexity analysis.

3.1. Discrete Memristor-Based Logistic Map Mathematical Model and Simulink Model

The Logistic map [31] is a simple one-dimensional chaotic map. The definition of the
Logistic map is as shown in Equation (8).

xn+1 = a · xn · (1− xn), (8)

where a is the control parameter. When a ∈ [3.6, 4], the map is a in chaos state.
This section introduces the discrete memristor into the Logistic map, making a dis-

crete memristor-based Logistic map (DM-based Logistic map). The input of the discrete
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memristor model is set as the sequence xn and the output of the discrete memristor model
is as shown in Equation (9).

outputn = xn · Amp · cos(q0 + k
n−1

∑
j=0

xj), (9)

where the output is also a sequence. Let the discrete memristor (i.e., the output of the
discrete memristor) multiply the term xn in (1− xn) of Equation (8). The mathematical
model of DM-based Logistic map is defined as:

xn+1 = a · xn · (1− xn · outputn) = a · xn · (1− xn · xn · Amp · cos(q0 + k ·
n−1

∑
i=0

xi)) (10)

where a is the system control parameter, k is the memristor parameter, and q0 is the initial
of the memristor. Set Amp = 1. Let the accumulator in the discrete memristor separate into
a sequence, then the DM-based Logistic map can be written in the following form:{

xn+1 = a · xn · (1− xn · xn · cos(q0 + k · wn))

wn+1 = wn + xn
, (11)

where w0 = 0. The state of the DM-based Logistic map is dependent on system parameter
a, system initial x0, memristor parameter k, and memristor initial q0. Fixed k = 0.0001,
then the map Equation (11) is modified based on the discrete memristor Equation (6). To
study the dynamic behaviors of the DM-based Logistic map, the following paper analyzes
the trajectory, the Lyapunov exponent, the bifurcation diagram, and complexity analysis
relying on the four factors.

The Simulink model of the DM-based Logistic map is exhibited in Figure 4. The unit
delay block and the unit delay1 block represent the xn and wn, respectively, which can
set the initial value of the sequence. The gain block represents the parameter k. The xn
sequence can be observed in the scope block. The constant blocks represent the memristor
initial q0 and the system parameter a. The map state can be controlled by the unit delay
block, the Gain block, and the constant blocks.

Figure 4. Simulink model of DM-based Logistic map.
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3.2. Trajectory Analysis

To analyze the trajectory of the DM-based Logistic map, the Simulink simulation
trajectory diagrams are plotted in Figure 4. Here, set x0 = 0.1, q0 = 0.1, k = 0.0001.
Figure 5a shows the time-sequence diagram iterated 10,000 times, which proves that the
map has good ergodicity. Figure 5b,c show the time sequences iterated 20 times for slightly
different parameters of the DM-based Logistic map and the Logistic map, respectively. The
two sequences are separated at the 14th iteration in Figure 5b, while the two sequences are
not separated in Figure 5c, which means that DM-based Logistics are more sensitive than
the original map. Figure 6 shows the Simulink simulation 3D phase plane of the DM-based
Logistic map and the original map. It is clearly seen that the trajectory of the DM-based
Logistic map is more complex than that of the original map, showing that the DM-based
Logistic map has greater unpredictability.

(a) (b) (c)

Figure 5. Simulink simulation trajectory of: (a) DM-based Logistic map for a = 2.9; (b) DM-based
Logistic map for a = 2.9 and a = 2.9 + 10−6; (c) Logistic map for a = 3.9 and a = 3.9 + 10−6.

(a) (b)

Figure 6. Simulink simulation 3D phase plane of: (a) DM-based Logistic map for a = 2.9; (b) Logistic
map for a = 3.9.

3.3. Lyapunov Exponent and Bifurcation Diagram

The Lyapunov exponent (LE) [32] and the bifurcation diagram [33] are the important in-
dicators to verify the dynamic state of chaos. In this paper, the Jacobian matrix method [34]
is used to calculate the Lyapunov exponent. In this part, the paper researches the Lyapunov
exponent and bifurcation diagram, relying on the four factors mentioned previously.

The initials are set as x0 = 0.1, q0 = 0.1 and the memristor parameter is set as
k = 0.0001. When the system parameter a is varied in the region [−3, 4], the LEs and
bifurcation diagrams of the DM-based Logistic map and the Logistic map are plotted in
Figure 7. As can be observed, the effective value of parameter a of the DM-based Logistic
map is a ∈ [−2.99, 2.99], and that of the Logistic map is a ∈ [−2, 4]. As for the LEs values,
both of the maps are approximately symmetrical. The axis of symmetry of the DM-based
Logistic map is a = 1, while that of the original map is a = 0. It is worth noting that
the chaos region of DM-based Logistic a ∈ [−2.31,−2.99] ∪ [2.31, 3] is wider than that of
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Logistic map a ∈ [−1.57,−2] ∪ [3.57, 4]. The general trend of the LE value for both maps
is to increase with the absolute value of parameter a. The largest LE1 of the DM-based
Logistic map is 1.095 when a = 2.99, while that of the original Logistic map is 0.6934 when
a = 4.

(a) (b)

Figure 7. LEs and BD relying on system parameter a for a ∈ [−3, 4] of: (a) Logistic map with x0 = 0.1;
(b) DM-based Logistic map with x0 = 0.1, q0 = 0.1, k = 0.0001.

The initial is set as q0 = 0.1 and the parameter is set as k = 0.0001. The parameter of
the Logistic map is set as a = 3.9 and the parameter of the DM-based Logistic map is set as
a = 2.9. When system initial x0 is varied in the region [−1.2, 1.2], the LEs and bifurcation
diagrams of the DM-based Logistic map and the Logistic map are plotted in Figure 8. It is
clear that the chaos region of the DM-based Logistic map x0 ∈ [0.01, 0.99] is much wider
than that of the Logistic map x0 ∈ [−1.16, 0) ∪ (0, 1.16]. Numerically, LE values oscillate
smoothly, indicating that the initial value in the chaos region of both maps has little effect
on the degree of chaos.

When the parameter a is fixed to a = 2.9, the map initial x0 is fixed to x0 = 0.1 and
the memristor parameter k is fixed to k = 0.0001. The LEs and bifurcation diagram relying
on memristor initial q0 are shown in Figure 9. In Figure 9, it is interesting to find that
several shapes resembling the letter “H” appear in the bifurcation diagram, and the interval
between each “H” is slightly different but approximately 3.2. The length of each “H” is also
slightly different, but approximately 3.1. The situation seems like the chaotic region with
periodicity, but not precise periodicity. However, memristor initial q0 has a large range of
spaces but also has little effect on the degree of chaos.

When the parameter a is fixed to a = 2.9, the map initial x0 is fixed to x0 = 0.1 and
the memristor initial q0 is fixed to q0 = 0.1, the LEs and bifurcation diagram relying on
memristor parameter k are shown in Figure 10. As can be observed, the chaos region is
k ∈ [0, 0.01] and has little effect on on the degree of chaos.
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(a) (b)

Figure 8. LEs and BDs relying on system initial x0 for x0 ∈ [−1.2, 1.2] of: (a) Logistic map with
a = 3.9; (b) DM-based Logistic map with a = 2.9, q0 = 0.1, k = 0.0001.

(a) (b)

Figure 9. LEs and BDs relying on memristor initial q0 of DM-based Logistic map for q0 ∈ [0, 20],
a = 2.9, x0 = 0.1, k = 0.0001. (a) LEs; (b) BD.
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(a) (b)

Figure 10. LEs and BD relying on memristor parameter k of DM-based Logistic map for k ∈ [0, 0.01],
a = 2.9, x0 = 0.1, q0 = 0.1. (a) LEs; (b) BD.

To summarize the above experiments, the chaos range of parameters values for DM-
based Logistic map and the original Logistic map are shown in Table 1.

Table 1. Chaos region of DM-based Logistic map and Logistic map.

Chaos Region DM-Based Logistic Map (Condition) Logistic Map (Condition)

a
[−2.99, −2.31] ∪ [2.31, 3]

(x0 = 0.1, q0 = 0.1, k = 0.0001)

[−2, −1.57] ∪ [3.57, 4]

(x0 = 0.1)

x0

[−1.16, 0) ∪ (0, 1.16]

(a = 2.99, q0 = 0.1, k = 0.0001)

[0.01, 0.99]

(a = 4)

q0

[0,1.52]

(a = 2.99, x0 = 0.1, k = 0.0001)
-

k
[0,0.1]

(a = 2.99, x0 = 0.1, q0 = 0.1)
-

3.4. Complexity Analysis

In the application of cryptography, the randomness of the chaotic time series is better.
This paper uses permutation entropy(PE) [35] to test the complexity of the chaotic sequence.
The PE value is closer to 1, indicating the sequence complexity is higher. The permutation
entropy of the DM-based Logistic map and the Logistic map for a ∈ [−3, 4] is plotted in
Figure 11, in which the blue line and the red line represent the PE of the DM-based Logistic
map and the Logistic map, respectively. The region of the DM-based Logistic map with
PE values above 0.6 is [−2, 54,−3] ∪ [2.49, 2.99], while that of the original Logistic map
is [−1.89,−2] ∪ [3.89, 4]. It is clear that the region of high complexity of the DM-based
Logistic map is wider than that of the original Logistic map. The highest PE value of the
DM-based Logistic map is 0.9005 at a = 2.99, while that of the original Logistic map is only
0.6871. Therefore, the discrete memristor improves the complexity of the Logistic map.
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Figure 11. The permutation entropy of DM-based Logistic map (x0 = 0.1, q0 = 0.1, k = 0.0001) and
Logistic map (x0 = 0.1) for a ∈ [−3, 4].

4. The Modified Hénon Map Based on the Discrete Memristor

In this part, the discrete memristor-based Hénon map (DM-based Hénon) is introduced
and its Simulink model is built. Then, we study the dynamical behavior of the DM-based
Hénon map and the original Hénon map by trajectory analysis, Lyapunov exponent,
bifurcation diagram, and complexity analysis.

4.1. Discrete Memristor-Based Hénon Map Mathematical Model and Simulink Model

The Hénon map is a discrete two-dimensional chaotic map, introduced by Michel
Hénon in 1969 [36]. First, the Hénon map was presented for researching the problem that
a system with two degrees of freedom can be reduced to the study of area-preserving
mapping [36]. In 1976, Hénon carried out numerical experiments for a set parameter and
found that the Hénon map has a strange attractor, which has the same basic properties as
the Lorenz system [37]. The equation of the Hénon map is defined as{

xn+1 = 1− a · x2
n + yn

yn+1 = b · xi
, (12)

where a, b are the control parameters. The two parameters control the stretching and
folding states of the chaotic attractor [38]. When b = 0.3 and a ∈ [1.06, 1.4], the map is in a
chaotic state. The classical Hénon map has the disadvantages of small parameter range
and low complexity.

This section introduces the discrete memristor into the Hénon map, making a discrete
memristor-based Hénon map (DM-based Hénon map). The input of the discrete memristor
model is set as the sequence xn and the output of discrete memristor model is as shown in
Equation (13).

outputn = xn · Amp · cos(q0 + k
n−1

∑
j=0

xj), (13)

where the output is also a sequence.
The discrete memristor (i.e., the output) is multiplied by the term of yn in xn+1 of

Equation (12). The mathematical model of DM-based Hénon is defined as shown in
Equation (14).{

xn+1 = 1− a · x2
n + yn · output = 1− a · x2

n + yn · xn · Amp · cos(q0 + k ·∑i−1
j=n xj)

yn+1 = b · xi
(14)



Symmetry 2022, 14, 800 11 of 17

where a, b are the system control parameters, q0 is the memristor initial and k is the mem-
ristor parameters. Here, set Amp = 0.1. Fixed k = 1, then the map Equation (14) is
modified based on the discrete memristor Equation (7). Let the accumulator in the discrete
memristor separate into a sequence, then the DM-based Hénon map can be written in the
following form: 

xn+1 = 1− a · x2
n + yn · xn · Amp · cos(q0 + k · wn)

yn+1 = b · xi

wn+1 = wn + xn

(15)

where w0 = 0. The state of the DM-based Hénon map is dependent on system parameter
a, b system initial (x0, y0) memristor parameter k and memristor initial q0. To study the dy-
namic behaviors of the DM-based Hénon map, the following paper analyzes the trajectory,
the Lyapunov exponent, the bifurcation diagram, and the complexity analysis relying on
the four factors.

The Simulink model of the DM-based Hénon map is exhibited in Figure 12. The
unit delay block, the unit delay1, and the unit delay2 block represent the xn, yn and wn,
respectively, which can set the initial value. Gain1, Gain2, and Gain3 block represent the
parameters k, b, a. The constant block represents q0. The map state can be controlled by the
unit delay blocks and Gain blocks.

Figure 12. Simulink model of discrete memristor-based Hénon map.

4.2. Trajectory Analysis

To study the trajectory of the DM-based Hénon map, Figure 13 shows its chaotic
attractors with different parameters a and b. Fixed b = 0.3; the chaotic attractors with
a = 1.5, 1.6, 1.7, 1.8, 1.99 are plotted in Figure 13a. The shape of the chaotic attractor
is like a parabola with the opening to the left. As can be observed, the greater the
value of a, the greater the stretch of the chaotic attractor to the right. When a = 1.9
and b = 0.1, 0.2, 0.3, 0.4, 0.5, the chaotic attractors are plotted in Figure 13b. In Figure 13b,
the larger the value of b, the greater the degree of folding of the chaotic attractor. Similar
to the classic Hénon map, the parameters a, b of the DM-based Hénon map control the
stretching and folding states of the chaotic attractor, respectively.
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(a) (b)

Figure 13. Simulink simulation chaotic attractor of DM-based Hénon map with (a) a = 1.5,
1.6, 1.7, 1.8, 1.99, b = 0.3, q0 = 0.1, k = 1, (x0, y0) = (0.0001, 0.0001); (b) a = 1.9 and b = 0.1,
0.2, 0.3, 0.4, 0.5, q0 = 0.1, k = 1, (x0, y0) = (0.0001, 0.0001).

4.3. Lyapunov Exponent and Bifurcation Diagram

Fixed b = 0.3, LEs and its corresponding bifurcation diagrams of the Hénon map and
DM-based Hénon map with a ∈ [0, 2] are shown in Figure 14. The bifurcation diagram of
the DM-based Hénon map is like the bifurcation diagram of the Hénon map stretched to
the right. The chaotic region of the DM-based Hénon map a ∈ [1.4, 1.993] is wider than that
of Hénon map a ∈ [1.06, 1.226] ∪ [1.27, 1.4]. The largest LE1 of the DM-based Hénon map is
0.6568 when a = 1.994, while that of the Hénon map is 0.4262 when a = 1.4. Fixed a = 1.4,
LEs, and the corresponding bifurcation diagrams of the Hénon map and the DM-based
Hénon map with a ∈ [−11, 11] are shown in Figure 15. In Figure 15, it is obvious that the
chaos region of the DM-based Hénon map b ∈ [−10.89, 11] is much wider than that of
Hénon map b ∈ [0, 0.3]. Therefore, the introduction of discrete memristors to the Hénon
map expands the chaotic parameters region and improves the dynamical complexity of
the system.

To study the effect of system initials (x0, y0) on the system state, the dynamical maps
described by the LE on x0 − y0 plane of the DM-based Hénon map with a = 1.99, b = 0.3,
q0 = 0.1, k = 1 and Hénon map with a = 1.4, b = 0.3 are plotted in Figure 16. It is worth
noting that the chaos region of DM-based Hénon map x0, y0 ∈ [−107, 107] is extra wide
while the chaos region of the Hénon map is just a little colorful part in Figure 16a. The
white-colored part in Figure 16b means the LE is the null value because of the divergent
sequence. In Figure 16b, the dynamical map is distributed in vertical stripes, which means
the change in y0 causes almost no change in LE value. In terms of LE value, the LE values
of both maps are just slight fluctuations with different initials, indicating that the system
initials (x0, y0) in the chaos region do not effectively increase the complexity of the system.
However, this demonstrates that the discrete memristor can effectively expand the initial
space of the chaotic map.

To study the effect of the memristor initial and parameter to system state, set a = 1.99,
b = 0.3, (x0, y0) = (0.0001, 0.0001), the dynamical map described by the LE on the k− q0
plane of DM-based Hénon map is exhibited in Figure 17. It is worth noting that the chaos
region in k− q0 plane k, q0 ∈ [−107, 107] is also extra wide, which is very suitable for the
communication security field.
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(a) (b)

Figure 14. LEs and BDs relying on system initial a for a ∈ [0, 2] of: (a) Hénon map with b = 0.3,
(x0, y0) = (0.0001, 0.0001); (b) DM-based Hénon map with b = 0.3, q0 = 0.1, k = 1, (x0, y0) =

(0.0001, 0.0001).

(a) (b)

Figure 15. LEs and BDs relying on system initial b for b ∈ [−10, 10] of: (a) Hénon map with
a = 1.4, (x0, y0) = (0.0001, 0.0001); (b) DM-based Hénon map with a = 1.99, q0 = 0.1, k = 1,
(x0, y0) = (0.0001, 0.0001).
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(a) (b)

Figure 16. Dynamical map described by the LE on x0-y0 plane (a) Hénon map with a = 1.4, b = 0.3;
(b) DM-based Hénon map with a = 1.99, b = 0.3, q0 = 0.1, k = 1.

Figure 17. Dynamical map described by the LE on k-q0 plane of DM-based Hénon map with
a = 1.99, b = 0.3, (x0, y0) = (0.0001, 0.0001).

To summarize the above experiments, the range of parameter values for the DM-based
Hénon map and the original Hénon map are shown in Table 2.

Table 2. Chaos region of DM-based Hénon map and Hénon map.

Chaos Region DM-Based Hénon Map (Condition) Hénon Map (Condition)

a
[1.4,1.993]
(b = 0.3, (x0, y0) = (0.0001, 0.0001),
q0 = 0.1, k = 1)

[1.06, 1.226] ∪ [1.27, 1.4]
(b = 0.3, (x0, y0) = (0.0001, 0.0001))

b
[−10.89,11]
(a = 1.4, (x0, y0) = (0.0001, 0.0001),
q0 = 0.1, k = 1)

[0,0.3]
(a = 1.4, (x0, y0) = (0.0001, 0.0001))

(x0, y0)
[−107, 107]× [−107, 107]
(a = 1.99, b = 0.3, q0 = 0.1, k = 1)

[−1, 1]× [−1, 1]
(a = 1.4, b = 0.3)

(k, q0)
[−107, 107]× [−107, 107]
(a = 1.99, b = 0.3,
(x0, y0) = (0.0001, 0.0001))

-

4.4. Complexity Analysis

The permutation entropy of DM-based Hénon map ((x0, y0) = (0.0001, 0.0001),
q0 = 0.1, k = 1) and Hénon map ((x0, y0) = (0.0001, 0.0001))) for a× b ∈ [0, 2]× [−11, 11]
is plotted in Figure 18. In Figure 18b, the valid values of PE for the DM-based Logistic map
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cover almost the whole coordinate area, while there is a large invalid region in Figure 18a.
The redder the color, the higher the complexity. As can be observed, the color of Figure 18a
is also lighter than that of Figure 18b, indicating that the DM-based Hénon map is more
complex than the original Hénon map. The highest PE value of the DM-based Hénon map
is 0.8646 at a = 0.305 and b = 10.28, while that of the original Hénon map is only 0.6209.
Therefore, the discrete memristor not only improves the complexity of the Hénon map but
also expands the effective region.

(a) (b)

Figure 18. The permutation entropy for a × b ∈ [0, 2] × [−11, 11] of: (a) Hénon map ((x0, y0) =

(0.0001, 0.0001))); (b) DM-based Hénon map ((x0, y0) = (0.0001, 0.0001), q0 = 0.1, k = 1).

5. Conclusions

In this paper, two discrete memristors were designed based on the discrete model.
The Simulink models of these two discrete memristors were constructed to prove that they
satisfy the three fingerprints of the memristor. As their applications, a discrete memristor-
based Logistic map and discrete memristor-based map were designed based on the original
chaotic map and discrete memristor. To prove the feasibility of these two DM-based
chaotic maps, we built Simulink models of them. The dynamic behaviors of these two
DM-based chaotic maps were investigated through trajectory analysis, Lyapunov exponent,
bifurcation diagram, and complexity analysis. The simulation results showed that the
parameter space and the initial space of the DM-based chaotic map were much wider than
that of the original map. It is worth mentioning that the initial space of the Henon map
changed from finite to infinite due to the introduction of the discrete memristor. Moreover,
the complexity of the DM-based chaotic map is higher and wider than that of the original
map. Therefore, the discrete memristor indeed improves the dynamic behavior of the
chaotic map, making the chaotic map more suitable for secure communication fields. In
future work, we will study the applications of discrete memristors in digital circuits and
discrete systems.
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