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The powdered roots of the medicinal plant Acacia nilotica were extracted with hexane and

ethyl acetate, and the extracts were subjected to column chromatography for the isolation

of potentially bioactive compounds and their screening against kinetoplastid pathogens.

NMR and HREI mass spectrometric analyses identified two new diterpenes, characterized

as 16, 19-dihydroxycassa-12-en-15-one (Sandynone, 1) and (5S, 7R, 8R, 9R, 10S, 13Z,

17S)-7,8:7,17:16,17-triepoxy-7,8-seco-cassa-13-ene (niloticane B, 2). The previously

reported (5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-oxacassa-13,15-diene-7,17-diol (3),

(5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-oxacassa-13,15-dien-7-ol-17-al (4), and

(5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-oxacassa-13,15-dien-7-ol (5) a, mixture of

stigmasterol (6a) and sitosterol (6b), and lupeol (7) were also isolated. Several column

fractions displayed significant activity against a panel of Trypanosoma and Leishmania

spp., and from the most active fraction, compound 4 was isolated with high purity. The

compound displayed high activity, particularly against T. brucei, T. evansi, and L. mexicana

(0.88–11.7 µM) but only a modest effect against human embryonic kidney cells and no

cross-resistance with the commonly used melaminophenyl arsenical and diamidine

classes of trypanocides. The effect of compound 4 against L. mexicana promastigotes

was irreversible after a 5-h exposure, leading to the sterilization of the culture between 24

and 48 h.
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INTRODUCTION

Parasitic kinetoplastid diseases, including trypanosomiasis and leishmaniasis, threaten millions of

people in resource-poor countries around the world. Trypanosoma spp. and Leishmania spp.,
belonging to the family Trypanosomatida and the order Kinetoplastida, are among the most
important agents of neglected tropical diseases (Butler, 2007; Vieira de Morais et al., 2015).
These diseases occur mostly in the tropics where the humidity and high environmental
temperatures favor both vector and parasite growth and attract insufficient resources (Patz et al.,
2000).

African trypanosomiasis is endemic in 36 sub-Saharan African countries, including Nigeria,
where there are tsetse flies that transmit the disease. While the number of new human African
trypanosomiasis (HAT, or sleeping sickness) infections has significantly decreased in recent years,
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with only 977 cases recorded in 2018 (WHO, 2019b), African
animal trypanosomiasis (AAT) still remains a major constraint to
the use of livestock in the region (Geerts et al., 2001). About 50
million heads of cattle are exposed to AAT, and 35 million doses

of trypanocides are used annually (Mattioli et al., 2004) in
prevention and treatment. The direct and indirect losses of
AAT are put at about US$ 4.5 billion (Geerts et al., 2001).
Beyond Africa, surra and dourine, caused by T. evansi and T.
equiperdum, respectively, affect millions of high-value animals in
Asia, Europe, Australia, and South America (Brun et al., 1998;
Desquesnes et al., 2013).

Leishmaniasis generally affects the poorest of the poor and is
associated with malnutrition, population displacement, poor
housing, a weak immune system, and a lack of financial
resources (WHO, 2019a). The disease manifests as visceral,

cutaneous, and mucocutaneous infections. It is endemic in 98
countries, predominantly in Latin America, South and Central
Asia, and parts of Africa (Alvar et al., 2012) where approximately
350 million people are at risk of contracting the infection. An
estimated 700,000 to 1 million new cases and some 26,000 to
65,000 deaths occur annually (WHO, 2019a).

Nigerian medicinal plants are a rich source of natural
compounds with potent antiprotozoal activity (Ungogo et al.,
2020). Acacia nilotica Linn. (Mimosaceae) is a common
medicinal plant found in subtropical and tropical Africa from
Nigeria to Egypt and South Africa and other parts of the world

(Chowdhury et al., 1983; Van Wyk et al., 1997 Roozbeh and
Darvish, 2016). The plant is a small- to medium-size tree (Boulos,
2000), 7–13 m tall, with a stem diameter of 20–30 cm. The bark is
dark brown to black. It has bright yellow flowers with bipinnate
leaves. The plant is attractive to a wide range of pests, diseases,
and wild animals (Sheik, 1989). There are several ethnobotanical
uses of the plant, including treatment of abdominal pain,
diarrhea, dysentery, and genital and urinary tract infections,
and as an expectorant (Boulos, 1983). It possesses
antimicrobial, antiplasmodial, antihypertensive, and
antioxidant activities (Ali et al., 2012). Niloticane, a cassane

diterpene (Eldeen et al., 2010), and umbelliferone, a coumarin
(Singh et al., 2010), have been isolated from the plant, as well as
some flavonoids and phenolic compounds (Saleem, 2011). Other
Acacia species have yielded seco-oxacassanes and unusual
diterpenoids such as schaffnerine, isolated from Acacia
schaffneri (Manríquez-Torres et al., 2011; Manríquez-Torres
et al., 2013). In the present study, we have carried out further
phytochemical studies on Acacia nilotica and hereby report the
isolation and characterization of two novel diterpenes from the
roots.

Most of the drugs available for the treatment of

trypanosomiasis and leishmaniasis are outdated and associated
with toxic side effects, prolonged duration of treatment, and
resistance (Anene et al., 2001; WHO, 2010; De Koning, 2020).
Therefore, there is an urgent need for new drugs for the treatment
of trypanosomiasis and leishmaniasis, and the active ingredients
of traditionally used medicinal plants are a prime source of
unrelated, new compounds. Hence, the compounds and
mixtures obtained from A. nilotica were also investigated for
antitrypanosomal and antileishmanial activities as well as for

toxicity against human cell lines in vitro. Activity-guided
fractionation yielded one pure compound with activity against
several Trypanosoma species and against Leishmania mexicana
below 0.5 μg/ml. The effect on Leishmania mexicana

promastigotes was irreversible within 5 h and fatal after 24 h.

MATERIALS AND METHODS

General Experimental Procedures
Column chromatography was carried out using silica gel 60
(0.040–0.063 mm) (230–400 mesh ASTM). Thin-layer
chromatography (TLC) was performed on precoated
aluminum sheets coated with silica gel F250 (Merck,
Germany). Nuclear magnetic resonance (NMR) experiments

were carried out on a Bruker AVIII (500 MHz)
spectrophotometer using CDCl3 as the solvent and TMS as the
internal standard. Mass spectral data were acquired on a JEOL
MStation JMS-700 mass spectrometer.

Plant Material
Roots of Acacia nilotica were collected from trees growing on the
campus of the University of Agriculture, Makurdi. The plant was
authenticated at the Department of Forestry and Wildlife of the
university and a voucher specimen deposited at their herbarium.

Isolation of Compounds
Dried roots of the plant were ground to powder (250 g) and
extracted with hexane and ethyl acetate. The extracts were
combined (based on similarity on TLC) and subjected to
column chromatography using silica gel in a glass column.
The column was packed wet in a hexane: ethyl acetate (95:5)
mixture and eluted with ethyl acetate in hexane gradient starting
with 5% ethyl acetate in hexane and increasing the amount of
ethyl acetate by 5% until 100% ethyl acetate collecting 10-ml vials
to obtain 186 fractions. The fractions were examined by TLC, and
similar ones were combined and allowed to dry in a fume hood to

obtain a mixture of compounds 1 and 3 (fractions 76–79),
mixture of compounds 2 and 5 (fractions 18–19), compound
4 (fractions 64–67), a mixture of compounds 6a and 6b (fractions
59–60), and compound 7 (fractions 25–28) as white crystalline
solids. The compounds were analyzed by NMR (1D and 2D)
spectroscopy and mass spectrometry.

Determination of Antiprotozoal and
Cytotoxic Activity
Parasites, Mammalian Cells, and Culture Conditions
Two strains of Trypanosoma brucei brucei bloodstream form
(BSF) were used in this study: 1) wild-type (WT) T. b. brucei
strain Lister 427 (De Koning et al., 2000) and 2) a multidrug
resistant strain, B48, which was derived from a TbAT1-KO strain
(Matovu et al., 2003) after increasing in vitro exposure to
pentamidine and lacks both the TbAT1/P2 transporter and the
high-affinity pentamidine transporter (HAPT1) (Bridges et al.,
2007). The two T. b. brucei strains and drug-sensitive (WT)
strains of T. evansi and T. equiperdum were used throughout as
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bloodstream trypomastigotes and cultured in standard Hirumi’s
modified Iscove’s medium 9 (HMI9), supplemented with 10%
heat-inactivated fetal bovine serum (FBS), 14 μL/L
β-mercaptoethanol, and 3.0 g/L sodium hydrogen carbonate

(pH 7.4). The parasites were cultured in vented flasks at 37°C
in 5% CO2 atmosphere and were passaged every 3 days (Rodenko
et al., 2015). The bloodstream forms of T. congolense savannah-
type strain IL3000 and T. congolense strain 6C3 [diminazene-
resistant (Alenezi et al., 2020)] were cultured, as described by
Coustou et al. (2010). Leishmania mexicana promastigotes
(MNYC/BZ/62/M379 strain) were grown in hemoflagellate
modified minimal essential medium (HOMEM) (Gibco®, Life
technologies, Ghent, Belgium) (pH 7.4) supplemented with 10%
heat-inactivated FBS at 27°C.

Human embryonic kidney (HEK) cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM; Sigma D-5671)
supplemented with 10% heat-inactivated FBS, 10 ml/L penicillin/
streptomycin (Gibco 15140-122), and 10 ml/L of 200 mM
glutamine (Gibco 25030-024). The cells were maintained at
37°C in 5% CO2 atmosphere.

Test Compounds/Fractions
All compounds and mixtures were dissolved in DMSO at 10 mg/
ml, and the stock solutions were stored at −20°C.

In vitro Drug Sensitivity Assay Using Resazurin
(alamarBlue) in Bloodstream Forms of T. b. brucei, T.
equiperdum, T. evansi, and T. Congolense
The susceptibilities of bloodstream formtrypanosomes to the
compounds and mixtures were determined using resazurin

(alamarBlue)-based assay, as described previously
(Nvau et al., 2020). In brief, serial double dilutions of the test
compounds were prepared in cell-specific medium in 96-well
plates (200 μg/ml top concentration: 23 dilutions over 2

rows, last well drug-free control). This is followed by the
addition of 100 µL of parasite suspension in the appropriate
medium, to each well of the 96-well plate, adjusted to the
desired cell density. For T. brucei s427, T. brucei B48, and T.
equiperdum, a seeding density of 2 × 104 cells/well was used,
whereas cell densities of 4 × 104 and 5 × 104 were used for T.
evansi and the T. congolense strains (IL3000 and 6C3),
respectively. Trypanosome cultures with the test drugs
were incubated for 48 h, followed by the addition of 20 µL
of filter-sterilized 125 μg/ml resazurin sodium salt in
phosphate-buffered saline (PBS). This was followed by a

further 24 h of incubation. Standard drugs including
diminazene aceturate and suramin were used as positive
control as appropriate for the species. Fluorescence was
measured in 96-well plates with a FLUOstar Optima
(BMG Labtech, Durham, NC, United States) at
wavelengths of 544 nm for excitation and 590 nm for
emission. EC50 values were calculated by nonlinear
regression using an equation for a sigmoidal
dose–response curve with variable slope (GraphPad 7.0,
GraphPad Software Inc., San Diego, CA, United States).

Drug Sensitivity Using alamarBlue in L. mexicana
Promastigotes
Drug sensitivity assay in L. mexicana was carried out using a
similar method as described above. However, a seeding density of

TABLE 1 | 1H NMR data for compounds 1 (at 500 MHz) and 2 (at 400 MHz) in CDCl3.

Compound 1 Compound 2 Literature report

(compd 2)a

Position 1H (δ in

ppm; mult, J

in Hz)

13C (mult) 1H (δ in ppm;

mult, J

in Hz)

13C (mult) 1H (δ in ppm) 13C

1 0.97, 1.62 38.9 (CH2) 0.98, 1.97 40.9 (CH2) 0.94, 1.94 40.7

2 0.82 (m) 18.0 (CH) 1.44, 1.51 18.9 (CH2) 1.40, 1.47 18.7

3 1.41, 1.30 35.4 (CH2) 1.16, 1.42 41.8 (CH2) 1.14, 1.43 41.6

4 — 37.7 (C) — 34.5 (C) — 34.3

5 1.22 48.4 (CH) 1.23 (br d) 47.8 (CH) 1.28 47.6

6 1.57 (m) 21.3 (CH2) 1.83, 1.61 31.6 (CH2) 1.65, 1.87 31.4

7 1.67 (m) 30.5 (CH2) 5.21 (dd, 10.4,5.2) 95.1 (CH) 5.26 94.9

8 1.51 34.9 (CH) 4.47 (d, 8.9) 67.4 (CH) 4.52 67.2

9 1.38 (d, 3.7) 43.9 (CH) 1.23 (d, 4.0) 56.6 (CH) 1.21 56.4

10 — 36.7 (C) — 39.2 (C) — 39.0

11 2.23 (d,4.3), 2.08 26.1 (CH2) 1.74, 1.21 (d, 4.0) 21.4 (CH2) 1.76, 1.30 21.2

12 6.74 (t, 4.0) 141.0 (CH) 1.78 (m), 2.04 (d, 2.1) 32.0 (CH2) 2.09, 1.83 31.8

13 — 142.0 (C) — 135.9 (C) — 135.8

14 2.70 (q, 6.2) 31.4 (CH) — 129.9 (C) — 129.6

15 — 198.0 (C) 2.31 (d, 7.1), 1.64 (d. 5.3) 30.4 (CH2) 2.37, 1.30 30.2

16 4.44 (d, 17.6), 4.56

(d, 17.6)

64.4 (CH2) 3.84 (td, 11.4, 3.8), 3.69 (dd, 11.0, 5.7) 56.4 (CH2) 3.66, 3.82 56.2

17 0.86 (d, 6.2) 15.1 (CH3) 5.72 (br s) 88.6 (CH) 5.70 88.4

18 3.12, 3.42 72.1 (CH2) 0.89 (s) 33.2 (CH3) 0.87 33.0

19 0.80 18.0 (CH3) 0.87 (s) 22.5 (CH3) 0.85 22.3

20 0.88 22.5 (CH3) 0.90 (s) 15.7 (CH3) 0.88 15.5

aManríquez-Torres et al. (2013).
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2 × 105 cells/well was used for this species. The plate containing
the cells and drug dilutions was incubated for a period of 72 h at
27°C, followed by the addition of 20 µL 125 μg/ml resazurin and a
further 48 h of incubation. Pentamidine was used as a control
drug. Fluorescence was measured as above.

Assessment of Cytotoxicity of Test Compounds on
Human Embryonic Kidney (HEK) 293T Cells
HEK cells were harvested at 80–85% confluence using 0.25%
Trypsin–EDTA solution (Sigma T-4049). The cells were washed
by centrifugation at 1200 rpm for 10 min and reconstituted in
fresh medium at 3 × 105 cells/ml. Then, 100 µL of the cell
suspension was distributed to each well of a 96-well plate and
incubated for 24 h to allow the cells to adhere to the bottom of
the wells. Doubling serial dilutions of the test compounds and
control drug were prepared in a separate 96-well plate, across 1
row (11 dilutions plus no-drug control). And then, 100 µL of
each dilution was transferred to respective wells of the plate
containing the cells, and the plate was incubated for another

30 h. This was followed by the addition of 10 µL 125 μg/ml
resazurin sodium salt to each well, and a further incubation was
done for 24 h. The plates were read and EC50 determined as

above. The selectivity index (SI) was also calculated for each
compound/mixture as the ratio of the EC50 in HEK cells to the
EC50 in a parasite species.

Determination of the Effect of HEAN 19b on L.
mexicana Growth
L. mexicana cultures were set at 106 cells/ml in a 24-well plate
with or without varying concentrations of HEAN-19b and

pentamidine. Depending on intended duration of exposure,
cells were centrifuged at 5 h and 48 h and resuspended in
either fresh medium or medium containing the drug. Cells
were counted manually using a hemocytometer, and a growth
curve was plotted using cell density at each time recorded.

RESULTS AND DISCUSSION

Structure Elucidation
Compound 1, a white crystalline solid, was obtained as the minor

component of combined fractions 76-79. The molecular formula
C20H32O3 was derived from its high resolution mass spectrum
(Supplementary Material 1), which yielded an [M-H]− ion at m/

FIGURE 1 | Structure of compounds 1 and 2, including their selected COSY and HMBC correlations (1A and 1B).
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z� 319.2229 (calculated 319.2273 for C20H31O3). Its proton spectrum
(SupplementaryMaterial 2 andTable 1) showed an olefinic proton at
δH 6.74 ppm (1H, t, J � 4.0 Hz, H-12) and two sets of oxymethylene
protons at 4.44 (1H, d, J� 17.6 Hz,H-16), 4.56 (1H, d, J� 17.6 Hz,H-
16), 3.12 (1H, d, J � 10.8 Hz, H-19), and 3.42 (1H, d, J � 10.8 Hz, H-
19). It also displayed signals for three methyl protons made up of a
methyl doublet at 0.86 (3H, d, J � 6.2 Hz, H-17) and two singlets at
0.80 (3H, s, H-18) and 0.88 (3H, s, H-20). The rest of the signals were

for three methine (including a quartet at 2.70 (1H, q, J � 6.2 Hz, H-
14) and six pairs of methylene protons. Its 13C spectrum

(Supplementary Material 3) gave signals for 20 carbon atoms
including one ketone carbonyl at δC 198.0 and two hydroxyl
bearing carbons at 72.1 and 64.4 ppm. There were also two
olefinic carbons, one proton bearing at 141.0 and the other a
quaternary at 142.0. The rest of the signals were for three
methyls, six methylenes, four methines, and two quaternary
carbons. Using correlations in its 2D NMR spectra
(Supplementary Material 4–6), the structure (Figure 1) was

deduced as follows: correlations from the olefinic proton at
6.74 ppm to the carbonyl carbon at 198.0 (C-15) indicated it was

FIGURE 2 | Structures of other isolated compounds: oxacassadienes (3, 4 and 5); stigmasterol 6a and β-sitosterol 6b and lupeol 7.
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three bonds away from it. Other correlations from the olefinic proton
are to C-9 and C-14 and to this was attached the proton quartet;
hence, the methyl doublet C-17 must be attached at C-14. This was
confirmed by correlations from H-14 to C-12, C-15, and C-17.
Others were 2J long-range correlations from H-16 to C-15 and H-

18 to C-19, thus confirming by HMBC and HSQC, H-16, C-16 and
H-19, C-19 to be -CH2OH (hydroxymethylene groups). The absence
of germinal methyl groups usually at C-4, further confirmed C-19 to
be a hydroxymethylene carbon and C-18 amethyl carbon. Therefore,
correlations fromH-19 and H-18 were used to identify C-3, C-4, and
C-5 and from H-5 to identify C-1, C-7, C-10, and C-20 and confirm
C-9. The compound was identified as 16, 19-dihydroxycassa-12-en-
15-one and given the trivial name Sandynone 1, and its chemical
shifts compared very well with similar compounds (Mendoza et al.,
2003). The relative stereochemistry was determined using its NOESY
(Supplementary Material 7) and is shown in Figure 1.

Compound 2 was also isolated as a white crystalline solid. The
molecular formula was established based on its [M]+ ion in its HR-
EIMS spectrum (Supplementary Material 12) at m/z � 318.2195
(calculated 318.2195 for C20H30O3). The 1H NMR spectrum
(Supplementary Material 13 and Table 1) showed two acetal
protons at δH 5.70 (br s, H-17) and 5.26 (dd, J � 10.4, 5.2 Hz,
H-7), a methine geminal to oxygen at δH 4.52 (br d, J � 8.0 Hz, H-
8), and two methylene protons H-16 geminal to oxygen at δH 3.77
(dt, J � 11.4, 3.9 H-16 β) and 3.61 (ddd, J � 11.4, 6.6, 1.2, H-16α)
coupled with theH-15methylene protons at δH 2.31 and 1.64 ppm.
There were three methyl groups observed at δH 0.83 (Me-20), 0.80

(Me-19), and 0.83 (Me-18). In the 13C DEPT-135 spectrum

(Supplementary Material 14), 20 signals were observed

including two quaternary olefinic carbons at δC 135.9 (C-13)
and 129.9 (C-14), two acetal carbons at δC 95.1 (C-7) and 88.6
(C-17), one oxymethylene carbon at 56.4 (C-16), and an
oxymethine carbon at 67.4 (C-8). The rest of the signals were
for two methine (C-5, C-9), seven methylene, three methyl, and
two quaternary carbons. The structure was confirmed using its 2D
NMR spectra (Supplementary Material 15–16) as follows: long-
range correlations from the acetal proton H-7 identified carbon C-
5, C-8, and C-17, while from the second acetal proton H-17,
carbons C-7, C-8, C-13, C-14, and C-16. Similarly, long-range
correlations fromH-18 andH-19 indicated they were germinal and

identified C-3, C-4, and C-5, and H-20 also confirmed C-5 as well
identifying C-1, C-9, and C-10. The HSQC spectrum confirmed
the proton bearing carbons in the compound and their attached
protons, while the COSY spectrum confirmed neighbouring
protons.
Compared to the macrocyclic dimer isolated from Acacia
schaffneri (Manríquez-Torres, et al., 2013), their chemical shifts
were identical (Table 1); however, the exact mass obtained was for
a monomer with the acetal link between C-7 and C-17. There was
nomass higher than themolecular ion in its HR-EIMS spectrum and
nomass fragment which could suggest the compound being dimeric.

Hence the presence of a dimer or the compound existing as a dimeric
molecule could not be confirmed, and the compound was therefore
identified as the seco-oxacassane, (5S, 7R, 8R, 9R, 10S, 13Z, 17S)-7,8:
7,17:16,17-triepoxy-7,8-seco-cassa-13-ene (niloticane B, 2) and
confirmed by literature reports (Manríquez-Torres, et al., 2013).

The rest of the compounds (Figure 2) were identified based on
their NMR spectra and comparison with literature reports.
Compound 3 was identified as (5S,7R,8R,9R,10S) -(-)-7,8-seco-
7, 8-oxacassa-13,15-diene-7,17-diol, compound 4 as
5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-oxacassa-13,15-dien-7-ol-
17-al and compound 5 as (5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-

oxacassa-13,15-dien-7-ol (Manríquez-Torres et al., 2011). While
compounds 6a and 6b were identified as a mixture of sitosterol
and stigmasterol and compound 7 as lupeol.

Antiprotozoal and Cytotoxic Activity of
Fractions and Isolated Compounds
Two compound mixtures and a pure compound were tested for
activity against bloodstream forms of four species of

TABLE 2 | EC50 of two mixtures and compound 4 against Trypanosoma and Leishmania species (n � 3).

Compound/mixture T. brucei

s427

T. congolense

IL3000 WT

T. equiperdum T. evansi L. mexicana

PAN-76 compounds 1 and 3 (µg/ml) 10.1 ± 1.0 44.1 ± 3.2 7.2 ± 0.6 4.3 ± 0.1 34.1 ± 11.2

HEAN-18 compounds 2 and 5 (µg/ml) 25.9 ± 2.6 194.8 ± 98.9 17.2 ± 2.6 ND 51.9 ± 3.8

HEAN 1 crude extract containing

compound 4 (µg/ml)

5.7 ± 0.1 35.8 ± 4.3 7.3 ± 1.7 5.4 ± 0.1 10.1 ± 0.6

HEAN 19b compound 4 (µg/ml) 0.45 ± 0.02 (1.41 µM) 3.72 ± 0.54 (11.7 µM) 1.39 ± 0.27 (4.36 µM) 0.33 ± 0.05 (1.04 µM) 0.28 ± 0.05 (0.88 µM)

Diminazene (µM) 0.0878 ± 0.0355 0.228 ± 0.0446 0.0382 ± 0.0050 0.0438 ± 0.0005 ND

Suramin (µM) 0.0189 ± 0.0004 8.74 ± 1.634 0.021 ± 0.006 ND ND

Pentamidine (µM) ND ND ND ND 0.786 ± 0.022

ND, not done.

TABLE 3 |Cross-resistance of twomixtures and compound 4 with existing drugs.

Compound/mixture T. brucei B48 T.

congolense 6C3

RF p value RF p value

PAN-76 compounds 1 and 3 1.05 0.83 0.94 0.63

HEAN -18 compounds 2 and 5 1.2 0.10 1.23 0.77

HEAN 1 crude extract 1.05 0.83 0.94 0.76

HEAN 19b compound 4 1.38 0.27 1.12 0.69

Diminazene 5.70 0.19 6.96 0.014

Suramin 0.62 0.50 0.87 0.74

RF, resistance factor, being the ratio of the EC50 values of the resistant and control

strains. p value was obtained using unpaired Student’s test between the EC50 values of

the resistant line and control, obtained in parallel (n � 3).
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Trypanosoma and L. mexicana promastigotes using resazurin-
based drug sensitivity assay. This assay is cheap and allows for
efficient and reproducible screening of compounds for activity
against cultured cells and is therefore commonly employed in
parasitology (Räz et al., 1997; Gould et al., 2008). In addition, the
compound and mixtures were investigated for toxicity in HEK
cells and for cross-resistance to the commonly used
melaminophenyl arsenical and diamidine classes of trypanocides
(Bridges et al., 2007; Giordani et al., 2019). PAN-76, a mixture of
compounds 1 (80%) and 3 (20%), showed promising

antitrypanosomal activity with lowest EC50 of 4.27 ± 0.06 μg/ml
against T. evansi (Table 2). Another mixture, HEAN-18,
containing compounds 2 (70%) and 5 (30%), had only modest
to poor activity against all the Trypanosoma and Leishmania
species assayed. However, crude extract HEAN-1 displayed
good activity against all the kinetoplastid species, except T.
congolense (EC50 ≤ 10 μg/ml), and was thus selected for further
purification, yielding compound 4. This compound showed very
potent antiprotozoal activity with EC50 as low as 0.45 ± 0.02 μg/ml,
0.33 ± 0.05 μg/ml, and 0.28 ± 0.05 μg/ml against T. b. brucei, T.
evansi, and L. mexicana, respectively.

However, all of the mixtures and, to a lesser extent, compound
4, exhibited only moderate to low activity against T. congolense
IL3000, suggesting poor prospects for development as agents in
the treatment of AAT, where the infecting species is usually not

known, although applications outside the African tsetse belt (T.
evansi and T. equiperdum) look more promising. It is a very
common occurrence for drugs and test compounds to vary in
activity between T. congolense and the species in the T. brucei
group of species, making drug development for AAT even more
challenging as drug candidates need to be active against three
different species, that is, T. b. brucei, T. congolense, and T. vivax.
In addition, while PAN-76 and HEAN-18, containing various
amounts of compounds 1, 2, 3, and 5, demonstrated at best
modest antileishmanial activity, whereas the purified compound

4 displayed an EC50 of 0.28 ± 0.05 μg/ml (Table 2).
Due to the enormous challenge drug resistance poses to the

control of trypanosomiasis and leishmaniasis (De Koning, 2017),
it is important that test compounds are tested for the prospect of
cross-resistance to existing drugs. Neither of the three mixtures
nor compound 4 was cross-resistant to diminazene and
pentamidine as there were no significant differences (p > 0.05)
between EC50 in the T. brucei WT and multidrug-resistant B48
strain, and between the T. congolense WT and the diminazene-
resistant 6C3 strain (Table 3). This also means that for the brucei
group species, there is no cross-resistance with melaminophenyl

arsenical compounds such as melarsoprol and cymelarsan, which,
like pentamidine, rely on the P2 and HAPT1 transporters for
their trypanocidal activities (Bridges et al., 2007; Munday et al.,
2015). In all cases for the mixtures and compound 4, the

TABLE 4 | Toxicity of mixtures and compound 4 to HEK cells.

Compound/mixture EC50 for HEK cells

(n = 4)

Selectivity index (SI)

SI

T. brucei s427

SI

T. congolense IL3000

SI

T. equiperdum

SI

T. evansi

SI

L. mexicana

PAN-76 compound 1 and 3 (µg/ml) 56.8 ± 2.7 5.65 1.29 7.92 13.3 1.67

HEAN-1 crude (µg/ml) 75.5 ± 6.6 13.6 2.11 10.4 13.9 7.45

HEAN -19b compound 4 (µg/ml) 9.39 ± 1.37 (29.5 µM) 21.1 2.53 6.75 28.1 33.8

PAO (µM) 2.8 ± 0.08 — — — — —

FIGURE 3 |Manual cell count of L. mexicana cultures grown in the presence or absence of compound 4 and pentamidine at 5 × EC50, with or without wash after 5

or 48 h of incubation. (A) Compound 4. (B) Pentamidine. The dotted brown line indicates the detection limit, being 104 cells/ml. For convenience, where no cells were

observed in the counting chamber, the values of 5,000, 4,000, or 3,000 cells/ml were entered to facilitate a graphical representation.
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resistance factor (RF), which is the ratio of the EC50 in a drug-
resistant strain over the EC50 of the WT control, was ≤1.4.

The PAN-76 and HEAN-1 mixtures and compound 4 were
tested against HEK cells to determine whether their toxicity is

selective to the parasites, or general. While the mixtures showed
highest selectivity to T. evansi (Table 4), compound 4 is selective
to T. brucei, T. evansi, and L. mexicana (SI � 21.2 – 33.8).
Although compound 4 in purified form is more toxic to HEK
cells than the crude fraction from which it was isolated, it remains
low at ∼30 µM. Thus, compound 4 shows some promise as an
antiprotozoal compound, especially against Leishmania spp. and
will need to be further investigated.

The selective antiparasitic activity of compound 4 prompted
the investigation of its effect on growth of L. mexicana
promastigotes in vitro. At a concentration of 5 × EC50, the

compound irreversibly inhibited the growth of L. mexicana
even after a short exposure of 5 h (Figure 3). In addition, the
compound showed faster onset of action and killing than the
control drug, pentamidine.

CONCLUDING REMARKS

Due to the unprofitable market for kinetoplastid agents, new
developments are unlikely to emerge through the regular
discovery process of the pharmaceutical industry,
especially for veterinary applications. Alternative local
solutions are potentially available in the form of medicinal
plants, a practice that is ongoing but requires scientific
validation in order to delineate which extracts or isolated
compounds from which plants work reliably against which
pathogens. Here, we find that crude extracts of Acacia nilotica
yielded two new diterpenes that had limited anti-
kinetoplastid activity and one oxacassadiene, compound 4,

isolated from a fraction of the extract which displayed
promising activity against several Trypanosoma species
and Leishmania mexicana. Production of this compound
from the widely available plant should now be scaled up for tests

with further Leishmania species, intracellular amastigotes, and in
vivo studies with relevant disease models.
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