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Two New Characterizations of Path Graphs

Nicola Apollonio∗ Lorenzo Balzotti†

Abstract

Path graphs are intersection graphs of paths in a tree. We start from the characterization of path
graphs by Monma and Wei [C.L. Monma, and V.K. Wei, Intersection Graphs of Paths in a Tree, J.
Combin. Theory Ser. B, 41:2 (1986) 141–181] and we reduce it to some 2-colorings subproblems,
obtaining the first characterization that directly leads to a polynomial recognition algorithm. Then
we introduce the collection of the attachedness graphs of a graph and we exhibit a list of minimal
forbidden 2-edge colored subgraphs in each of the attachedness graph.

Keywords: Path Graphs, Clique Path Tree, Minimal Forbidden Subgraphs.

1 Introduction

A path graph is the intersection graph of paths in a tree. Other variants of the Path/Tree intersection
model are obtained by requiring edge-intersection (or even arc intersection) and by specializing the shape
of T (e.g.: directed, rooted). The class of path graphs is clearly closed under taking induced subgraphs.
Path graphs were introduced by Renz [17] who also posed the question of characterizing them by forbidden
subgraphs giving at the same a first partial answer. The question has been fully answered only recently
by Lévêque, Maffray and Preissmann [13].

Path graph is a class of graphs between interval graphs and chordal graphs. A graph is a chordal graph
if it does not contain a hole as an induced subgraph, where a hole is a chordless cycle of length at least
four. By specializing the celebrated characterization of chordal graphs due to Gavril [7], still Gavril gave
the first characterization of path graphs [9]. A graph is an interval graph if it is the intersection graph
of a family of intervals on the real line; or, equivalently, the intersection graph of a family of subpaths
of a path. Interval graphs were characterized by Lekkerkerker and Boland [12] as chordal graphs with
no asteroidal triples, where an asteroidal triple is a stable set of three vertices such that each pair is
connected by a path avoiding the neighborhood of the third vertex. A generalization of the steroidal
triples is introduced in [15] where path graphs are characterized by forbidding sun systems.

Inspired by the work of Tarjan [19], Monma and Wei [14], presented a general framework to recognize
and realize intersection graphs having as intersection model all possible variants of the Path/Tree model.
In particular, they characterized chordal graphs, path graph, directed path graphs and rooted directed
path graphs, where the latters are variants of path graphs. A graph is a directed path graphs if it is the
intersection graph of a family of paths of a directed tree. Directed path graphs were characterized first
by Panda [16] by a list of forbidden induced subgraphs and then by Cameron, Hoáng and Lévêque [2, 3]
by extending the concept of asteroidal triples. A graph is a rooted path graphs if it is the intersection
graph of a family of paths of a rooted directed tree. In the actual state of the art, there is no character-
ization of rooted path graphs by forbidden subgraphs or by concepts similar to asteroidal triples. The
characterizations of these graphs’ classes in [14] also describe directly polynomial recognition algorithms
for chordal graphs and directed path graphs but not for rooted path graphs and path graphs.

The following strict inclusions between introduced graphs’ classes are proved in [14]:

interval graphs ⊂ rooted path graphs ⊂ directed path graphs ⊂ path graphs ⊂ chordal graphs.
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The first recognition algorithm for path graphs was given by Gavril [9], and it has O(n4) worst-case
time complexity, where the input graph has n vertices and m edges. The fastest algorithms are due
to Schäffer [18] and Chaplick [4] and both have O(mn) worst-case time complexity. The first is a so-
phisticated backtracking algorithm based on characterization of Monma and Wei, while the second uses
PQR-trees. Another algorithm is proposed in [6] and claimed to run in O(n + m) time, but is not
considered correct (see comments in [[4], Section 2.1.4]).

Gavril also gave the first algorithm to recognize directed path graph [8]. Chaplick et al. [5] describe a
linear algorithm able to say if a path graph is a directed path graph, by assuming to have the realization
of path graph as the intersection of a family of paths of a tree. This implies that algorithms in [4, 18]
can be extended to recognition algorithms for directed path graphs with the same time complexity. At
the state of art, these are the two fastest algorithms.

Our Contribution Our first characterization of path graphs is the unique, at the state of the art,
that directly implies a polynomial recognition algorithm, and we obtain it by starting from Monma and
Wei’s characterization [14]. The second characterization follows from the first one and consists in a list
of minimal forbidden subgraphs and a list of minimal forbidden induced subgraphs on a graph derived
from the input graph. Now we describe in detail the two new characterizations.

In the characterization by Monma and Wei [14] the graph is decomposed recursively by clique separa-
tors and in every decomposition step one has to solve a coloring problem (see Theorem 3 and Section 2
for all definitions and notations); the solution of the coloring problem is used to represent the graph as
the intersection graph of a family of paths in a tree. The difficulty with their coloring problem led them
to not prove that it can be solved in polynomial time. In our first characterization we simplify Monma
and Wei’s characterization by reducing it to some 2-coloring subproblems that are clearly solvable in
polynomial time (see Section 3, in particular Subsection 3.1). Thus this characterization also describes a
polynomial recognition algorithm. Moreover, it has two consequences.

• The obstructions to our 2-coloring subproblems are well-known, this allows us to give our second
characterization, which consists in a list of minimal forbidden subgraphs and a list of minimal forbidden
induced subgraphs of the attachedness graphs of the input graphs (see Section 4, in particular Theorem 5).

• Our first characterization is used in [1] to describe a recognition algorithm that specializes for
path graphs and directed path graphs. The algorithm is based on Theorem 4 and the partition given
in Equation (3). Even if the worst-case time complexities are not improved, at the state of art, the
recognition algorithm for directed path graphs in [1] is the unique that does not use the results in [5],
in which a linear algorithm is given that is able to establish whether a path graph is a directed path
graph too. Moreover, the recognition algorithm for path graph in [1] has an easier and more intuitive
implementation than Schäffer’s backtracking algorithm [18] and it requires no complex data structures
while algorithm in [4] is built on PQR-trees. In this way, our characterization allowed us to simplify and
unify the recognition algorithms for path graphs and directed path graphs. We refer to [1] for further
details.

Organization The paper is organized as follows. In Section 2 we give a detailed discussion of Monma
and Wei’s characterization of path graphs [14] and we define the basic concepts (e.g., the notion of
attachedness graphs). Section 3 is devoted to our first characterization (summarized in Theorem 4) that
consists in a simplification of Monma and Wei’s one. Then, in Section 4, we use the results to characterize
paths graphs by a list of forbidden subgraphs in their attachedness graphs (see Theorem 5). In Section 5
the conclusions are given.

2 Monma and Wei’s characterization of path graphs

In this section we show Monma and Wei’s characterization of path graphs (Theorem 3) that is based on
Gavril’s one (Theorem 2). Let’s start with a formal definition of path graphs.

A graph G is a path graph if there is a tree T (the host tree of G), a collection P of paths of T and a
bijection φ : V (G) → P such that two vertices u and v of G are adjacent in G if and only if the vertex-sets
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of paths φ(u) and φ(v) intersect. In Figure 1 there is a path graph G on the left and the host tree of G
with a collection of paths P that realizes G on the right.
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Figure 1: on the left a path graph G, in the center the clique path tree of G, on the right the host tree
of G and the collection P = {pa, . . . , ph} that realizes G. Note that pa, pd, pf , ph are composed by only
one vertex.

Path graphs were first characterized by Gavril [9] through the notion of clique path tree as follows
(unless otherwise stated, maximal cliques are referred to as cliques, where a clique is a set of pairwise
adjacent vertices).

Theorem 1 (Gavril [9]) A graph G is a path graph if and only if it possesses a clique path tree, namely,
a tree T whose vertices are the cliques of G with the property that the set of cliques of G containing a
given vertex v of G induces a path in T .

Theorem 2 specializes the celebrated characterization of chordal graphs, also due to Gavril [7], as those
graphs possessing a clique tree (equivalently, as the intersection graphs of a collection of subtrees in a
given tree) as stated below.

Theorem 2 (Gavril [7]) A graph G is a chordal graph if and only if it possesses a clique tree, namely,
a tree T on the set of cliques of G with the property that the set of cliques of G containing a given vertex
v of G induces a subtree in T .

Notice that since a clique path tree is a particular clique tree, Theorem 2 also implies that path graphs
are chordal. In Figure 1, in the center there is the clique path tree of the path graph on the left.

A clique Q is a clique separator if the removal of Q from G disconnects G into more than one connected
component (without loss of generality, throughout the paper, we suppose that G is connected). If a graph
G has no clique separator, then G is called atom. In [14] it is proved that an atom is a path graph if and
only if it is a chordal graph.

Given a clique separator Q of a graph G let G−Q have s connected components, s ≥ 2 with vertex-
sets V1, . . . , Vs, respectively. We define γi = G[Vi ∪ Q], i = 1, . . . , s and ΓQ = {γ1, . . . , γs}. A clique K
of a subgraph γ of ΓQ is called a relevant clique, if K ∩Q 6= ∅ and K 6= Q. A neighboring subgraph of a
vertex v ∈ V (G) is a member γ ∈ ΓQ such that v belongs to some relevant clique K of γ. For instance, in
Figure 2 referring to the graph on the left, all the γi’s but γ5 are neighboring subgraphs of the vertex in
the north-east corner of the clique separator Q, while all the γi’s but γ2 and γ3 are neighboring subgraphs
of the vertex in the south-west corner of Q. We say that two subgraphs γ and γ′ are neighbouring if they
are neighbouring subgraphs of some vertex v ∈ Q; a subset W ⊆ ΓQ whose elements are neighbouring
subgraphs will be referred to as a neighbouring set (e.g, neighbouring pairs, neighbouring triples etc).
Monma and Wei [14], defined the following binary relations on ΓQ.

Attachedness, denoted by ✶ and defined by γ ✶ γ′ if and only if there is a relevant clique K of γ and a
relevant clique K ′ of γ′ such that K∩K ′∩Q 6= ∅. In particular, γ and γ′ are neighboring subgraphs
of each vertex v ∈ K ∩K ′ ∩Q.

Dominance, denoted by ≤ and defined by γ ≤ γ′ if and only if γ ✶ γ′ and for each relevant clique K ′

of γ′ either K ∩ Q ⊆ K ′ ∩ Q for each relevant clique K of γ or K ∩K ′ ∩ Q = ∅ for each relevant
clique K of γ. In Figure 2, graph of the right, pairs of ≤-comparable subgraphs of the graph of the
left are joined by a dotted edge.

3



γ1
γ2

γ3

γ4γ5

γ6 Q

γ1

γ2 γ3

γ4

γ5γ6

D1

D1,4

D4

Figure 2: A graph G (on the right) and the Q-attachedness graph of G (on the left). The sets displayed
by a colored boundary are defined in (1) and (2). Remark that graph G is not a path graph.

Antipodality, denoted by ↔ and defined by γ ↔ γ′ if and only if there are relevant cliques K of γ and
K ′ of γ′ such that K ∩ K ′ ∩ Q 6= ∅ and K ∩ Q and K ′ ∩ Q are inclusion-wise incomparable. In
Figure 2, graph of the right, pairs of antipodal subgraphs of the graph of the left are joined by a
solid edge.

Antipodality and dominance relations are disjoint binary relations on ΓQ whose union is the relation
✶. Therefore (γ ≤ γ′, γ′ ≤ γ or γ ↔ γ′) if and only if (γ ✶ γ′). Both ✶ and ↔ are symmetric and only
↔ is irreflexive. Hence, after neglecting reflexive pairs, (ΓQ,↔), (ΓQ,✶) are simple undirected graphs on
ΓQ referred to as, respectively, the Q-antipodality, and the Q-attachedness graph of G. The edges of the
Q-antipodality graph of G are called antipodal edges while those edges of the Q-attachedness graph of G
which are not antipodal edges, are called dominance edges. The Q-dominance of G is the graph on ΓQ

having as edges the dominance edges (i.e., the complement of (ΓQ,↔) in (ΓQ,✶)). Hence the edge-sets of
the Q-antipodality and the Q-dominance graphs of G partition the edge-set of the Q-attachedness graph
of G and the latter is naturally 2-edge colored by the antipodality edges and by the dominance edges.
We adopt the pictorial convention to represent antipodality edges by thin lines and dominance edges by
dotted lines.

To understand the following definition, for n ∈ N, we denote by [n] the interval {1, 2, . . . , n}. Moreover,
if f is a map between sets A and B and X ⊆ A, then f(X) is the image of X under f , namely,
f(X) = {f(x) | x ∈ X}.

Definition 1 Let Q be a clique separator of G, we say that G is strong Q-colorable if there exists
f : ΓQ → [s] such that:

1.(1) if γ ↔ γ′, then f(γ) 6= f(γ′);

1.(2) if {γ, γ′γ′′} is neighboring triple, then |f({γ, γ′, γ′′})| ≤ 2.

We refer to a coloring f satisfying the conditions of Definition 1 as a strong Q-coloring. We use the
term “strong” because in Section 3 we introduce a weaker coloring and we prove that they are equivalent.

Theorem 3 (Monma and Wei [14]) A chordal graph G is a path graph if and only if G is an atom
or for a clique separator Q each graph γ ∈ ΓQ is a path graph and G is strong Q-colorable.

Now we explain the conditions of Definition 1 in few words. Let T be a clique path tree of G.
The removal of clique separator Q from G disconnects G in more connected components, but it also
disconnects the T in more subtrees. In a way, the coloring f associates a connected components to the
subtrees. The first condition implies that two antipodal connected components γ and γ′ need to be in
two distinct subtrees, indeed, if not, then for some v ∈ (V (γ) ∩Q) \ V (γ′) or v ∈ (V (γ′) ∩Q) \ V (γ) the
set of clique of G that contains v does not induce a connected path in T . The second condition says that

4



all connected components that contain v need to be in at most two distinct subtrees, indeed, if not, the
set of clique of G that contains v does not induce a path in T .

In the following corollary, we translate Theorem 3 from a recursive fashion to a local one that is more
useful to our purposes. We recall that a graph with no clique separator (i.e., an atom) is a path graph if
and only if it is chordal.

Corollary 1 A chordal graph G is a path graph if and only if G is strong Q-colorable, for all clique
separator Q of G.

By Corollary 1, deciding whether a graph G is a path graph is tantamount to deciding whether G
is strong Q-colorable for each separator Q. It is thus natural to wonder whether there are obstructions
to strong Q-colorability and, if so, how do such obstructions look like on the attachedness graph of G.
One such obstruction is easily recognized (see [14]): let {γ, γ′, γ′′} ⊆ ΓQ be a neighboring triple and
suppose that γ, γ′ and γ′′ are pairwise antipodal (hence {γ, γ′, γ′′} induces a triangle on the Q-antipodal
graph of G). We refer to any such triple to as a full antipodal triple. It is clear that if ΓQ contains a full
antipodal triple, then G is not strong Q-colorable because the two conditions in Definition 1 cannot be
both satisfied. For later reference we formalize this easy fact in a lemma.

Lemma 1 Let Q be a clique separator of G. If G is strong Q-colorable, then ΓQ has no full antipodal
triple.

3 A weak coloring

In this section we introduce a weak coloring that is used in Theorem 4 to give our first characterization
of path graphs. This characterization simplifies Monma and Wei’s one [14] by an algorithmic point of
view justifying the terms “strong” and “weak”. This simplification is explained in Subsection 3.1. In
Subsection 3.2 we prove Theorem 4.

Dominance is a reflexive and transitive relation. Hence (ΓQ,≤) is a preorder. We assume that such
a preorder is in fact a partial order. The latter assumption is not restrictive as showed implicitly in
Schäffer [18] and explicitly as follows. Let ∼ be the equivalence relation on ΓQ defined by γ ∼ γ′ ⇔
(γ ≤ γ′ ∧ γ′ ≤ γ), namely, ∼ is the standard equivalence relation associated with a preorder. If γ ∼ γ′

for some two γ, γ′ ∈ ΓQ, then for any γ′′ ∈ ΓQ it holds that γ ↔ γ′′ if and only if γ′ ↔ γ′′. Analogously,
if γ ∼ γ′ for some two γ, γ′ ∈ ΓQ, then for any γ′′ ∈ ΓQ it holds that γ ≤ γ′′ if and only if γ′ ≤ γ′′.
Moreover, if γ is a neighboring of v, for some v ∈ Q, and γ ∼ γ′, then γ′ is a neighboring of v.

The following lemma shows that it is not restrictive to assume that ΓQ = ΓQ/ ∼.

Lemma 2 Let Q be a clique separator of G. If there exists f : ΓQ/ ∼→ [m] satisfying 1.(1) and 1.(2),
then G is strong Q-colorable.

Proof. Let f̃ : ΓQ → [m] be defined by f̃(γ) = f([γ]∼). It holds that f̃ satisfies 1.(1) and 1.(2), hence f̃
is a strong Q-coloring. ✷

After the lemma, we assume that (ΓQ,≤) is a partial order for every clique separator Q of G. In other
words, we assume ΓQ = ΓQ/ ∼.

Given a clique separator Q of G, we define UpperQ = {u ∈ ΓQ |u 6≤ γ, for all γ ∈ ΓQ} the set of
upper bounds of ΓQ with respect to ≤. From now on we fix (u1, u2, . . . , uℓ) an ordering of UpperQ and
for all i, j ∈ [ℓ] and i < j we define

DQ
i = {γ ∈ ΓQ | γ ≤ ui and γ � uj , ∀j ∈ [ℓ] \ {i}}, (1)

DQ
i,j = {γ ∈ ΓQ | γ ≤ ui, γ ≤ uj and γ � uk, ∀k ∈ [ℓ] \ {i, j}}, (2)

D
Q =

{
DQ

i | i ∈ [ℓ]
}
∪
{
DQ

i,j | i, j ∈ [ℓ], i < j
}
. (3)

In few words, DQ
i consists of the elements of ΓQ dominated only by ui and no other upper bound,

while DQ
i,j consists of those elements of ΓQ dominated only by ui and uj and no other upper bound.
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Referring to Figure 2, UpperQ = {γ1, γ4}, if we fix the ordering (u1, u2) = (γ1, γ4), then DQ
1 = {γ1, γ2},

DQ
2 = {γ3, γ4, γ5} and DQ

1,2 = {γ6}. If no confusions arise, we omit the superscript Q.

Remark 1 If UpperQ has no full antipodal triple, then for every γ ∈ ΓQ there are at most two different
u, u′ ∈ UpperQ such that γ ≤ u and γ ≤ u′. Thus the Di’s and the Di,j’s form a partition of ΓQ.

Before giving the definition of weak coloring we need some preliminary definitions. Let CrossQ =
{γ ∈ ΓQ | γ ∈ D, for some D ∈ D, and γ ↔ γ′, for some γ′ 6∈ D}. In few words, CrossQ is composed
by all elements in D, varying D ∈ D, that are antipodal to at least one element not in D, i.e., CrossQ is
composed by all elements that “cross” the partition through antipodality.

Definition 2 Let Q be a clique separator of G. Let (u1, u2, . . . , uℓ) be any ordering of UpperQ. We say
that f : UpperQ ∪ CrossQ → [ℓ] is a partial Q-coloring if f satisfies the following:

2.(1) for all i ∈ [ℓ], f(ui) = i,

2.(2) for all i ∈ [ℓ], for all γ ∈ Di, if ∃γ 6∈ Di such that γ ↔ γ′, then f(γ) = i,

2.(3) for all i < j ∈ [ℓ], for all γ ∈ Di,j, if ∃γ′ 6∈ Di,j such that γ ↔ γ′, then

{
f(γ) = i, if γ′ ∈ Dj ,

f(γ) = j, if γ′ ∈ Di.
(4)

We comment Definition 2. The first condition says how we color the upper bounds of ΓQ; actually,
because of 1.(1), we only need that two antipodals upper bounds have different colors, i.e., u, u′ ∈ UpperQ
and u ↔ u′ imply f(u) 6= f(u′) for all strong Q-coloring f . We prefer to set f(ui) = i in order to use
color i, j, k instead of f(ui), f(uj), f(uk) and so on; furthermore, condition 2.(1) implies the uniqueness
of a partial Q-coloring. Finally, it is easy to see that conditions 2.(2) and 2.(3) hold for every strong
Q-coloring satisfying 2.(1).

Note that there exists always a coloring satisfying conditions 2.(1) and 2.(2), while condition 2.(3)
can not be satisfied if there exist γ ∈ Di,j , γ

′ ∈ Di and γ′′ ∈ Dj such that γ ↔ γ′ and γ ↔ γ′′, for some
i < j ∈ [ℓ]. This fact leads to a kind of obstruction (see Section 4).

We are ready to give the definition of weak-coloring.

Definition 3 Let Q be a clique separator of G. Let (u1, u2, . . . , uℓ) be any ordering of UpperQ. We say
that G is weak Q-colorable if there exists f : ΓQ → [ℓ + 1] such that f restricted to UpperQ ∪ CrossQ is
a partial Q-coloring and

3.(1) for all i ∈ [ℓ], f(Di) ⊆ {i, ℓ+ 1},

3.(2) for all i < j ∈ [ℓ], f(Di,j) ⊆ {i, j},

3.(3) for all D ∈ D, if γ, γ′ ∈ D and γ ↔ γ′, then f(γ) 6= f(γ′).

We refer to a coloring f satisfying the conditions of Definition 3 as a weak Q-coloring.
We comment Definition 3. It is easy to see that if we extend a partial Q-coloring, then conditions 1.(1)

and 1.(2) imply conditions 3.(2) and 3.(3). The condition 3.(1) is more restrictive than the necessary.
Indeed, conditions 1.(1) and 1.(2) should imply f(Di) ⊆ {i, ci} (a possible choice of ci is ℓ + i), but the
stiff structure given by the absence of full antipodal triple should imply that all elements colored by ci’s
are pairwise not antipodal, and thus we can use the same color for all (as Proposition 1’s proof shows).

In the following theorem we give our first characterization of path graphs.

Theorem 4 A chordal graph G is a path graph if and only if ΓQ has no full antipodal triple and G is
weak Q-colorable, for all clique separator Q of G.
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3.1 Weak coloring equals to 2-coloring subproblems

Now we explain why our coloring problem shown in Theorem 4 simplifies Monma and Wei’s one stated
in Theorem 3 by an algorithmic point of view. Note that the two conditions of strong Q-coloring are in
conflict with each other. Indeed, if too few colors are used, then the first condition is violated, otherwise, if
one uses too many colors, then the second condition is violated. For this reason the algorithm in [14] does
not run in polynomial time. In particular, their characterization does not describe directly a polynomial
algorithm. Despite this, Schäffer [18] succeed to implement a sophisticated backtracking polynomial
algorithm that starts from their characterization.

Our characterization in Theorem 4 requires the absence of full antipodal triple and the check of
six conditions: 2.(1), 2.(2), 2.(3) of Definition 2 and 3.(1), 3.(2), 3.(3) of Definition 3. First we note
that conditions 2.(1), 2.(2), and 3.(1), 3.(2) are always satisfiable, i.e., there exists always a coloring
f : ΓQ → [ℓ + 1] that satisfies them. Moreover, checking for the absence of full antipodal triple and
condition 2.(3) are polynomial problems, because they are antipodal paths/cycles of length 3. Finally,
condition 3.(3) consists in 2-coloring problems restricted on elements in D, for D ∈ D. In other words,
after polynomial checks, we succeed to reduce the coloring problem of Monma and Wei to some 2-
coloring subproblems. This allows us to exhibit a list of forbidden subgraphs in the attachedness graph
(see Section 4).

3.2 Proof of Theorem 4

This subsection is split into three parts: in Subsection 3.2.1 we give some useful results about dominance
and antipodality, in Subsection 3.2.2 and Subsection 3.2.3 we prove the “if part” and the “only if part”
of Theorem 4, respectively. In particular, Theorem 4 is implied by Proposition 1 and by Proposition 2.

3.2.1 Preliminary results

It is convenient to a have a handy pictorial representation to deal with the relations ≤ and ↔. Two
elements γ′, γ′′ ∈ ΓQ such that γ′ ≤ γ′′ are drawn placing γ′ below γ′′—here “below” means that viewing
the sheet as a portion of the Cartesian plane with origin placed in left bottom corner, the ordinate of
γ′ is smaller than the ordinate of γ′′—and joining them by a dotted line while, if γ′, γ′′ ∈ ΓQ such that
γ′ ↔ γ′′, then their are joined by a thin line wherever they are placed. For, instance, the following
diagrams, represent all possible cases involving three pairwise attached elements of ΓQ (there is not a
case that is impossible because of the transitivity of ≤).

γ′′

γ′

❁❁❁❁❁

γ

✑✑✑
✑✑✑✑

✑✑

♣♣♣♣♣♣♣♣♣

(i)

γ′′

γ′

γ

(ii)

γ′′

γ′

❅❅❅❅❅

γ

♥♥♥♥♥♥♥♥♥♥

(iii)

γ′′

γ′

γ

♥♥♥♥♥♥♥♥♥♥

(iv)

γ′′

γ′

❂❂❂❂❂

γ

(v)

(5)

Lemma 3 Let Q be a clique separator of G, the following hold:

3.(a) γ ≤ γ′ ⇒ γ and γ are neighboring of v, for all v ∈ V (γ) ∩Q

3.(b) γ ↔ γ′ ⇒ γ and γ are neighboring of v, for all v ∈ V (γ) ∩ V (γ′) ∩Q,

3.(c) let γ, γ′, γ′′ ∈ ΓQ, if one among (ii),(iii),(iv),(v) of (5) applies, then γ, γ′, γ′′ are neighboring of v
for all v ∈ V (γ) ∩ V (γ′) ∩Q,

Proof. The first two statements follow from definitions of ≤ and ↔. The last statement holds for cases
(ii) and (v) by applying 3.(a) on γ ≤ γ′ and γ ≤ γ′′. For cases (iii) and (iv), 3.(b) implies that γ and γ′

are neighboring of v for all v ∈ V (γ) ∩ V (γ′) ∩Q, finally, 3.(a) applied to γ and γ′′ implies the thesis. ✷
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The following lemma shows that the absence of full antipodal triple gives a stiff structure of antipodal-
ity graph with respect to partition D. Indeed, for some D,D′ ∈ D, it holds that γ can not be antipodal
to γ′, for γ ∈ D and γ′ ∈ D′.

Lemma 4 Let Q be a clique separator of G and let i < j ∈ [ℓ]. If UpperQ has no full antipodal triple,
then the following hold:

4(a) γ ≤ γ′ and γ ∈ Di,j ⇒ γ′ ∈ Di,j ∪Di ∪Dj,

4(b) γ ↔ γ′ and γ ∈ Di,j ⇒ γ′ ∈ Di,j ∪Di ∪Dj,

4(c) γ ↔ γ′, γ ∈ Di and γ′ 6∈ Di ⇒ γ ↔ uk for γ′ ≤ uk and k 6= i.

Proof. Statements 4.(a) and 4.(b) follow from the absence of full antipodal triple, transitivity of ≤, 3.(a)
and 3.(b). Indeed, if one among 4.(a) and 4.(b) is denied, then, by using 3.(a) and 3.(b), we find a full
antipodal triple {ui, uj , uk} ∈ UpperQ, absurdum by hypothesis.

To prove 4.(c), we observe that γ′ 6∈ Di implies that there exists uk ∈ UpperQ such that γ′ ≤ uk

and k 6= i. Such k is unique, indeed, if there exists k′ 6= k such that γ′ ≤ uk′ , then {uk, uk′ , ui} is a
neighboring set by 3.(a) and 3.(b), and thus it is full antipodal triple, absurdum by hypothesis. Finally,
γ, γ′, ui, uk is a neighboring set because of 3.(a) and 3.(b), and thus ui ↔ uk as claimed. ✷

Lemma 4 implies that every partial Q-coloring sets the color of γ ∈ ΓQ if and only if γ ∈ CrossQ.
By its definition, the color is univocally determined, i.e., if there exists a partial Q-coloring, then it is
unique.

3.2.2 Strong coloring implies weak coloring

The following lemma shows that a strong Q-coloring f can be modified in order to satisfy condition 2.(1),
and, if so, then f satisfies conditions 2.(2), 2.(3), 3.(2), 3.(3). This is the first step to prove that definition
of strong Q-coloring implies the definition of weak Q-coloring.

Lemma 5 Let Q be a clique separator and let f : ΓQ → [r] be a strong Q-coloring. Then there exists
g : ΓQ → [r′], with r′ ≥ r, satisfying 2.(1). Moreover, conditions 2.(2), 2.(3), 3.(2), 3.(3) hold for every
strong Q-coloring satisfying 2.(1).

Proof. Let’s start with the first part of the claim. By Lemma 1, there are no full antipodal triple in ΓQ.
If f(ui) 6= f(uj) for all i 6= j ∈ [ℓ], then the thesis is true. Thus let us assume that there exist i 6= j ∈ [ℓ]
such that f(ui) = f(uj). We need a preliminary that explains how to obtain a strong Q-coloring g
satisfying g(ui) 6= g(uj) by starting from f .

(6) Let i, j ∈ [ℓ] be such that f(ui) = f(uj). Let Ωi = {γ ∈ ΓQ | γ ≤ ui and f(γ) = f(ui)}. Let

g(γ) =

{
r + 1, if γ ∈ Ωi,

f(γ), otherwise,
(7)

then g is a strong Q-coloring and g(ui) 6= g(uj).

Proof of (6): It is clear that g satisfies 1.(1). Let us assume by contradiction that g does not satisfy 1.(2).

Thus let γ, γ′, γ′′ ∈ ΓQ be such that |g({γ, γ′, γ′′})| = 3 and γ, γ′, γ′′ are neighboring of v for some v ∈ Q.
W.l.o.g., by (7), we assume that γ ∈ Ωi, γ

′, γ′′ 6∈ Ωi, f(γ
′) = f(ui) and f(γ′′) 6= f(ui). Indeed, if one of

these conditions do not hold, then |g({γ, γ′, γ′′})| < 3 because f is a strong Q-coloring.
Being v ∈ V (γ) and γ ∈ Ωi, then v ∈ V (ui) by 3.(a). Being γ′ neighboring of v, then either γ′ ≤ ui

or ui ↔ γ′. If γ′ ≤ ui, then f(γ′) = f(ui) implies γ′ ∈ Ωi, absurdum. If ui ↔ γ′, then f(γ′) = f(ui)
implies that f is not a strong Q-coloring, absurdum. Finally, g(ui) 6= g(uj) because g(ui) = r + 1 while
g(uj) ≤ r. End proof of (6)

By repeatedly applying Claim 6, we obtain a strong Q-coloring g satisfying 2.(1). To complete the
proof, we have to prove that g satifies 2.(2), 2.(3), 3.(2), 3.(3).
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Let us assume by contradiction that 2.(2) does not hold. Then let γ ∈ Di, for some i ∈ [ℓ], and let
γ′ 6∈ Di be such that γ ↔ γ′ and assume that g(γ) 6= i. Being γ′ 6∈ Di, then there exists uj ∈ UpperQ
such that γ′ ≤ uj and i 6= j. By 3.(b), γ, γ′ are neighboring of v, for some v ∈ Q, moreover, by 3.(a),
ui, uj are neighboring of v. Thus γ, ui, uj are neighboring of v, implying that γ ↔ uj because γ ∈ Di.
Finally, 1.(1) imply g(γ) 6= j, that implies |g({γ, ui, uj}| = 3, absurdum because g is a strong Q-coloring.

Let us assume that 2.(3) does not hold. Then there exist γ ∈ Di,j , γ
′ ∈ Dj such that γ ↔ γ′ and

g(γ) 6= i (the case in which γ′ ∈ Di and g(γ) 6= j is similar). As above, by 3.(b) and 3.(a), it holds that
γ, γ′, ui, uj are neighboring of v for some v ∈ Q. Moreover, γ ↔ uj and thus 2.(2) implies g(γ′) = j. Being
g a strong Q-coloring and being γ ↔ γ′, 1.(1) implies g(γ) 6= j. Thus |g({γ, ui, uj})| = 3, absurdum.

If 3.(2) does not hold for a γ ∈ Di,j , for some i < j ∈ [ℓ], then γ, ui, uj would deny 1.(2). Indeed,
γ, ui, uj are neighboring of v, for every v ∈ V (γ)∩Q, by 3.(a). Thus γ, ui, uj deny 1.(2) because of 2.(1),
absurdum.

Finally, 3.(3) is implied by 1.(2). ✷

The following proposition is the “if part” of the proof of Theorem 4.

Proposition 1 Let Q be a clique separator of G. If G is strong Q-colorable, then ΓQ has no full antipodal
triple and G is weak Q-colorable.

Proof. Let f : ΓQ → [r] be a strong Q-coloring. We have to find g : ΓQ → [ℓ + 1] such that g is a
weak Q-coloring and prove that there are no full antipodal triples in UpperQ. First we observe that 1.(1)
and 1.(2) implies that there are no full antipodal triples in ΓQ.

By Lemma 5, we can assume that f satisfies conditions 2.(1), 2.(2), 2.(3), 3.(2), 3.(3) and that r ≥ ℓ.
For all i ∈ [ℓ] let Ωi = {γ ∈ Di | f(γ) 6= i}. Now, let i ∈ [ℓ]. For all γ, γ′ ∈ Ωi it holds that γ 6↔ γ′,

indeed, if not, then f(γ) 6= f(γ′) because of 1.(1), and this implies |f({γ, γ′, ui})| = 3, absurdum because
f a strong Q-coloring. Thus if we define

g(γ) =

{
ℓ+ i, if γ ∈ Ωi,

f(γ), otherwise,

then g : ΓQ → [2ℓ] is a strong Q-coloring because f is a strong Q-coloring and we used the same color
for a class of non-antipodal elements.

For all distinct i, j ∈ [ℓ], for all γ ∈ Ωi and γ′ ∈ Ωj , it holds that γ 6↔ γ′. Indeed, if γ ↔ γ′, then,
by assuming γ ∈ Di and γ′ ∈ Dj , condition 2.(2) implies f(γ) = i and f(γ′) = j and thus γ 6∈ Ωi and
γ′ 6∈ Ωj , absurdum. Finally, let Ω =

⋃
i∈[ℓ] Ωi and let

h(γ) =

{
ℓ+ 1, if γ ∈ Ω,

g(γ), otherwise,

it is clear that g satisfies 3.(1), moreover, 3.(1) and 3.(2) imply g : ΓQ → [ℓ + 1]. By the same above
reasoning, g is a strong Q-coloring and this finishes the proof. ✷

3.2.3 Weak coloring implies strong coloring

Now we prove the “only if part” of Theorem 4.

Proposition 2 Let Q be a clique separator of G. If ΓQ has no full antipodal triple and G is weak
Q-colorable, then G is strong Q-colorable.

Proof. First we observe that if there is a full antipodal triple, then ΓQ is not strong Q-colorable neither
weak Q-colorable. Thus we assume that there are no full antipodal triples. By Remark 1, it holds that
ΓQ = D.

Let f be a weak Q-coloring of G. We have to prove that 1.(1) and 1.(2) are satisfied. Let γ, γ′ ∈ ΓQ

be such that γ ↔ γ′. We want to prove that f(γ) 6= f(γ′). Let i < j ∈ [ℓ]. Because of the absence of
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full antipodal triples, then there are four cases: γ, γ′ ∈ Di (case 1), γ, γ′ ∈ Di,j (case 2), γ ∈ Di and
γ′ ∈ Di,j (case 3), γ ∈ Di and γ ∈ Dj (case 4) (there are no other cases because of 4.(b)).

If case 1 or case 2 happens, then f(γ) 6= f(γ′), by 3.(3). If case 3 happens, then f(γ) 6= f(γ′), by 2.(2)
and 2.(3). Finally, if case 4 happens, then i = f(γ) 6= f(γ′) = j, by 2.(2). Thus 1.(1) is satisfied.

Now it remains to prove that 1.(2) holds. Let us assume by contradiction that there exist γ, γ′, γ′′ ∈ ΓQ

such that they form a neighboring triple and |f({γ, γ′, γ′′})| = 3. In (5) there are all possibilities of
relations between these three elements. Case (i) can not apply because it is a full antipodal triple. Thus
we have to prove that in cases (ii),(iii),(iv),(v) |f({γ, γ′, γ′′})| < 3 (it is only a fact of checking).

Before we examine every case, we need the following claim.

(8) In any case among (ii),(iii),(iv),(v) if there are η ∈ Di and η′ ∈ Dj , then f(η) = i and f(η′) = j.
Similarly, if there are µ ∈ Di,j and µ′ ∈ Di (resp., µ

′ ∈ Dj), then f(µ′) = i (resp., f(µ′) = j).

Proof of (8): We note that any case among (ii),(iii),(iv),(v) is a neighboring triple. Thus condition 3.(a)

and 3.(b) imply η ↔ uj and η′ ↔ ui, hence f(η) = i and f(η′) = j because of 2.(2). The second part of
the claim holds with a similar reasoning. End proof of (8)

Let’s start with cases (ii) and (v). If γ ∈ Di, for some i ∈ [ℓ], then γ′, γ′′ ∈ Di because of transitivity of
≤, thus f({γ, γ′, γ′′}) ⊆ {i, ℓ+1} by 3.(1). Else, γ ∈ Di,j , for some i < j ∈ [ℓ], then γ′, γ′′ ∈ Di∪Dj∪Di,j

because of 4.(a), thus f({γ, γ′, γ′′}) ⊆ {i, j} by 3.(1), 3.(2) and Claim 8.
Now we deal with case (iv). For short, for any i ∈ [ℓ], we define Di = (

⋃
j<i Dj,i) ∪ (

⋃
j>i Di,j). If

γ′′ ∈ Di,j , for some i < j ∈ [ℓ], then γ, γ′ ∈ Di,j because of transitivity of ≤, thus f({γ, γ′, γ′′}) ⊆ {i, j}
by 3.(2). Else, γ′′ ∈ Di, for some i ∈ [ℓ], then γ, γ′ ∈ Di ∪Di because of 4.(b). There are two sub-cases:
either γ, γ′, γ′′ ∈ Di, or at least one among γ, γ′ is in Di. If the first sub-case happens, then we have
finished by 3.(1). Otherwise, w.l.o.g., let us assume that γ ∈ Di,j for some j > i. Thus uj ↔ γ′′, and,
by 2.(2), f(γ′′) = i, implying that f({γ, γ′, γ′′}) ⊆ {i, j}.

It remains to check case (iii). If γ′′ ∈ Di,j , for some i < j ∈ [ℓ], then γ ∈ Di,j . By 4.(b), γ′ ∈
Di ∪ Dj ∪ Di,j . Thus f({γ, γ′, γ′′}) ⊆ {i, j} because of 2.(2), 2.(3) and 3.(3). Else, γ′′ ∈ Di, for some
i ∈ [ℓ], then there are two sub-cases: either γ ∈ Di, or γ ∈ Di,j , for some i < j ∈ [ℓ] (the sub-case
γ ∈ Dj,i is similar). If the first sub-case happens, then |f({γ, γ′, γ′′})| < 3 because f(γ′′) = f(γ) = i
by 2.(2). If the second sub-case happens, then γ′ ∈ Di ∪Dj ∪Di,j by above. Thus f({γ, γ′, γ′′}) ⊆ {i, j}
by 3.(1), 3.(2) and Claim 8. ✷

4 Forbidden subgraphs in attachedness graphs

In Subsection 3.1 we described exactly which are the obstructions to the weak coloring, thus we can list
all the obstructions of path graphs in the form of subgraphs of the Q-attachedness graphs of a chordal
graph G, and in Subsection 4.2 we compare our obstructions with obstructions in [13]. Recall that the
Q-attachedness graph of G is the graph (ΓQ,✶) with reflexive pairs neglected—whose edges are therefore
distinct pairs γγ′, γ, γ′ ∈ ΓQ such that γ ✶ γ′. Also recall that the Q-antipodality and the Q-dominance
graph of G factor (ΓQ,✶). Such a factorization yields a 2-edge coloring of (ΓQ,✶) which models the
interactions between ↔ and ≤.

In the following definition we present an uncolored version of our obstructions to path graphs.

Definition 4 – For an integer m such that m ≥ 3, the m-wheel is the graph on [m+1] where the vertices
in [m] induces a cycle and vertex m+ 1 is adjacent to all the other vertices (see Figure 3.a).
– For an integer m such that m ≥ 4, the m-fan is the graph on [m] such that [m − 1] induces a path
having end-vertices 1 and m− 1 and vertex m is adjacent to all the other vertices (see Figure 3.b).
– The m-chorded fan is the graph obtained from the m-fan by adding an edge between vertices 1 and
m− 1. Notice that the m-chorded fan is isomorphic to the m− 1-wheel (see Figure 3.c).
– For an integer m such that m ≥ 4, the m-double fan is the graph on [m] such that [m] induces a cycle
and vertices m− 1 and m are adjacent to all other vertices (see Figure 3.d).
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(a) (b) (c) (d)

Figure 3: (a) 5-wheel; (b) 7-fan; (c) 7-chored-fan; (d) 9-double fan.

Figure 4 lists certain special 2-edge-colored graphs, obtained as 2-edge-colored versions of the aforesaid
graphs, needed in the characterization of path graphs (Theorem 5). The two colors are represented by
dotted or solid lines, respectively.

W
(0)
2k+1 W

(1)
2k+1

F2n+1 F̃2n+1 DF2n+1

Figure 4: 2-edge-colored graphs occurring in Theorem 5, k ≥ 1 and n ≥ 2.

It is convenient to settle a specific notation and terminology to present the results. An isomorphism of
edge-colored graphs is a graph isomorphism which preserves edge colors. All of the 2-edge-colored graphs
in Figure 4 are pairwise non isomorphic as edge-colored graphs. We denote by F the collection they form
—F stands for “forbidden”. Hence

F =
{
W

(0)
2k+1, W

(1)
2k+1, F2n+1, F̃2n+1, DF2n+1 | k ≥ 1, n ≥ 2

}
.

Also let
F0 =

{
W

(0)
2k+1,W

(1)
2k+1, F2n+1

}
.

Triangles of attachedness graphs play a special role. A triangle which is induced by a neighboring triple
the Q-attachedness graph of G is called a full triangle, otherwise it is called empty. A triangle all whose
edges are antipodal is an antipodal triangle. Not every triangle in Q-attachedness graph of G is full,
indeed an antipodal triangle might be empty (recall the discussion right after Lemma 3).

Unfortunately there is no way to establish whether an antipodal triangle is full or empty, let’s see
an example. Let G be the graph F2 in Figure 6, G has only one separator, Q, say, let H and M be its
Q-antipodality and Q-attachedness graphs. Hence M = H ∼= K3 and the triangle spans a neighboring
triple. However, if we denote by z the universal vertex of G, then G − z is separated by Q \ z. Again,
let Q′ = Q \ z be the only clique separator, it holds that M = H ∼= K3 but the triangle does not span a
neighboring triple.

We know that full antipodal triples are obstructions to strong Q-colorability. Therefore, full antipodal
triangles are obstructions to membership in the class of path graphs and they should be added to F.
However, since full antipodal triangles are not just edge colored triangles (because they have also the
property of being full), we must treat such triangles separately in our statements. To overcome this
(somehow unaesthetic and noising) ambiguity we use a standard trick.
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For a graph G let G+ be the graph defined as follows. Let V (G) = V = {v1, v2, . . . , vn} and V + be a
copy of V , V + = {v+1 , v

+
2 , . . . , v

+
n }. Let

G+ =
(
V ∪ V +, E(G) ∪ {viv

+
i }

n
i=1

)
.

Lemma 6 Let G be a graph. Then G is a path graph if and only if G+ is a path graph.

Proof. Since G is an induced subgraph of G+, G is a path graph if G+ is such. Let T be a clique path
tree of G. For all v ∈ V (G), let Kv the set of all cliques of G containing v. By Theorem 1, Kv induces a
path in T , let Q̃v ∈ Kv be an end-vertex of this path. Thus it suffices to join vv+ to Q̃v for all v ∈ V (G)
to yield a clique path tree for G+. ✷

The reason for having introduced graph G+ relies on the fact that, for every clique separator Q of G+,
full antipodal triangles of G appear in Q-attachedness graph of G+ as small wheels as shown next.

Lemma 7 Let Q be a clique separator of G+ and let M be the Q-attachedness graph of G+. Then M

has no full antipodal triangle and has no induced copy of W
(0)
2k+1if and only if M has no induced copy of

W
(0)
2k+1.

Proof. One direction is trivial. For the other direction it suffices to prove that if M has no induced copy

of W
(0)
3 , then M has no full antipodal triangle. We prove the contrapositive: if M has a full antipodal

triangle, then M has an induced copy of W
(0)
3 . Observe first that Q ∩ {v+ | v ∈ V (G)} = ∅. For if not,

then Q is necessarily of the form {v, v+} for some v ∈ V (G) (notice that in this case v is a cut vertex); in
this case however M would contain no antipodal edges at all and thus no full antipodal triangles. Hence
v+ 6∈ Q for each v ∈ Q. Notice that for each v ∈ Q the graph γ+ = ({v, v+}, {vv+}) is ≤-dominated by
every other neighboring subgraph γ of v. Let {γ, γ′, γ′′} be the set of vertices of a full antipodal triangle
in M . Hence, there is some z ∈ V (G) such that γ, γ′ and γ′′ are neighboring subgraphs of z. If γz is the

subgraph of G induced by {z, z+} ∪Q, then {γz, γ, γ′, γ′′} induces a copy of W
(0)
3 in M . ✷

In the following theorem we claim our characterization by forbidden subgraphs in the attachedness graphs.
Note that the graphs in F are induced obstructions, while the graphs in F0 are not necessarily induced.
Moreover, statements Sc and Se are equivalent to Sb and Sd, respectively, by using G+ in place of G
thanks to Lemma 6 and Lemma 7.

Theorem 5 Let G be a chordal graph. Then the following statements are equivalent:

Sa) G is a path graph,

Sb) for every clique separator Q of G, the Q-attachedness graph of G has no full antipodal triangle and
has no subgraph isomorphic to any of the graphs in F0,

Sc) for every clique separator Q of G, the Q-attachedness graph of G+ has no subgraph isomorphic to
any of the graphs in F0,

Sd) for every clique separator Q of G, the Q-attachedness graph of G has no full antipodal triangle and
has no induced subgraph isomorphic to any of the graphs in F,

Se) for every clique separator Q of G, the Q-attachedness graph of G+ has no induced subgraph iso-
morphic to any of the graphs in F.

The equivalences Sb⇔Sc and Sd⇔Se in the theorem above follows straightforwardly by Lemma 6 and
Lemma 7. The remaining implications in Theorem 5 (the core of the characterization), will be the content
of the next section.

4.1 Proof of Theorem 5

We now prove the core of Theorem 5 according to the schema Sa
Lemma 8, 9

⇐=======⇒Sb
Lemma 10

⇐======⇒Sd; we re-

member that the equivalences Sb⇔Sc and Sd⇔Se are implied by Lemma 6 and Lemma 7. In particular
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Lemma 8 implies that every member of F0 and every full antipodal triangle is an obstruction, Lemma 9
explains that F0 joined with a full antipodal triangle is a minimal set of obstruction and, finally, Lemma 10
shows the equivalence of containing a member of F0 as subgraphs and a member of F as induced subgraph.

In what follows G is chordal graph which is not an atom.

Lemma 8 If G is a path graph, then, for each clique separator Q, the Q-attachedness graph of G has
neither full antipodal triangles nor copies of any of the graphs in F0 as subgraphs.

Proof. Let Q be a clique separator. Let us denote by M the Q-attachedness graph of G. Being G a
path graph, then Q contains no full antipodal triangle by Lemma 1. Suppose by contradiction that M

contains, as a subgraph, a copy S of F2n+1 or W
(0)
2k+1 or W

(1)
2k+1. In all cases, S contains a subgraph F0

on {θ0, θ1 . . . , θ2t}, t being a positive integer, fulfilling the following conditions.

– θiθi+1 in an antipodal edge of M , namely θi ↔ θi+1, for i = 1, . . . , 2t− 1;

– θ0θi is a dominance edge of M , namely, either θi ≤ θ0 or θ0 ≤ θi, for all i = 1, . . . , 2t.

We claim that:

(9) If f is any strong Q-coloring of G, then f(θ1) 6= f(θ2t) and f(θ0) ∈ {f(θ1), f(θ2t)}.

Proof of (9): By Lemma 3 all triangles {θ0, θi, θi+1} are full, for i = 1, . . . , 2t − 1. Hence, being f a
strong Q-coloring, 1.(2) implies that |f({θ0, θi, θi+1})| = 2, for i = 1, . . . , 2t− 1. Thus if f(θ0) = f(θ1),
then f(θ2) 6= f(θ0), f(θ3) = f(θ0), . . . , f(θ2t) 6= f(θ0). Instead, if f(θ0) 6= f(θ1), then f(θ2) = f(θ0),
f(θ3) 6= f(θ0), . . . , f(θ2t) = f(θ0). In both cases, the thesis follows. End proof of (9)

We now use Claim (9) to prove a contradiction to the strong Q-colorability of G. Suppose first that
S ∼= F2n+1, for some n, then let V (S) = {η, γ1, . . . , γ2n} where η is the maximum degree vertex of S. Let
F ′ be the subgraph induced by V (S) = {η, γ2, . . . , γ2n−1}. Hence F ′ ∼= F0. By Claim (9), γ2 and γ2n−1

have opposite colors and f(γη) ∈ {f(γ2), f(γ2n−1)}. Moreover, the triangles induced by {η, γ1, γ2} and
{η, γ2n−1, γ2n} are both full by Lemma 3 and at least one of them cannot be 2-colored under f .

Suppose next that S ∼= W
(0)
2k+1 or S ∼= W

(1)
2k+1 for some k. Let V (S) = {η, γ1, . . . , γ2k+1} where η is

still the maximum degree vertex of S (if S ∼= W
(1)
2k+1, then let γ1 be the only vertex such that γ1η is

an antipodal edge) and let F ′′ be the subgraph induced by V (S) = {η, γ1, . . . , γ2k}. Clearly, F ′′ ∼= F0,
as well. By Claim (9), γ1 and γ2k have opposite colors and f(η) ∈ {f(γ1), f(γ2k)}. It holds that
f(γ2k+1) 6∈ {f(γ2k), f(γ1)} because γ2k+1 ↔ γ2k and γ2k+1 ↔ γ1. Moreover, the triangles induced by
{η, γ1, γ2k+1} and {η, γ2k, γ2k+1} are both full by Lemma 3 and at least one of them cannot be 2-colored
under f . In any case a contradiction to the strong Q-colorability of is achieved. ✷

Lemma 9 If for each clique separator Q, the Q-attachedness graph of G has neither full antipodal tri-
angles nor copies of any of the graphs in F0 as subgraphs, then G is path graph.

Proof. By Corollary 1, G is a path graph if and only if G is strong Q-colorable for each clique separator
Q. We prove the contrapositive statement, namely, if G is not strongQ-colorable for some clique separator
Q, then the Q-attachedness graph M of G contains full antipodal triangles or some copy of a graph of F0

as subgraphs. Since each graph in F contains some graph of F0 as subgraph, we show the statement with
F in place of F0. Denote by H the Q-antipodality graph and remember that D is a partition of elements
of ΓQ if there are not full antipodal triple. For D ∈ D denote by HD the subgraph of H induced by D.

By Theorem 4, G is not a path graph if one of the following apply: Q contains a full antipodal triple,
Q does not admits a partial Q-coloring, the Q partial coloring defined on UpperQ ∪ CrossQ can not be
extended to a weak Q-coloring on ΓQ. Let (u1, . . . , uℓ) be any ordering of UpperQ.

If Q contains a full antipodal triple then this full antipodal triple is also a full antipodal triangle. If
Q does not admit a partial Q-coloring, then 2.(3) is not be satisfiable; indeed 2.(1) and 2.(2) are always
satisfiable. Hence there exist γ ∈ Di,j, γ

′ ∈ Di and γ′′ ∈ Dj , for some i < j ∈ [ℓ], such that γ ↔ γ′

and γ ↔ γ′′. Now there are two cases: γ′ ↔ γ′′ or γ′ 6↔ γ′′. If the first case applies, then {γ, γ′, γ′′, ui}
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induces a copy of W
(1)
3 in M (refer to Lemma 3 and Lemma 4 to determine all colored edges in M). Else,

the second case applies and {γ, γ′, γ′′, ui, uj} induces a copy of DF5.
Thus it remains to study only the case in which Q has no full antipodal triangle, Q admits a partial

Q-coloring g : UpperQ∪CrossQ → [ℓ] and g can not be extended to a weak Q-coloring on ΓQ. Being 3.(1)
and 3.(2) be always satisfiable by an extension of g (as proved in Lemma 5), then there exists D ∈ D

such that every extension of g does not satifies 3.(3) on D.
Conditions 3.(1), 3.(2) and 3.(3) implies that HD is 2-colored. Only three cases can occur:

– HD is non bipartite. In this case no 2-coloring g of H exists.

– HD is bipartite but it contains a path P with an even number of vertices whose endvertices have
the same color under g.

– HD is bipartite but it contains a path P with an odd number of vertices whose endvertices have
different color under g.

In the first case, HD contains an odd cycle C, on 2k + 1 vertices, say, as subgraph. Hence, for

u ∈ UpperQ ∩D, the subgraph induced by C ∪ {u} in H contains a copy of W
(0)
2k+1 as a subgraph.

In the second case let Θ = {θ1, . . . , θ2k} be the set of vertices of P . Suppose first that D = Di for
some i ∈ [ℓ]. By definition of g there are γ, γ′ 6∈ Di such that γ ↔ θ1 and γ′ ↔ θ2k. It holds that γ ↔ ui

and γ′ ↔ ui by the transitivity of ≤ and the definition of Di. Now, let N be the subgraph induced by

Θ∪ {γ, γ′, ui}. If γ = γ′ then N contains W
(1)
2k+1 as subgraph. If γ 6= γ′, then N contains either F2n+1 or

F̃2n+1 according to whether γ ↔ γ′ or not. If D = Di,j , then we obtain the same results with a similar
reasoning.

The third case can apply only to D = Di,j for some i, j ∈ [ℓ], because all the elements of CrossQ ∩Di

have the same color i under g. Let Θ = {θ1, . . . , θ2k+1} be the set of vertices of P . By the definition of
g there are γ ∈ Di and γ′ ∈ Dj such that γ ↔ θ1 and γ′ ↔ θ2k+1. Then Θ ∪ {γ, γ′, ui, uj} induces a
subgraph in Hi,j that contains DF2n+1 as subgraph. ✷

Lemma 10 Let Q be a clique separator of G. If the Q-attachedness graph of G has no full antipodal
triangle, then it has a copy of a graph in F0 as a subgraph if and only if it has a copy of a graph in F as
an induced subgraph.

Proof. Since any graph in F0 is contained as subgraph in one of the graph in F one direction is trivial.
Let us prove the other direction. Let H and M be the Q-antipodality and Q-attachedness graph of G.
We have to prove that if M contains some copy of a graph of F0, then M contains an induced copy of
some graph of F. Let S be a graph of F0. For a cycle C of S it is convenient to distinguish between
chords that are edges of the antipodality graphs, which we call a-chords, from those that are edges of the
dominance graph, which we call d-chords.

Let now C be a antipodal odd cycle of S on 2k+1 vertices for some integer k ≥ 2, i.e., the vertex set
of C is {γ0, . . . , γ2k} and the edges are {γ0γ1, . . . , γ2k−1γ2k, γ0γ2k}, where all the edges of C are antipodal
edges. Suppose that C has either no a-chord, namely C is induced in H , or C has precisely the a-chord
γ1γ2k. We will show that every graph in F0 contains such a cycle with possible d-chords with an end in
γ0. The following fact about such a C is crucial to prove the lemma and it implies that if C has at least
one d-cords with an end in γ0, then C induces in M a copy of F2k+1, DF2k+1 or F̃2k+1.

(10) If γ0γj is a d-chord of C with, say, γj ≤ γ0, j 6∈ {1, 2k}, then C has d-chords γ0γl with γl ≤ γ0,
for all l 6∈ {1, 2k}. Moreover,

• if C is induced in H and C has some other d-chord, then C possesses either all d-chords γ1γj with
γj ≤ γ1, j 6∈ {0, 2}, or, symmetrically, all the d-chords γ2kγj , with γj ≤ γ2k, j 6∈ {0, 2k − 1},

• if γ1γq is an a-chord of C, then C has no other d-chords.

Proof of (10): In the first place, observe that γj−1 ↔ γj and γj+1 ↔ γj trivially imply γj−1 ✶ γj and
γj+1 ✶ γj hence, by Lemma 3, it holds that γ0 ✶ γj−1 and γ0 ✶ γj+1. Thus γ0γj−1 and γ0γj+1 are
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d-chords of C, because the unique possible a-chord is γ1γ2k. Necessarily γj−1 ≤ γ0 for, if not, then
γj ≤ γ0 ≤ γj−1 would imply γj ≤ γj−1 contradicting that γj−1 ↔ γj . By the same reasons, γj+1 ≤ γ0.
A repeated application of this argument to j − 1 and j + 1 in place of j proves the first part of the claim
(see Figure 5(a)).

The first part of the claim is clearly invariant under automorphisms of C. Consequently, we deduce
that if C has another d-chord γhγℓ with γℓ ≤ γh and h 6∈ {1, 2k}, then C has also d-chords γhγ1 and
γhγ2k. But this is impossible because it would imply γ2k ≤ γh ≤ γ0 while we know that γ0 ↔ γ2k. Hence
all the other possible d-chords of C have one end in {γ1, γ2k}. On the other hand C cannot possess
d-chords γ1γh and γ2kγℓ for some h, ℓ ∈ [2k] because, by the first part of the claim, it would possess the
d-chord γ1γ2k and this would imply γ2k ≤ γ1 and γ1 ≤ γ2k and consequently the contradiction γ1 = γ2k
(see Figure 5(b) and Figure 5(c)).

It remains to prove that if γ1γ2k is an a-chord of C, then C has no other d-chords with one end in
{γ1, γ2k} (hence no other d-chords at all, as Figure 5(d)) shows). Suppose that C has a d-chord with one
end in {γ1, γ2k}, γ1 say. Then C has the d-chord γ1γ2k−1 by above. Since γ2k−1 ≤ γ0, γ2k−1 ≤ γ1 and
γ2k−1 ↔ γ2k, by Lemma 3 it follows that {γ0, γ1, γ2k} induces a full antipodal triangle in M , contradicting
that M has no such triangle. End proof of (10)

γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(a)

γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(b)

γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(c)

γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(d)

Figure 5: graphs in the proof of Claim 10. Note that the graph in (a) is isomorphic to F2k+1, while the

graphs in (b) and (c) are isomorphic to DF2k+1, and the graph in (d) is isomorphic to F̃2k+1.

We can now complete the proof of the lemma. Let S be a copy in M of any of the three graphs
in F0, and let S have n vertices γ0, γ1, . . . , γn−1. Observe that S possesses an odd cycle R on at least
n− 1 vertices; more precisely, the wheels have an odd cycle on n− 1 vertices and the fan on n vertices.
Let γ0 be the highest degree vertex in S and let HR and MR be the graphs induced by R in H and
M , respectively. Let C be a cycle with minimum possible order among the odd cycles of order at least
5 contained in HR. Hence either C is an odd hole of H or C is an odd cycle of H with exactly one
a-chord which belongs to a triangle having the other two edges on C, otherwise the minimality is denied.
Clearly, the dominance edges of S induced by V (C) are d-chords of C. Suppose first that C has no extra
d-chord other than those. In this case we are done because, V (C) ∪ {γ0} (possibly θ ∈ V (C) when S is
a fan) induces either a wheel or a fan or a chorded fan. We may therefore assume that C possesses some
extra d-chord (a dominance edge of MR which is not in S). Possibly after relabeling, C is of the form
described in Claim (10) and C possesses all the d-chords γ0γi, i ∈ [n− 1] (by the claim). If C possesses
no other d-chords we are done, because V (C) induces either a chorded fan or a fan according to whether
or not C possesses the unique a-chord γ1γt. If C possesses some other d-chord, still by Claim (10), then
C possesses either all d-chords γ1γj with γj ≤ γ1, j 6∈ {0, 2}, or all the d-chords γtγj , with γj ≤ γt,
j 6∈ {0, t− 1}. In this case V (C) induces a double fan in M . The proof is completed. ✷

4.2 Comparison with Lévêque, Maffray, and Preissmann’s characterization

We give a brief comparison of our characterization with Lévêque, Maffray, and Preissmann’s character-
ization [13], whose list of minimal forbidden subgraphs of the input graph is given in Figure 6. Table 1
gives a kind of dictionary between the two characterizations. The table reads as follows. For each row of
the table, if a chordal graph G contains an induced copy of one of the subgraphs in the leftmost column
(according to Lévêque, Maffray, and Preissmann’s characterization), then each of the graphs in the right-
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most column occurs as an induced copy in the Q-attachedness graph of G+ for some clique separator Q
(according to our characterization). From the table it is apparent a sort of coarsening of the obstructions.

We do not prove how we obtain Table 1 because it is only a fact of checking, but we report few obser-
vations. First of all, it is not necessary to build graph G+ but it suffices to build the attacchedness graph

of G, for G equal to every obstruction, and observe that a full antipodal triangle corresponds to W
(0)
3 in

the attacchedness graph of G+ (see Lemma 7’s proof). Obstructions Fi for i ∈ {1, 2, 3, 4, 6, 7, 13, 14, 15}
have exactly one clique separator and thus there is one to one correspondence between Lévêque, Maf-
fray, and Preissmann’s obstructions and ours. Obstructions Fj for j ∈ {8, 9, 11, 16} have exactly two
clique separators that are symmetric, thus they generate the same obstruction in F. The same applies on
obstructions F5(n) and F10(n), where the number of clique separators grows with n but all clique sepa-
rators generate similar attacchedness graphs that have the same obstruction. We have to give particular
attention only on F12(4k) because it has two clique separators that generate two different attacchedness
graphs, moreover, we need to distinguish the case k = 2 and the case k > 2, as we reported in Table 1.

Finally we remark that the obstructions in our characterization are 2-edge colored subgraphs and
that they have to be forbidden in each graph of the collection of the attachedness graph of G+, while in
Lévêque, Maffray, and Preissmann’s characterization the obstructions are forbidden in the input graph
itself.

F0(n)n≥4

F1 F2 F3 F4 F5(n)n≥7

F6 F7 F8 F9 F10(n)n≥8

F11(4k)k≥2 F12(4k)k≥2 F13(4k + 1)k≥2 F14(4k + 1)k≥2 F15(4k + 2)k≥2

F16(4k + 3)k≥2

Figure 6: Lévêque, Maffray and Preissmann’s exhaustive list of minimal non path graphs [13] (bold edges
form a clique).
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Family Obstruction

F1, F2, . . . , F9, F10 W
(0)
3

F11(4k)k≥2 W
(0)
2k−1

F12(4k)k≥2 W
(0)
3 , W

(1)
3 , (for k = 2), F2k−1, W

(1)
2k−1 (for k > 2)

F13(4k + 1)k≥2 DF2k−1

F14(4k + 1)k≥2 F̃2k+1

F15(4k + 2)k≥2 F2k+1

F16(4k + 3)k≥2 F2k+1

Table 1: A dictionary between Lévêque, Maffray and Preissmann’s characterization and Statement Sd in
Theorem 5. Note that F0 is the obstruction to chordality.

5 Conclusions

We have presented two new characterizations of path graphs. At the state of the art, our first character-
ization is the unique that directly describes a polynomial algorithm. In the second one we give a list of
local minimal forbidden subgraphs. This paper is the first part of a wider study about path graphs and
directed path graphs. The algorithmic consequences are shown in [1], in which our first characterization
is used to describe a recognition algorithm that specializes for path graphs and directed path graphs.

We left as open problem the idea of extending our approach to rooted path graphs, for which a list
of minimal forbidden subgraphs is unknown, even if some partial results were found [2, 10, 11].
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