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Abstract Two new nonlocal nonlinear diffusion models for

noise reduction are proposed, analyzed and implemented.

They are both a close relative of the celebrated Perona-Malik

equation. In a way, they can be viewed as a new regular-

ization paradigm for Perona-Malik. They do preserve and

enhance the most cherished features of Perona-Malik while

delivering well-posed equations which admit a stable natural

discretization. Unlike other regularizations, however, certain

piecewise smooth functions are (meta)stable equilibria and,

as a consequence, their dynamical behavior and that of their

discrete implementations can be fully understood and do not

lead to any “paradox”. The presence of nontrivial equilib-

ria also explains why blurring is kept in check. One of the

models has been proved to be well-posed. Numerical exper-

iments are presented that illustrate the main features of the

new models and that provide insight into their interesting dy-

namical behavior as well as demonstrate their effectiveness

as a denoising tool.
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1 Introduction

Denoising is one of the fundamental problems in image

processing. Together with deblurring, it is an unavoidable

component of image acquisition. The literature about this

topic is vast and many methods have been devised, which

perform the task to various degrees of satisfaction. In a

recent paper [8], Buades, Coll, and Morel provide a nice

overview of the major categories of available methods. They

all have their advantages and disadvantages. The common

starting point is an image

u(i) = v(i) + n(i), i ∈ 1, . . . ,N

which is a collection of information about N pixels. In the

experiments performed in this paper it will always be a gray

scale image. In this case u is scalar-valued and takes on

quantized integer values between 0 and 255. The image is

typically the superposition of “real” informational content

v and some added noise n originating, e.g., in the acqui-

sition phase. Any denoising method aims at recovering the

v-component by ridding the image of the superposed noise.

This is clearly an impossible task as small scale real fea-

tures of the image can become indistinguishable from artifi-

cial features created by noise. It follows that all known de-

noising algorithms tend to produce artifacts such as blurring,

staircasing, and others well-known undesirable phenomena.

In this paper two new PDE-based models for noise reduc-

tion are proposed in the spirit of the original Perona-Malik

model but with a fundamentally new twist. Even though

the new equations can be thought of as new regulariza-

tions of the Perona-Malik equation, they distinguish them-

selves from other known regularizations in at least one cru-

cial respect. Their nonlinearity applied to piecewise smooth
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functions is still singular (non-smooth) and, as a conse-

quence, piecewise smooth functions are equilibria for the

corresponding evolution. Thus the proposed equations are

not only a new well-posed regularization of Perona-Malik

but they show that (ill-posed) forward-backward diffusion is

not a necessary ingredient in a recipe for an effective PDE-

based denoising tool capable of preserving edges. They can

in fact achieve this goal as a consequence of the nontriv-

ial dynamical behavior engendered by the presence of non-

trivial steady-states.

A brief overview will be given of the Perona-Malik equa-

tion and of a series of fixes proposed over the years in order

to cure its mathematical and/or practical shortcomings. Non

PDE-based methods also offer a valid alternative for denois-

ing but will not take center stage in this paper. The interested

reader is, however, referred to [8] and the references cited

therein for a more exhaustive catalog of methods available

in the literature. The proposed equations read

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut = 1
1+c2[(−△)1−εu]2 △u in � for t > 0,

∂νu = 0 on ∂� for t > 0,

u(0) = u0 in � for t = 0,

(1.1)

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = div
(

1
1+c2|∇1−εu|2

∇u
)

in � for t > 0,

u periodic for t > 0,

u(0) = u0 in � for t = 0,

(1.2)

where � is the unit square in R
2 and represents the image

canvas, and c > 0 is a threshold parameter which determines

the size of the gradients which will be preserved. Thus, in

these models, pixel values are thought of as a discrete real-

ization of a continuous image function u. The original im-

age is u0 and the nonlinear evolution is supposed to reduce

its noise component. The proposed equations are character-

ized by the nonlocal dependence introduced in the nonlin-

ear diffusivity. The nonlocal terms will be properly defined

in the next section. Equation (1.2) is directly related to the

original Perona-Malik equation which is obtained in the lim-

iting case where ε = 0. In one space dimension, (1.1) can

also be related to the Perona-Malik equation by a similar

argument and a change of dependent variable. The details

are postponed to the next section. In both cases, comparison

with Perona-Malik will reveal that the new equations can be

viewed either as a nonlinear diffusion with slightly reduced

intensity in the nonlinearity, or as a new type of regulariza-

tion. The Perona-Malik equation

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut = div
(

1
1+|∇u|2

∇u
)

in � for t > 0,

∂νu = 0 on ∂� for t > 0,

u(0) = u0 in � for t = 0,

(1.3)

was proposed in [22] and is probably the most well-known

nonlinear diffusion model for denoising in a class of models

commonly referred to as anisotropic diffusions. A good ref-

erence for such models is the book by Weickert [27], which

is an outgrowth of his thesis [26], and the references cited

later in this introduction.

While discretizations of (1.3) yield quite an effective de-

noising tool, the equation is itself mathematically ill-posed,

as has been pointed out in [17]. By computing the diver-

gence in (1.3) one in fact obtains

div

(

1

1 + |∇u|2
∇u

)

=
1

1 + |∇u|2

[

△u − 2
∇uT D2u∇u

1 + |∇u|2

]

.

It follows that if u has a sharp gradient across a hyper-

surface, diffusion in the normal direction can reverse its

sign. Thus (1.3) is a so-called forward-backward diffusion

equation and this is precisely the structure which has been

exploited in [17] to prove ill-posedness. This is not very sat-

isfactory because the lack of well-posedness makes it im-

possible to derive theoretical results predicting and explain-

ing the behavior of an algorithm based on (1.3). Some re-

searchers [6, 7, 13, 15] have therefore focused their atten-

tion on understanding the properties of semi-discrete ver-

sions of (1.3), where the spatial variable is discretized. The

results are confined to the one dimensional case.

Denoising methods obtained from discretizations of (1.3)

also have practical limitations in the form of poor perfor-

mance in flat regions (see [8]) and in the form of artifacts

like staircasing, as will be pointed out below (see Fig. 1 and

also [17, 26]). It is therefore only natural that significant ef-

fort was profused in order to overcome the theoretical and

practical limitations of the Perona-Malik model. Within the

framework of second-order models, the main avenue fol-

lowed in this endeavor was that of regularizations and re-

laxations. The latter fall into two main categories: Spatial

and spatio-temporal regularizations and/or relaxations. Spa-

tial regularizations are obtained by smoothing the argument

of the nonlinearity by a C∞-kernel Gσ , thus leading to the

equation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = div
(

1
1+|∇Gσ ∗u|2

∇u
)

,

∂ν = 0,

u(0) = u0.

Typically Gσ is a Gaussian and σ determines the scale be-

yond which regularization occurs. This approach goes back

to [9] but also see [1, 20]. More recently, a number of re-

searchers have begun considering spatio-temporal regular-

izations and/or time relaxations of (1.3). In this case the ar-

gument of the nonlinearity is regularized by a space-time

convolution or substituted with relaxed versions of it as in

[10, 11, 21]. Relaxation models with no spatial regulariza-

tions have been considered in [4, 5]. The latter are limiting
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cases of the model considered in [21]. In [2], the author tries

to mimic a typical discretization of (1.3) whereby the equa-

tion is implicitly linearized by evaluating the nonlinearity at

a previous time step. He therefore proposes a purely tempo-

ral regularization with a non-smooth kernel. This leads to a

delayed Perona-Malik equation. The new equation is locally

well-posed and seems to introduce significantly less blurring

than the more conventional regularization techniques.

Limitations of (1.3) and, more generally, second-order

models were already pointed out early on in [14]. Observ-

ing that they tend to produce “patchy” results, the authors

argue that higher order discrete methods might be a good

alternative. Many a research effort went since then into the

use of nonlinear fourth order diffusions in image processing

[12, 18, 28]. Since this paper focuses mainly on the second-

order case, a detailed discussion of these models and their

literature is omitted. The ideas of this paper can, however,

be extended to a variety of fourth-order models and will be

the topic of another forthcoming paper.

One of the possible reasons why the Perona-Malik equa-

tion works well in practice might be that characteristic func-

tions are, at least formally in some sense, stationary solu-

tions of the equation. In a one dimensional setting, this was

formulated via a generalized concept of stationary solution

in [17]. Having characteristic functions as stationary solu-

tions is a desirable property for any denoising equation but

is not enjoyed by any of the known regularizations of the

Perona-Malik equation. From the variational point of view

and in the one-dimensional setting, piecewise constant func-

tions can be viewed as stationary points of

E(u) =
1

2

∫

�

log(1 + |∇u|2) dx,

for which (1.3) is a gradient flow, provided one interprets ux

as the absolutely continuous part of the first derivative [7].

The equations proposed in this paper are new and possess

a number of welcome and desirable properties from both the

theoretical and the practical point of view. First of all (1.1)

can be shown to be well-posed for ε > 0 (globally in time

in a more restrictive range of ε) for smooth initial data and

to admit continuous piecewise affine functions as station-

ary solutions in its one-dimensional formulation. The local

well-posedness of (1.2) is studied in a forthcoming paper,

where it will be shown to admit characteristic functions of

smooth sets as stationary solutions. This is due to the reduc-

tion in nonlinearity intensity obtained for ε > 0. In fact the

gradient of a characteristic function of a domain D ⊂ � with

smooth boundary ∂D is a distribution (of line integral type)

supported on the boundary. On the other hand the fractional

gradient used in (1.2) produces a function with an integrable

singularity along the boundary ∂D and which is otherwise

smooth. Thus the nonlinearity applied to it gives an at least

continuous function which vanishes precisely on ∂D. The

product

1

1 + |∇1−εu|2
∇u

can therefore be justified and, for ε > 0 small enough, it

vanishes. For ε = 0, the product can not be made sense of

as it involves multiplication of distributions. Numerical ex-

periments will show that denoising based on (1.1) and (1.2)

lead to visually distinct results which can be directly traced

back to the equation having two distinct classes of nontrivial

stationary solutions as described above.

Well-posedness of (1.1) and (1.2) make working with

discretizations of them very safe. Secondly, they allow for

natural, FFT-based, efficient and stable pseudo-spectral dis-

cretizations. Experiments performed with them demonstrate

their effectiveness (especially in the case of (1.2)) at noise-

reduction with remarkable preservation of sharp edges. They

also appear to avoid known shortcomings of discretizations

of the Perona-Malik equation itself such as staircasing and

poor performance in flat regions. Choosing ε = 1
2

for the

nonlinearity in the diffusion coefficient in (1.1) and ε = 0

in (1.2) lead the same intensity as in the leading order term

of (1.3). Numerical experiments with realistic images will

show that ε < 1
2

and close to 1
2

for (1.1) and ε > 0 and small

for (1.2) are a good choice. Thus (1.1) and (1.2) effectively

correspond to a nonlinearity intensity reduction or “regular-

ization” of (1.3) through the use of fractional order differen-

tial operators.

Fractional derivatives have been used in [19] for edge

detection. The authors report that fractional derivatives can

successfully be employed in order to enhance selectivity and

robustness in the presence of noise.

Finally, it would be quite natural to consider (1.1)

and (1.2) with an additive fidelity term such as λ(u0 −u) for

some λ > 0. Numerical experiments, however, exhibit little

to no benefit. This might be due to the fact that the fidelity

term destroys the dynamical properties of the equations as

simple piecewise smooth functions are no longer equilibria

unless the initial image is itself a simple piecewise smooth

image.

It should be observed that methods other than PDE-based

nonlinear diffusions have been studied and implemented in

the context of noise reduction. Here the focus is more on the

former and the interested reader is therefore referred to the

already cited overview paper [8] and the references found

therein for a wider perspective on the subject. It is, however,

worthwhile pointing out that the recent developments in lo-

cal filtering methods, such as the nonlocal means method

proposed in [8], also have a distinct nonlocal feature.

The paper is structured as follows. In the next section,

well-posedness results are quoted which have been obtained

for (1.1), whereas the well-posedness of (1.2) will be the
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topic of a future paper. The following sections introduce dis-

cretizations of (1.1) and (1.2), which are simple and prove

efficient and stable. Finally, in the last section, results will

be presented of experiments on real images. Particularly in-

sightful one dimensional experiments will also be presented.

2 The Equations

In this section (1.1) and (1.2) are properly formulated. Start-

ing with (1.1), consider the evolution equation in the func-

tion space L2(�). Then the L2(�)-realization A of −△ with

Neumann boundary condition is defined through

Au = −△u,

u ∈ dom(A), dom(A) =
{

u ∈ H2(�)
∣

∣ ∂νu = 0
}

. (2.1)

This operator is induced by the form

a(u, v) =

∫

�

∇u · ∇v dx, u, v ∈ H1(�),

and is therefore positive semi-definite. This can also be seen

by explicitly computing its eigenvalues and eigenfunctions

in the simple geometry considered here. This will be ex-

ploited in the choice of numerical method later. It is there-

fore possible to define fractional powers Aρ of A for ρ ∈

(0,1) using its symbol. In fact

A = C
−1 diag[(λn)n∈N]C

where C is the two-dimensional cosine transform and the se-

quence (λn)n∈N contains the ordered eigenvalues of A. Then

one simply defines

Aρ = C
−1 diag[(λρ

n)n∈N]C (2.2)

as the eigenvalues are all non-negative. It follows that (1.1)

is a well-defined quasi-linear nonlocal diffusion. As for (1.2)

the starting point is that

∂z = F
−1
z diag[(2πin)n∈Z]Fz

where Fz is the partial Fourier transform with respect to

z = x, y. The fractional differentiation operator appearing

in (1.2) is defined through

∇ρ =

[

∂
ρ
x

∂
ρ
y

]

(2.3)

where

∂ρ
z = F

−1
z diag

[(

(2πn)ρ eiρ π
2 sign(n)

)

n∈Z

]

Fz.

In either case, the choice of ρ = 0 leads to a fully nonlinear

ill-posed diffusion equation, which for (1.2) coincides with

the classical Perona-Malik equation.

3 Analytical Results

It has been proved in [16] that (1.1) admits local-in-time

smooth solutions for smooth initial data which can be shown

to be global for appropriate choice of ε.

Theorem 1 Let ε ∈ (0,1] and assume that u0 ∈ W
2−2/p

p,N (�)

and that p > 2+n
2ε

. Then (1.1) has a unique maximal solution

u : [0, Tmax] → Lp(�) with

u ∈ Lp

(

[0, Tmax],W2
p,N (�)

)

∩ W1
p

(

[0, Tmax),Lp(�)
)

.

Furthermore, if n = 1 and ε > 3/4, then the solution is

global in time and converges to a trivial steady-state. The

subscript N is used to indicate the closed subspace of func-

tions satisfying homogeneous Neumann condition.

Furthermore, a Lyapunov functional exists for smooth so-

lutions of (1.1), which is given by

E(u) =

∫

�

|∇u|2 dx. (3.1)

This follows from the validity of the following conservation

relation

1

2

d

dt

∫

�

|∇u|2 dx = −

∫

�

|Au|2

1 + |A1−εu|2
dx, (3.2)

which is easily verified. Smooth solutions do eventually

evolve to trivial steady-states, but they do so by flirting for a

long time with nearby non-smooth metastable “edgy” states.

This offers a possible explanation for the effectiveness of the

proposed denoising method which is most strikingly illus-

trated by one- and two-dimensional experiments in a later

section.

In a one-dimensional setting, (1.1) turns out to be very

closely related to (1.2), and can therefore be viewed as a

new kind of regularization of (1.3). This is best seen by first

observing that v(x) =
∫ x

0 u(y)dy satisfies

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

vt − 1
1+v2

xx
vxx = 0 in (0,1) for t > 0,

v(t,0) = 0, v(t,1) =
∫ 1

0 u0(y) dy for t > 0,

v(0, ·) =
∫ ·

0u0(y) dy in [0,1],

(3.3)

whenever u is a solution of (1.3) in its one dimensional

formulation. To see this, take into account that the aver-

age of u0 is preserved during time evolution as follows

from (1.3). Choosing w(x) = v(x) − x
∫ 1

0 u0(y) dy, x ∈
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[0,1], the boundary condition can be “homogenized” to give

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wt − 1
1+w2

xx
wxx = 0 in (0,1) for t > 0,

w(t,0) = 0 = w(t,1) for t > 0,

w(0, ·) =
∫ ·

0u0(y) dy − (·)
∫ 1

0 u0(y) dy in [0,1].

(3.4)

Conversely, any solution of (3.3) leads to a solution of (1.3)

by setting

u(x) = vx(x), x ∈ [0,1].

Notice that if u is a piecewise constant function, then v

is a continuous piecewise affine function. Thus continuous

piecewise affine functions play the same role for (3.4) as

piecewise constant functions do for (1.3).

Equation (3.4) is fully nonlinear and clearly presents

the same analytical difficulties as the original Perona-Malik

equation. It is, however, more closely related to (1.1). Equa-

tion (1.1) is in fact obtained from it through nonlinearity

intensity reduction by using the fractional powers of the

Laplacian.

Constants are stationary solutions of (1.1) in its one- and

two-dimensional formulations, and they eventually deter-

mine the asymptotic behavior of smooth solutions. In its

one-dimensional formulation, however, (1.1) admits contin-

uous piecewise affine functions as stationary solutions as

well. This fact is proved in [16] and is a welcome feature

of the modified equations, as it is at the origin of the inter-

esting and practically useful medium-term behavior of the

solutions. Observe that these functions are only “morally”

stationary solutions of the original (1.3), as a rigorous proof

would require the availability of a well-defined multiplica-

tion for distributions (generalized functions). Equation (1.2),

on the other hand, has the advantage of admitting char-

acteristic functions of domains with smooth boundaries as

stationary solutions. This will make the denoising method

based on its discretization very effective. A more thorough

analysis of its analytical properties will be performed else-

where, but numerical experiments performed in this paper

suggest that (1.2) gives rise to a dynamical behavior similar

to that of (1.1) with the role of piecewise affine functions

taken on by characteristic functions. It should be observed

that (1.2) conserves the L1(�)-norm of positive solutions

and admits the L2(�)-norm as a Lyapunov functional, since

1

2

d

dt

∫

�

u2 dx = −

∫

�

|∇u|2

1 + |∇1−εu|2
dx.

4 Numerical Implementation

Next, numerical discretizations of (1.1) and (1.2) are derived

and used to perform numerical experiments intended to il-

lustrate and demonstrate the claimed improvements on the

classical Perona-Malik equation.

4.1 The One-Dimensional Case

The periodic differentiation operator D is discretized spec-

trally by means of the fast Fourier transform Fn, which

yields the discretization

Dn = F
−1
n 
nFn (4.1)

where n = 2m denotes the number of grid points used and


n = 2πi diag

(

−
n

2
+ 1,−

n

2
+ 2, . . . ,0,1, . . . ,

n

2

)

.

The time variable is discretized by an implicit Euler scheme

so that

uk+1 = A−1
n uk (4.2)

where the matrix An is defined by

An =

[

idn +Dn

ht

1 + c2(D1−ε
n uk)2

Dn

]

, (4.3)

uk is the spatial n-vector at time tk , and ht > 0 is the time

step. Observe that by setting ε = 0, a discretization of the

classical Perona-Malik equation is recovered. The exponen-

tiation of 
n is carried out as described in Sect. 2; that is,

(ik)1−ε = |k|1−εeiπ/2(1−ε)sign(k),

k = −n/2 + 1, . . . , n/2.

For each time step, the iterative method GMRES (see [24])

is used to solve the system (4.2). It uses Arnoldi iteration

(see [3]) by building a set of vectors q1,q2, . . . ,qn that form

an orthogonal basis for the Krylov subspace

Km = span{uk,Anuk,A2
nuk, . . . ,Am−1uk} (4.4)

where m ≪ n. Then

AQm = Qm+1Hm (4.5)

where

Qm = [q1 · · · qm ] (4.6)

and Hm is an upper Hessenberg matrix.

For j = 1,2, . . . , an approximate solution uk+1
j is ob-

tained by computing

uk+1
j = Qj vj ,

where vj is the solution of the much smaller system

Hj vj = ‖uk‖2e1, e1 = [1 0 · · · 0 ]T . (4.7)

This can be solved efficiently using Gaussian elimination,

since only one element per column needs to be eliminated.
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GMRES iteratively computes approximations uk+1
j , for j =

1,2, . . . , until the residual

‖Anuk+1
j − uk‖2 = ‖Hj vj − ‖uk‖2e1‖2 (4.8)

is sufficiently small. For one-dimensional problems, this

method performs very effectively, converging to the desired

tolerance after only a few iterations.

In view of the spectral discretization of the Laplacian

used in (4.2), and the variable diffusion coefficient, the re-

sulting matrix is dense in both physical and Fourier space.

However, a method such as GMRES, though designed for

sparse systems, is still practical in this case. This is be-

cause matrix-vector multiplication can be implemented in

O(n logn) time by employing the FFT to multiply vectors

by An, and performing multiplication by the diffusion coef-

ficient in physical space.

4.2 Two-Dimensional Problems

The discretization of (1.1) and (1.2) in two dimensions is a

direct generalization of the periodic, one-dimensional case

discussed above. A spectral discretization is again chosen

for the periodic differentiation operator, implemented using

the fast Fourier transform. For simplicity, it is assumed that

the grid consists of n = 2m grid points for each dimension, in

which case the discretization of the differentiation operator

Dz, where z = x, y, has the form

Az;n,n = F
−1
n,n
z;n,nFn,n

where the diagonal entry of 
x;n,n corresponding to the

Fourier coefficient with wave number (j, k) is 2πij , and the

diagonal entry of 
y;n,n corresponding to the same Fourier

coefficient is 2πik. The resulting scheme is

uk+1 =

[

idn,n +
∑

z=x,y

Dz;n,n

ht

1 + c2(
∑

z=x,y[D
1−ε
z;n,n

uk]2)

× Dz;n,n

]−1

uk. (4.9)

For the Neumann case, the Laplacian A is discretized in a

similar manner, except that the fast cosine transform Cn,n is

used. The resulting discretization has the form

An,n = C
−1
n,n
n,nCn,n

where the diagonal entry of 
n,n corresponding to the

Fourier cosine coefficient with wave number (j, k) is

−4π2(j2 + k2). The resulting scheme is

uk+1 =

[

idn,n +
ht

1 + c2[(−An,n)1−εuk]2
An,n

]−1

uk. (4.10)

As in the one-dimensional case, GMRES is used to solve the

systems (4.9) and (4.10), but because of the greater storage

requirements in this case, and the fact that GMRES requires

O(nj) storage where n is the length of the right-hand side

and j is the number of iterations, the Arnoldi iteration is

restarted after every 25 iterations, using the most recently

computed approximation uk+1
j as the initial vector for the

Krylov subspace (4.4). The time step ht is adaptively re-

duced if restarting becomes necessary, or increased if GM-

RES converges to the desired tolerance in very few itera-

tions.

Because of the added computational expense required for

larger images, in terms of storage and iterations of GMRES,

such images are handled by decomposing them into blocks

of a manageable size, such as 128 × 128, and denoised in-

dependently of one another. When using periodic bound-

ary conditions, a “padding” border of 16 pixels is added

around each block, reflecting the image across its bound-

ary as needed, in order to prevent artifacts from appearing at

the interfaces between blocks or on the boundary of the en-

tire image. This strategy also allows for parallelization of the

method. It is not used for (1.1) as homogeneous Neumann

conditions do not cause boundary effects.

5 Numerical Experiments

5.1 One-Dimensional Case

The one-dimensional situation is interesting in itself, but

only a few experiments will be shown here which support

the claims made so far about the features of the equations

under consideration. They effectively illustrate the main

properties of the proposed diffusions. A variety of sub-

sequent two-dimensional experiments will corroborate the

one-dimensional findings, in particular for (1.2).

5.2 Non-Divergence Equation

Consider the smooth initial datum

u0(x) := 100x2(1 − x2), x ∈ [0,1]. (5.1)

Figure 1 depicts the first derivative of the function uk after

100 time steps of size ht = 0.06 for m = 8. The solid curve

corresponds to the Perona-Malik solutions and staircasing is

apparent. The dotted, dashed, and dash-dotted curves corre-

spond to the solution of the modified equation for ε = 0.3,

0.2, 0.1, respectively, and c = 1. It is an illustration of the

effect of intensity reduction in the nonlinear diffusion coef-

ficient. The intensity ε clearly acts as a regularization para-

meter on the original Perona-Malik equation. It appears that

the effects of the Perona-Malik equation are preserved with

the notable exception of staircasing, which does not occur
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Fig. 1 The gradient of the solution of (5.1) for different values of ε

in the regularized equation unless ε is chosen very small.

Notice that this does, however, not come at the expense of

introducing undesired blurring. This is due to the fact that

the regularizing effect is mitigated by the presence of non-

trivial steady-states which temporarily attract the solution.

This feature of (1.1) and (1.2) plays a crucial role, as will

become apparent in all experiments shown in this section.

Some decrease in contrast is the only price paid. Notice that

the top dash-dotted curve depicts the first derivative of the

initial value. Comparison with the other curves also reveals

some deblurring. Continuous piecewise affine functions are

steady-states of (1.1). It is, however, not clear if a smooth

solution of (1.1) can develop a singularity in finite time.

In any event, solutions feel the presence of these nontrivial

steady-states, which are in fact metastable equilibria. A so-

lution emanating from a smooth initial datum never seems to

leave the smooth regime but still tends to evolve along a path

which is at all times close to continuous piecewise affine

functions. Diffusion, however, slowly but surely drives it to

a trivial steady-state. This behavior is exemplified in Fig. 2,

where various stages of the evolution of a smooth solution

with initial condition

u0(x) = 10 sin(6πx) + 2 sin(4πx), x ∈ [0,1], (5.2)

are depicted and where

ε = 0.3, c2 = 0.05, m = 8, ht = 0.05.

5.3 Divergence Equation

A similar behavior is exhibited by solutions of (1.2) where,

however, the role of continuous piecewise affine functions is

played by piecewise constant functions. Figure 3 depicts the

Fig. 2 Typical evolution of a smooth initial datum along a “path of

continuous almost piecewise affine functions” according to (1.1)

Fig. 3 Typical evolution of a solution of (1.2) always close to a step

function

evolution of a smooth initial datum typified by

u0(x) = 10 cos(6πx) + 4 sin(4πx), x ∈ [0,1],

with

ε = 0.3, c2 = 3.5, m = 8, ht = 0.05.

In this case, the highly oscillatory perturbation of a simple

step function is also considered to show how (1.2) and, sim-

ilarly (1.1), have an ability to differentiate between local

features, which are annihilated, and global features, which

are preserved. This remarkable quality of the equations is a

combination of the specifics of the nonlocality introduced

in the nonlinearity, and the fact that step (piecewise affine)



32 J Math Imaging Vis (2009) 33: 25–37

Fig. 4 The fate of high frequency oscillations superposed on the sim-

ple step function χ[0.25,0.75]

functions are steady states. Figure 4 depicts the evolution of

u0(x) = χ[0.25,0.75] + 0.3 sin(64π x), x ∈ [0,1],

for

ε = 0.15, c2 = 3.5, m = 8, ht = 0.05,

and clearly demonstrates the claim.

5.4 Two-Dimensional Case

Real images are considered in this section. Additive white

noise is added to the original image before it is fed to (1.1)

and (1.2). More precisely, every pixel is independently cor-

rupted by a uniformly distributed random variable with val-

ues in [−20,20] ∩ Z if not otherwise stated. The chosen

experiments show that the qualities predicted and already

observed in the one-dimensional setting are also observed

in two dimensions and with real images for (1.2), whereas

(1.1) does not seem to perform as well in two dimensions as

in the one-dimensional case. This is probably due to the fact

that continuous piecewise linear functions of two variables

do not provide a flexible enough set of equilibria to allow

for good approximation of the original image.

5.5 Non-Divergence Equation

Figures 5 and 6 show two experiments that illustrate the de-

noising effect of (1.1) on real images. Depicted are, from

left to right and top down, the original image corrupted with

noise, the output of the time integration, the method noise,

and the uncorrupted original image. The method noise is the

difference between the input and the output of the algorithm.

The degree to which it resembles noise is an indication of the

method efficacy (see [8]).

Fig. 5 The denoising effect obtained with (1.1) with ε = 0.6 and c = 1

on a noisy cow. Depicted are the initial noisy condition, the final output

of the denoising method at T = 18, the method noise and the original

image. For the noisy image SNR= 5.01. PSNR goes from 27.00 to

28.30

Fig. 6 The denoising effect obtained with (1.1) with ε = 0.6 and c = 1

on the boats image. Depicted are the same combination of images as in

Fig. 5, with T = 36. SNR is 3.93 and PSNR goes from 26.88 to 29.10

5.6 Divergence Equation

The same images as for the testing of (1.1) and addi-

tional images are used in this section. They are depicted in
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Fig. 7 Denoising effect of (1.2)

on a standard test figure. SNR is

4.05 and PSNR goes from 26.89

to 31.38

Fig. 8 Denoising effect of (1.2)

on a noisy cow. SNR is 5.09 and

PSNR goes from 27.01 to 30.67

Figs. 8–10 and they clearly demonstrate the efficacy of (1.2)

as a denoising tool. In all figures the same parameters are

used. The image size is 512 × 512, ε = 0.1, c = 0.5, the

time step is variable as explained in Sect. 4, and the integra-

tion time is T = 9. The corresponding SNR and the change

in PSNR are summarized in Table 1 below.
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Fig. 9 Denoising effect of (1.2)

on a noisy naive painting. SNR

is 4.21 and PSNR goes from

26.92 to 33.73

Fig. 10 Denoising effect of

(1.2) on noisy downtown L.A.

SNR is 1.66 and PSNR goes

from 26.87 to 33.62

It should not come as a surprise that the method performs

slightly better when the underlying image has a more “car-

toonish” structure.

Figures 11 and 12 depict the evolution of two images over

a somewhat larger time range than needed for denoising. It

shows how the evolution, just as in the one dimensional ex-
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Fig. 11 The segmentation

effect of (1.2) on the boat image

obtained by long time

integration

Fig. 12 The segmentation

effect of (1.2) on the cow image

obtained by long time

integration

Table 1 SNR and PSNR for the input and output images, respectively

Image Boats Cow Naive painting Downtown L.A.

SNR 4.05 5.09 4.21 1.66

PSNR in 26.89 27.01 26.92 26.87

PSNR out 31.38 30.67 33.73 33.62

amples, tends to happen along a path that is always close

to an appropriate piecewise constant function. The contrast

is steadily reduced between adjacent regions which orderly

merge into larger areas under the influence of diffusion. The

evolution thus naturally delivers an interesting segmentation

of the original image. Observe that no artificial terraces are

ever created in the process, not in the long time examples

nor in the previous examples, but edges always correspond

to a feature present in the original image. As a consequence,

the typical “patchiness” of nonlinear diffusions and visible

in Figs. 5–6 is avoided.

Finally, it should be observed that the methods deliver

robust results even in the presence of noise of larger inten-

sity, as demonstrated in Fig. 13, where the boats image is

now corrupted by Gaussian white noise with standard devia-

tion 30. The solution is depicted at equidistant time intervals

up to time T = 2.34 with parameters c = 0.1, ε = 0.1 and

variable time step.

Figure 14 depicts the denoising result obtained by (1.2)

on the 512 × 512 boats image which has been corrupted

with Gaussian white noise with standard deviation 20. An

output PSNR of 28.77 is obtained with parameters c = 0.1,

ε = 0.1 and T = 2.34. It compares well with published

denoising experiments [25], the result of which the au-

thors characterize as state-of-the-art. They are performed by

means of the Bayesian least squares estimator based on the

GSM model [23] where the output PSNR varies between
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Fig. 13 An experiment with

intense noise. SNR is 1.59 and

PSNR goes from 18.84 to 26.70

Fig. 14 Denoising effect of

(1.2) on the boats image where

the original is corrupted by

Gaussian white noise with

σ = 20

26.86 and 29.62 depending on the choice of neighborhood

size.

6 Conclusions

In this paper a novel PDE-based denoising technique has

been proposed and analyzed. Its main feature is the non-

linear nonlocal diffusion coefficient obtained by the use

of fractional derivatives. Two equations, in particular, have

been proposed and analyzed, one in divergence form, (1.2),

and the other not, (1.1). The new equations can be inter-

preted as a novel regularization paradigm for the celebrated

Perona-Malik equation. Equation (1.2), in particular, per-

forms better than traditional regularizations. The reason for

this is found in the combination of the degree of nonlo-

cality and the (meta)stability of certain piecewise smooth

functions. The first allows (1.1) and (1.2) to differentiate be-

tween local and global feature while the second prevents this

from happening by indiscriminately annihilating informa-

tion from the small scales. Equation (1.1) has already been

proved well-posed whereas (1.2) will be analyzed in a fu-

ture paper but is believed to be locally well-posed. Thus the

new equations are not ill-posed, preserve many of the cher-

ished features of Perona-Malik, and even improve on it (no
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staircasing nor poor performance on “flat” regions) as the

many experiments performed in the previous section clearly

demonstrate. They also allow for stable and efficient pseudo-

spectral discretizations which are well-suited to capture the

nonlocal derivatives needed.

The fact that fractional derivatives are used instead of a

more standard regularization with a smooth kernel is cru-

cial. In fact applying the fractional derivative to non-smooth

data still produces singularities albeit integrable ones at the

edges. It is, in this sense, a much milder regularization. In

particular, it allows for non trivial equilibria for the system

which engender an interesting dynamical behavior and ex-

plain the salient features of the corresponding implementa-

tions.
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