
TWO NOTES ON MATRICES
by A. C. AITKEN

(Received 8 February, 1961)

I. ON A TYPE OF CIRCULANT MATRIX
1. The properties of the circulant determinant or the circulant matrix are familiar. The

circulant matrix C of order 4 x 4 , with elements in the complex field, will serve for illustration.
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The four matrix coefficients of c0, cu c2, c3 form a reducible matrix representation of the
cyclic group # 4 , so that C is a group matrix for this. Let co be a primitive 4th root of 1.
Then Q as below, its columns being normalized latent vectors of C,
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is unitary and symmetric, and reduces C to diagonal form thus,

where the /if, the latent roots of C, are given by

Hr = c0 + cicor+c2co2r+c3co3r (r = 0 , 1 , 2, 3) .

All of the above extends naturally to the nxn case.

2. The earliest writers on circulants (see for example Muir, History of Determinants,
vol. ii, 403, on Catalan, Spottiswoode and others) treated a somewhat different circulant,
which we shall denote by €. To illustrate again by the 4 x 4 case, it is then
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say.
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110 A. C. AITKEN

In contrast with C it is symmetric, though when the cr are complex and not all real this does
not help to elucidate its properties. It might be called a retrocirculant, since the persymmetry
of its elements runs the other way from C. We shall find its latent roots in terms of those of C.

THEOREM. The latent roots of C are /io» ±\/(HiHn-i)> ±V\HiHn-i)> ••• and so on to
n roots, except that when n = 2m there is a single " positively signed " //m, namely

Proof. It is first noted that

From this it follows that

=J
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Hence the characteristic determinant is

-Hn-l
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or

r = l
(» Odd),

11 tf-HrHn-r) (n CVCIl).
r = l

The theorem is thus established.
The properties of the matrix C are rather meagre, which probably explains its lack of

prominence in the literature. The matrix coefficients of cr in it, self-reciprocal but not contain-
ing the unit matrix among them, do not form a group. Their binary products generate, n
times over, the reducible representation types mentioned in § 1.
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II. THE LATENT ROOTS OF A SPECIAL MATRIX
1. The question arose from some work of 1959 by Dr M. Marcus, of the University of

British Columbia, and was suggested in correspondence. The problem was: to determine
the latent roots and latent vectors of the following symmetric matrix of order nxn ,

A =

1
1 1

1 1 1

1
1 1

1 1 1

1 1 1
1 1 1
1 1 1

and to obtain reasonable bounds for the sum of the absolute values of the latent roots. One
may note first that

1
- 1

- 1 1

- 1 . •
_ 1

which is simpler to handle than A.
Let A'1 operate on the vector/={/(I) /(2) ... /(n)}. Then if/(0) = 0 be taken as an

initial condition we have

( » - l ) A/(n-2) ...

If then / is a latent vector, its elements f(x) must be solutions of the finite difference
equation

Af(x) = lf(n-x), with /(0) = 0. (1)

This is known in the literature, having been treated by Stirling. In any case its solution
can be seen thus: the complementariness of x and n—x in (1), together with the initial con-
dition, suggests a solution in terms of sines; for we have

. . nx . 7t(x+l)
A sin = sin — — sin2/1 + 1 2/1 + 1

„ . n(n — x) .
= 2 sin — ' . sin

2 l

2n + l

n

= 2 cos
2n + l . sin

2n +

4n + 2
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Hence, taking x — 1, 2, ... , w, we have n angles in the range 0 < 0 < %n and a latent vector

2?I . 7171 I

Jsin sin sin (2)
2/1 + 1 2n + l 2n + l j '

the corresponding latent root being /^ = 2 sin [7t/(4« + 2)].
But complementariness of sine and cosine occurs also with respect to the angles 37i/2,

57t/2, ... , (2« —l)7t/2, the cosines taking here the respective signs —, + , —, + and so on.
In this way we have n — \ further distinct latent vectors obtained by writing 2n, 57t, ... ,

(2n — \)n instead of n in (2), e.g.

{ .
sin sin

. Inn \
in >

j
[ 2n + l

and so on, the associated latent roots being

„, = (-) '-! 2 sin ( |

sin
2« + l j

(r = 2, 3 , . . . , « ) .

It may be noted that the nr are in ascending order of moduli. Also the set of latent vectors is
now complete and necessarily orthogonal, since A'1 is real symmetric and the nr are distinct.
It is easy to show by trigonometrical considerations that the sum of squared elements of each
vector is £(2« +1), whence the vectors can be orthonormed by multiplying each by 2/^/(2/1 +1).

All of the above refers to A'1. For A, the sole change is to take reciprocals of the \it\
whence finally the latent roots of A are

<
r ~ 1 j 7 t ( r = 1 ,2 , . . . , « ) .

4n + 2

Example, n = 4. The latent roots are

2-879385, -1-00000, 0-65270, -0-53209.

The four latent orthonormal vectors, brought together to make the columns of an
orthogonal matrix, are

0-34202 0-86603 0-98481 0-64279
0-64279 0-86603 -0-34202 -0-98481
0-86603 000000 -0-86603 0-86603
0-98481 -0-86603 0-64279 -0-34202

2. The next problem was to set effective bounds to £ | Ar |.
Clearly, since over 0 < 0 < %n we have 1 < 0/(sin 6) < \n, a lower bound is

n V 3 5 2 n - l ,

The bracketed expression can be approximated asymptotically from below by

where y is Euler's constant.

https://doi.org/10.1017/S2040618500034420 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034420


TWO NOTES ON MATRICES 113

For an upper bound, we may easily show that 0/sin 9 is convex in 0 < 9 < $n, whence

u.

The expression in the first bracket can be asymptotically approximated from above by

log.(4n + l ) - i loge(2n+ l) + ±y -} loge 2,

so that, replacing the bracket by this, we now have £ | Xr | enclosed between tolerable bounds.
It would be possible to refine on either bound, but it was unnecessary for the purpose in
view. Two numerical examples may serve to exhibit these bounds.

Examples, (i) n = 4. Lower bound 4-8019, upper bound 5-5287, actual value

E U , I = 5-0642.

(ii) n = 22. Lower bound 36-201, upper bound 40-198, actual value

£ I Xr | = 37-842.

For large values of n the bounds are very satisfactory.
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