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Abstract

We propose a refinement and a simplification of the behavioural
semantics of session types, based on the concepts of compliance
and sub-behaviour from the theory of web contracts. We introduce
two relations, representing the idea of sub-behaviour from the point
of view of the client and the server, respectively, and characterize
the sub-behaviour relation (from the literature) as the intersection
of the other two. We show that a proper subclass of behaviours,
called “session behaviors”, and the sub-behaviour relations model
session types and subtyping, clarifying the otherwise problematic
extension of session type subtyping with concepts from the theory
of contracts.

Categories and Subject Descriptors F.1.2 [Modes of Computa-
tion]: Parallelism and concurrency; F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Logics of programs; F.3.3
[Studies of Program Constructs]: Type structure

General Terms Theory, Verification

Keywords Client/server interaction, Session Types, Behavioural
Semantics, Sub-behaviour, Semantics of Subtyping, Coinduction.

1. Introduction

A great deal of work is presently devoted to the formalization of in-
teraction through the network, widening the research area on proto-
cols and investigating its basic concepts. Among them a central one
is that of session. A session is a logic unit, collecting and structur-
ing messages exchanged among a determined set of agents, sharing
a private channel to prevent interference by third parties.

Restricting attention to dyadic sessions, namely among two part-
ners, it is natural to consider dual views of the same session accord-
ing to the role of the participants in each communication action. A
formalization of this idea can be found in Honda’s et alii session
type systems introduced in [12]. Session types represent the usage
of each session channel by a regular tree of types (which is itself
considered as a type), abstractly representing all sequences of ac-
tions of which the typed channel is “subject” in the w-calculus jar-
gon. In the theory of session types each type has a dual, describing
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the same interaction from the point of view of the process holding
the opposite end of the channel; the exact correspondence of dual
typings of the same channel ensures error freeness (but not dead-
lock freeness: see [9]).

A similar situation shows up in the theory of contracts [4, 7, 13].
A contract is some kind of abstract interface offered by a server to
its possible clients, describing the server overall behaviour in an in-
teraction. To formally check whether a client will comply with the
server, a dual contract can be used, describing this time the client
requests. This leads to an asymmetric view of the client/server in-
teraction, because of a bias to the client side: it is only the client
that is expected to complete in any interaction with the server, and
not vice versa.

Session types and contracts are quite different: the former repre-
sent the usage of single channels, disregarding their arrangement
into the system and how their actions, possibly badly, interleave.
The latter describe, on the contrary, the behaviour of the server, or
client, as a whole, and so could be considered as the “type” of the
process itself. In spite of this, and of the difficulties emerging from
a first attempt of comparison in [14], contracts have been the basis
for some proposals of behavioural semantics for session types in a
series of papers: see [5, 8, 17].

In this paper we propose a refinement and a simplification of
behavioural semantics of session types, based on the concepts of
compliance and sub-behaviour, that we analyze into two symmetric
relations. The idea of behavioural semantics of types consists of an
interpretation of types into terms of some process algebra such that
relevant properties of types are modeled by properties of a transi-
tion system over the process terms. By considering a sub-language
of CCS without 7, behaviours (more precisely the behavioural part
of a contract as defined in [14]) are terms of the language defined
by the grammar:

cu=1|laoc|oto|o®o|x]|recz.o (1)

where « represents the CCS action prefixing. However this lan-
guage is too large for the sake of modeling session types, because
it interferes badly with the essential notion of duality, so that we
look for a suitable subset of behaviours which we call session be-
haviours. The central issue is that of getting a simple syntactical
description of dual behaviours just in terms of the interpretation of
dual type constructs, that is reflected by dual actions: input and out-
put actions are represented by names a and co-names @; branching
types, expressing the ability of reacting to some set of messages, are
interpreted by external choices, that is by sums a1.01+- - - +ag.0k,
where the a; are pairwise distinct and cannot be co-names (a first
restriction w.r.t. the grammar (1)), and the o; interpret the corre-
sponding continuations; selection types, expressing the possibility
that one out of a finite set of requests will be the actual one, are



interpreted by internal choices a1.01 @ - - - @ ai.0r Where again
the @, are pairwise distinct and have to be co-names (a second and
symmetric restriction), that can evolve internally to @;.o; for some
i. The correspondence of dual types is modeled by interaction in a
CCS style: a pair of behaviours p, o interacts resulting in the con-
tinuations p’, o', written p|lc — p’||o” if p and o have comple-
mentary capabilities « and @, possibly after some internal actions.
To see an example, consider the following variation of an example
in [14] (omitting the trailing 1):

01 = Login.(Wrong ®
Ok.(VoteA.(Val + Va2)+
VoteB.(Vbl + Vb2)))

It is a session behaviour that represents a Ballot Service. The
service can receive a login and, if correct, signals to the client, by
the message Ok, the enabling to vote either for A or for B. After
that, the server enables also the voting for one of two possible vice-
candidates. The login can be found incorrect, and in such a case
the communication Wrong is issued to the client. The following is
arecursive version of o1, which represents a service that allows the
client to retry the login action in case of failure:

o2 = recz.Login.(Wrong.w @
Ok.(VoteA.(Val + Va2)+
VoteB.(Vb1 + Vb2)))

We avoid divergence, namely infinite internal actions, by admitting
guarded recursion only (which is the case of recursive session types
as well and is our last restriction to the grammar (1)). Hence any
session behaviour reduces in a finite number of steps into either a
+ or a @-sum (more precisely into a finite set of & summands,
which by definition are prefixed by co-names). Then, by writing
—> as reflexive and transitive closure of —, we say that a client
p is compliant w.r.t. a server o if whenever p|lc = p’||o’ and the
latter is an irreducible pair, then p’ = 1, the completed behaviour;
this is written as p - o. For example we have: a + b 4 @ ® b
because of either a + blla ® b — a + blla — 1|1 or a +
blla®b — a+ bl|lb — 1||1. Vice versa a + b 4 @ P € since
a—+blla®ec — a+ bljc /—. Note that nothing is requested
about o’ when p - o and p|lc = p’||o’ #—, that is it might be
o' # 1: this expresses the idea that the client is entitled to abandon
the interaction at any time, while the server is expected to react
properly to all client requests.

Consider the behaviour:

p1 = Login.(Wrong + Ok.(VoteA @ VoteB))

Then p1 - o1 even if the client p; is not prepared to vote for vice-
candidates; also p1 - o2 because a client willing to login once will
comply with a server admitting repeated login actions after failure.
We have remarked that divergence is excluded by admitting only
guarded recursive behaviours, namely of the form rec x.c where o
is not a variable (in particular o # x). As usual, such a behaviour
internally reduces to its unfolding: recz.c — o{recz.o/x}
which is the substitution of x by rec z.c in ¢ by avoiding variable
clashes. We conclude that e.g. recz. a.x - recz. a.x, although
the reduction out of rec z. a.z||rec z. @.z is infinite.

The concept of compliance induces two relations: o <, 7 if all
compliant clients of o are such w.r.t. 7, and symmetrically o <. 7
if all server that satisfy o, do the same w.r.t. 7. These are instances
of the substitutivity criterion: if o <, 7 then any server whose
behaviour is described by o can be safely replaced by a server
satisfying the behavioural description 7; a similar property holds
for clients when ¢ <. 7. To have a glimpse of these relations
observe that a <5 a.b and a.b <. a; on the other hand a <, a + b
and @ @ b <, a for both p = ¢, s. Applying the above definitions
to the previous examples we find that o1 < o2 since intuitively all

the clients that comply with a server allowing for just one login, will
do with the more liberal ones that allow for more login attempts, as
it is described by o2. As far as the <. relation is concerned, let

p2 = Login.(Wrong + 0k).

Then p1 <. p2 since p represents the behaviour of voters wishing
to return a blank ballot, i.e. wishing to partecipate to the elections
but without voting for any candidate; then clients described by p2
will comply with ballot servers with which also the actually voting
clients described by p; will do.

These relations are evidently close to the idea of subtyping. In
typed A-calculus and in functional or OO programming languages,
A <: B (A is a subtype of B) means that any value of type A
can masquerade as a value of type B, as formalized by the usual
subsumption rule. In the case of w-calculus and related systems,
types are not assigned to values but to channel names, so that
subtyping is applied in the opposite direction: if A <: B then
any channel typeable by B can mascherade as a channel with type
A (this is the narrowing rule: see e.g. [20], chap. 7). Following
the suggestions in the literature, we define first the concept of
orthogonality: ¢ L 7 if and only if ¢ 4 7 and 7 + o; then o is
a sub-behaviour of 7 if all the p orthogonal w.r.t. o are such w.r.t.
7: we write o <: 7 and call this relation behavioural subtyping.
Consider the voter:

ps = Login.(Wrong + Ok.(VoteA.Va2 ¢ VoteB.Vbl))

Then it is easy to see that o1 L ps3; but o1 J p1 because o1 A p1.
As a matter of fact the <: behaves the same as <, forp = ¢, s w.r.t.
+ and @, namely covariantly in the number of + summands and
contravariantly in the number of the G-summands (and covariantly
w.r.t. the respective continuations), that is session behaviors and be-
havioural subtyping mirror branching and selection session types
w.r.t. (syntactic) subtyping, respectively. To these properties the
sub-behaviour relations <, add dual forms of subtyping in depth
that does not hold in Gay and Hole theory.
Given the above notions, some results can be obtained. First we
can extend the definition of the ~ operation, originally concerning
names and co-names only, to any behavior: & is obtained from o by
replacing each prefix a by @ (recall that - is an involutive operator),
and by exchanging + with @ (and ? with ! in case of higher or-
der behaviors: see below). Then we discover that & is the minimal
server of o, namely it is minimal w.r.t. <, among all the server of
o; this also holds w.r.t. <.. Second we prove that <: = <, N =<,
as expected, so that by using this fact we have that ¢ is the minimal
orthogonal behaviour of o w.r.t. <: . This a payoff of our definition
of session behaviours: similar properties have been studied e.g. in
[14] for the larger set of “contract behaviours”, leading to intricate
characterizations of the “dual” of a behaviour.
Next we consider session types, whose treatment we split into two
parts, first-order and higher-order session types, for readability.
Since the behaviours have been tailored to session types, the inter-
pretation mapping is straightforward: ground types are just names,
which are interpreted into the respective co-names when used as the
types of outputs. The branching type &(- - - ) is interpreted by a +-
sum, and the selection type & - - ) by a @-sum. Now we prove that
a system which is equivalent to Gay and Hole’s subtyping [11] is
sound w.r.t. the interpretation of subtyping into behavioural subtyp-
ing. More: by adding two axioms: end <, A or A <. end (where
end is the type of the completed session) we obtain a sound (and
we conjecture complete) axiomatization of <5 and <. respectively.
A higher-order session includes the sending of the receiving of
other sessions. This makes sense in the case of process algebras
(and programming languages) having the ability to exchange chan-
nel names as first class values, a property called mobility. In [1] we
studied how the idea of asymmetric sessions, namely sessions with



a bias toward the client side, could be accommodated in the frame-
work of 7-calculus with session types, and we came out with a type
relation < which we dubbed “prefix”. Roughly A < B if channels
typed by B allows for longer patterns of actions than those typed
by A. Surprisingly we realized that this is not a consistent exten-
sion of subtyping, since there it holds the principle that A <: B
implies B <: A (where A is the syntactical dual type of A): since
end = end, by adding the axiom end <: A all types collapse.

The behavioural modeling of higher-order sessions is more prob-
lematic, and has been addressed in [8] by means of a calculus gen-
eralizing CCS with value passing. By applying the same idea to our
first-order behaviors, we obtain higher-order behaviors 7o} o2 and
lo¥ o4, representing the receiving and the sending of a session o1
with continuation o2 respectively. The decoration p = c, s that we
add as a superscript of o1 is to record the role either as a client or as
a server that the actor of the transmitted session is supposed to play.
This is important when clients and servers have different rights and
duties: a session can be started by P and (), and after a while it can
be delegated, say by P, to some third party R; if P was behaving
either as a server or as a client w.r.t. @), it is necessary that R will
play the same role w.r.t. (). The point of polarities is to make this
apparent in the abstract behavioural description of the various inter-
acting parties. For example the Ballot Service could be modularized
in an Authentication Service and a Vote Bookkeeper. The authenti-
cation service checks the right of the client to vote, and then passes
to him a session in which it can express, as a client, its vote to the
Vote Bookkeeper. The behaviour of the Authentication Service is
described by the following higher-order session behaviour:

Login.(Wrong®0k.!(VoteA.(Val®Va2) ®VoteB.(Vb1dVb2)))

In view of the above discussion about the sub-behaviour relations,
the interaction with ?o102 should be triggered by any !p7 p2 such
that p1 <, o1 and not just when p; = 0.

The definition of the LTS rises some technical problems. First the
relations <, are involved in the definition of the LTS of higher-
order behaviours; but they are defined in terms of the compliance
relation 4 which in turn depends on the LTS. This is not novel prob-
lem, as it appears also in [5, 17], where it is observed that a suitable
stratification of the definition of the LTS actually solves the prob-
lem. There is however a second and deeper difficulty, which is con-
nected with the logical complexity of the relations - and =<, that
are not immediately seen to be decidable, and not even 9. It is for
this reason that we insist in viewing behaviours as a mathematical
model of session types, whose subtyping theory is axiomatizable
and indeed it is decidable. We eventually prove that the basic prop-
erties of compliance and of the sub-behaviour relations hold for
the full system of higher-order session behaviours, and in particu-
lar that they model both subtyping of session types and two natural
extensions of this theory.

The paper is structured as follows: in Section 2 we introduce
first-order behaviours, the LTS and the relation of compliance, the
central concepts of client/server sub-behaviours. In Section 3 we
study orthogonality and the related concept of behavioural subtyp-
ing, establishing that (first-order) session types with subtyping are
modeled by behaviours and behavioural subtyping. We then intro-
duce in Section 4 higher-order behaviours. We characterize coin-
ductively the relations <, extended to higher-order behaviours, and
prove that behavioural subtyping is the intersection of client/server
sub-behaviour relations. We conclude the section by showing that
the full session type system with subtyping is modeled by higher-
oder behaviours. In Section 5 we relate our work to the literature
by crediting the basic notions we study, but also stressing where we
depart from the original definitions. Then we conclude.

2. Session Behaviours and Sub-Behaviour
relations

A Session Behaviour is an abstraction of what is performed by a
process on its end of a channel, through which the process interacts
with the system it is embedded in.

DEFINITION 2.1 (Session Behaviours). Let N be some countable
set of symbols and N = {a | a € N}, with N NN = 0. The set
B of raw behaviour expressions is defined by the grammar:

o = 1
‘ ar.o1+ -+ an.on
| a@1.01 @ ®an.on
| ©
| recz.c

where m is any positive integer, a; € N (hence a; € W) for all i,
x is a session behaviour variable out of a denumerable set and it is
bound in recx. o.

The set S of session behaviours is the subset of closed raw be-
haviour expressions such that in ai.01 + -+ + an.on and in
a1.01 @ - - @ an.on the a; and the @; are, respectively, pairwise
distinct, and in rec x.o the expression o is not a variable.

We abbreviate a1.01 + - -+ + an.on by > i, ai.04, and @1.01
<+ @ln.on by @, @i.0:. Moreover, >_,_, a;.0; and @,_, @:.0
are abbreviated by a1.01 and @;.01, respectively. We also use the
notations ¢ @i-0; and P, 1 @i-o; for finite and not empty 7.
The trailing 1 is normally omitted: we write e.g. a+b fora.1+b.1.
Note that recursion in S is guarded (and hence contractive).

The semantics of session behaviours is given in terms of the
following LTS:

DEFINITION 2.2. Let Act = NUN and @, rec & Act; then define
the LTS:

a; — a
ai1.01 + -+ an.on — 0y a.0 — o

— _ e _ rec
41.01 D - Pap.0n, — 6.0 recx.c — o{recz.c/z}

wheren > 1ina1.01® - B an.on

We abbreviate —=-"+ U ~% Note that neither & nor rec
are names, and do not have any corresponding co-name, so that they
are unobservable, and used just as a metanotation in the statements
of some lemmas; indeed we adopt the standard — (from CCS
without 7) in the subsequent definition of the parallel operator for
testing. As usual, we write ==—", ===—"-"%_* for
a€Act,o =o' ifs=a1 - anando =% ... =% o', Also
we write 0 — and 0 —— if there exists o’ s.t. ¢ — o’ and
o - o respectively, and o £— when ~(c —).

For any 0 € S and R C S, define o | R if and only if
R={c"€S|oc= o +/>}

The syntax of our session behaviours prevents the possibility of
infinite — reductions, as formally shown in Lemma 2.3 below. A
raw behavioural expression like rec z.x is not, in fact, a session
behaviour, since our sintax does not allow the rec operator to
be applied on variables. Also an expression like recz.(y @ z)
is not a proper session behaviours (nor a raw session behaviour
either), since we allow the + and & operators only on prefixed
behaviours. Such syntactical restrictions do not prevent an abstract
representation, in our process algebra, of branching and selection
types. At the same time they rule out diverging expression like
recz.xz and recz.recy.(z @ x) which would be meaningless in
our session viewpoint of behaviours.



LEMMA 2.3. Forany o € S, there exists no infinite — reduction
out of it. Moreover, for all o € S there exists a unique finite and
non empty R C S such that 0|} R, which takes one of the following
forms:

{1}7 {Zai.ai}, {6140'1,4..76’”.0'”} (TL>O)

Proof. By cases of o € S: in particular, if o = recz.0’ we know
that o’ # x and that, in case o’ be a @-term, its components are
prefixed. So the longest — reduction sequence out of o necessar-
ily consists in a number of —— steps (which is equal to the number

of occurrences of rec prefixing o), followed by at most one 2,
step. O

Wewriteol 1,04 31 | ai.osand ol @, @i.0; whenever
o | R with R of one of the three forms above; equivalently we
could have set o |} p where p is the unique session behaviour such

rec

that o =5 p-

According to standard CCS, the interaction over a channel, be-
tween a client and a server is modeled by extending the LTS seman-
tics to pairs of behaviours put in parallel, written p||o. Following
[13, 16], we introduce a notion of compliance between a client and
a server behaviour (roles that are defined in terms of the relation
itself).

DEFINITION 2.4 (Communication and Compliance). Let p||o de-
note a pair of session behaviors, then over the set of such pairs
define the LTS:

(e / 23 /
p—p o—0C

! oc—0

p—r

pllo — p'llo’ plle — p'lle pllo — pllo’

where o € Act and @ is the usual involution.
We say that the client p is compliant with the server o, written

p o, ifforall p' o', p|llo —* p'||o’ /— implies p’ = 1.

The informal meaning of p — o is that in any reduction out of
pl|o all of the actions « on the p’s side are eventually matched by
the correspondent co-actions & on the o”’s side. Simple examples of
compliance are: a®b - a+b and also adb — a+b+-c; on the other
hand a+b 7 aP¢ because of the reduction a+b||adec — a+b||c.
The — relation is not symmetric: indeed 1 - o for any o, but e.g.
a 7 1. Observe thatin [13, 16] a ® b Aa P b whilea+ b 1 a+ 0.
On the other hand, by our syntactical restrictions neither a & b nor
@ + b are well formed session behaviours.

REMARK 2.5. Our notion of compliance has been inspired by [13].
W.r.t. the original definition, the present one differs under some rel-
evant respects: first, no expression in S may diverge, i.e. there is no
infinite — reduction out of any o € S.

Second, if we extended the definition of - to expressions in B,
in order to take into account the unguarded recursive expression
Q = reczx. xz, we would get {2 1 o for all o, which is not the case
in [13]. This is not a weakness of our approach: p 4 o does not
mean that p will eventually terminate, but just that any request by
p will be eventually satisfied by o. Therefore we can look at the
p —1 o relation as some kind of fairness property with a bias toward
p.

Moreover, and more importantly, we accept the idea that p’s “re-
quests” might be satisfied infinitely many times, which happens in
a non trivial way in cases like recx.a.x - recz.a.x. We would
then vacuously have 2 4 o since 2 has no “request” at all. As a
matter of fact, it seems that the present concept of compliance is re-
lated to fair testing [19] (but note that we are about two sided com-
munications, whereas the relevant aspects of fairness appear with

multiple interactions) and induces a sub-behaviour relation similar
to the sub-session concept in [17].

We eventually observe that the definition of - in 2.4 above is lit-
erally the same as in Definition 3 in [16]. In fact, by admitting un-
guarded recursion, one immediately gets o 1 €2 for any o, which is
unacceptable.

LEMMA 2.6. Let p,o € S:
1. pllo = p'||o” iff for some s € Act* and p', 0’ € S, p == p’
and o0 == ¢';
2. pllo /= iff either p=1o0rc =1or
p/— & o0 /— & —Ja € Act. (p & O'i);
3. ifp-oandpllc = p'||o’ then p' 4o’
Proof. Immediate consequences of Def. 2.4. [

It is possible to get a coinductive characterization of the com-
pliance relation.

DEFINITION 2.7 (Coinductive Compliance). Define the operator
F : 8% — S? such that for all R, (p,0) € F(R) if and only
if one of the following conditions holds:

1. pl 1

2. 14 U« Zielai'pi & E|J g I,{O’j}jej.[ J 7é @ &
ol EBjeJaj.aj & Vj € J. pjRoj]

3. pl @ielai.pi & I#0 &
ElJ 2 I,{O’j}jej. [O’ll Zje‘]aj.aj & VZ € I le(Tl]

A relation R C S? is a coinductive compliance if and only if
R C F(R).

It is immediate to check that F is monotonic. Set F° = S?,
and F*™ = F(F*): by Tarski theorem (), F* is the greatest
fixed point of F, which is a coinductive compliance. We write |s|
for the length of s € Act”.

LEMMA 2.8. For all k and p,o € S, if (p, o) € F* then for all

s € Act* with |s| < k and such that p = p' and 0 == o’ for
some p' 0’ € 8, either p' || 1, or p'|lo’ —.

Proof. By induction over k. The case & = 0 is trivial, since
there exists no s with |s| < 0.
Suppose that (p,0) € F**' = F(F*), and that p == o'
and 0 == ¢’ for some s with |s| < k4 1. If p’ | 1 then
there is nothing to prove. Otherwise suppose that |s| = 0: then
either p | 3>, ai.pi and o | @, ; @;.0; for some J C I, or
pd Dicr@ipiand o I 37, ;a;.05 for some J 2 I.1In both
cases there exists « such that p => p/ == and 0 = o ==,
which implies p’||o’ —.
If instead |s| > 0, we have that for some o, 8", p”, 0", s = as’,
p == p’ == p/, and that (p”",0”) € F*. Then, observing that
|s’| < k, the thesis follows by the induction hypothesis. [

PROPOSITION 2.9. The relation - is the largest coinductive com-
pliance.

Proof. First we prove that - is a coinductive compliance,
namely that + C F(-). Letp 4o and p| p’, 0| o’. By Lemma
2.3 there are three possible cases according to the shape of p’:

p' = 1:then (p, o) € F(-) by condition (1) of Def. 2.7.
Pl = e ai-pizsince p' # 1, p" #—,and p’ 4 o’ by (3) of

. . aj .
Lemma 2.6, it is the case that o' —> o; for some j € I, and



some o, such that p; - o;; hence clause (2) of Def. 2.7 is
satisfied by taking J = {j}.

p' = @, i-pi: similarly it must be the case that p" - o”; now

for any i € I we have p’ LI pi, so that by (2) of Lemma 2.6,
for all 4 € I there is o; s.t. o/ —> o; and p; 4 4. By the
definition of S this is only possible if ¢’ is a sum of the shape
ZjEJ a;.o; where J O I. Consequently also (3) of Def. 2.7 is
satisfied.

Vice versa suppose that p / o, that is for certain p’, o’ it is the
case that p|lc = p’||0’ #— but p’ # 1. By (2) of Lemma 2.6
there exists s € Act* such that p == p’ and ¢ == ¢”; on the other
hand, since p’||o” #— and p" # 1 there exists no & € Act such that
both p' %+ and ¢’ —. Therefore, by Lemma 2.8, (p,c) & F*,
forall k > |s|.

2.1 Client/Server Sub-behaviours

The notion of compliance, being an asymmetric one, naturally
induces two notions of sub-behaviour, for client and server side
respectively.

DEFINITION 2.10 (Client/Server Sub Behaviours).

Foro,p € S, let

Client(c) = {p € S| p-do}andServer(p) ={oc €S| p-o}
Then define the relations:

1. 0 =5 o' ifand only if Client(c) C C
2. p 2. p' ifand only if Server(p) C S

We also set 0 ~s o’ if both 0 <5 o
o~.0 similarly.

lient(c");
erver(p').

and o' < o, and define

A syntactical concept of duality on S can be obtained by inter-
changing a with @ and + with &; the dual of o is denoted by T,
where 1 = 1,7 = x and recz.0 = recz.G. As expected, o = o
for all o.

It is easy to check that the relation R = {(0,7) | 0 € S} is
a coinductive compliance; hence ¢ - @ for any o, by Proposition
2.9. By involutivity of - we also have R = {(7,0) | 0 € S}, so
that also & - o. It follows that & € Client(c) N Server(o).

It is false, instead, that p < ¢ implies 7 4 @: in fact a+b+c 4 a®b,
buta ®bdT Aa+b.

We prove below that & is the minimal behaviour in Client(o)
w.r.t. <. and the minimal behaviour in Server(c) w.r.t. <;.

LEMMA 2.11. Forany 0,0’ € S and s € Act*, if 0 = o’ then
T == o/; similarly if o |} T thena || 7

Proof. Straightforward. [

LEMMA 2.12. Forall p,o, 7 € S, ifp AT and T - o then p 4 0.

Proof. By Prop. 2.9 it suffices to prove that (p, o) € F* for all
k. More precisely we prove that for all k and for all p’, 7/, 0, if
(p/,7") € F* and (77,0") € F* then (p',0") € F*.
Let k > 0 and —(p{ 1), since otherwise the thesis is trivial. There
are two cases: if p |} D7, ai.p; then, by p < 7, (p,7) € Fr,
that there exists a non empty J C I such that 7|} @J cy @5.Tj and
(pj ™) € F* ' forall j € J. By Lemma 2.11 7} Yies
so that, because of 7 - o, (7,0) € F* and there exists a non
empty H C J such that o |} @,y @n-on and (7w, 0n) € FrL
forall h € H. Since H C J C I, by the induction hypothesis we
have that (pp,, 1) € F*! forall h € H, so that (p,0) € F* by

a;.T;j

definition of F.
The case pl} @, Gi.p; is similar. O

PROPOSITION 2.13. Let 7 € S. Then

1. T is the minimum client of 7, i.e. Vp € Client(7). T <. p.
2. T is the minimum server of T, i.e. Yo € Server(T). T <5 0

Proof. We observed that 7 € Client(r) U Server(7), hence
it remains to show the minimality property w.r.t. <. and <, re-
spectively. (1) Let p € Client(7). In order to establish 7 <. p,
let o € Server(T). Then we have p 4 7 and 7 4 o. By Lemma
2.12 we know that p 1 o, i.e. ¢ € Server(p). Hence T <. p. The
proof of (2) is similar, using Lemma 2.12 by observing that the ~
operation is involutive. [J

REMARK 2.14. The strong properties stated in Proposition 2.13
above are due to the lack of implicit nondeterminism in session
behaviours. The nondeterminism in our system is in fact only
explicit, i.e. exclusively due to the & operator.

A light form of implicit nondeterminism could be introduced by
relaxing the constraint imposing prefixes to be pairwise distinct: in
fact, if we let a + a.b be a correct session behaviour, (a + a.b)||a
could be reduced both to 1 and b. By introducing such implicit
nondeterminism, it is easy to check that @ ® @.b /A a 4 a.b and that
the minimum of Client(a + a.b) is actually @. On the other hand,
a+ a.b /@@ a.b and the minimum of Server(a + a.b) is @.b. We
could also have no minimum at all: it is immediate to check that, by
allowing such an implicit nondeterminism, for the term a.b 4 a.c¢
we would have Server(a.b + a.c) = 0.

Relaxing the constraint that a1, ...,a, € N inai.o1 + -+ + an
and @1,...,@n, € N in G1.01 ® -+ ® Gn.on, would, instead,
introduce even more implicit nondeterminins, taking us completely
outside of the “session” context.

3. Orthogonality and Subtyping

We define a concept of sub-behaviour in terms of the greatest
symmetric relation included in -, which we call orthogonality. It
comes out that the sub-behavior relation is the intersection of <.
and =<,, and that it is a model of Gay-Hole subtyping theory of
session types introduced in [11].

DEFINITION 3.1 (Orthogonality). We say that p is orthogonal to
o, written p L o, ifp 1o and o - p.

A coinductive characterization of L can be obtained by
defining a binary relation R C S? as a coinductive orthogonality
if it is a symmetric coinductive compliance.

LEMMA 3.2. L is the largest coinductive orthogonality.

Proof. Immediate by observing that, by Prop. 2.9, L =N +7*
implies that p L o iff (p, o), (0, p) € F* forall k. O

For A C S, define A* = {0 € S| 37 € A. 0 L 7}; below

by o+ itis meant {o} *.

LEMMA 3.3.

1.1t ={ceS|ol1};

2. (recz.0) = = (o{recz.o/x}) *

3. (Zzelazo—z)L {T IS | 3J g [a{Tj}j€J~ T U/
D, a1 & ViedJ m€ait )

4. (@ielai.ai)L ={r eS| 3J
ey & Vi€l € ot L

U

I, {Tj}je}. T U,



Proof. (1):0 L 1iff o 41 (since 1 - o for any o) which is
equivalent to o |} 1 by Prop. 2.9.
By Lemma 2.3, recz.c |} 7 iff o{recz.c/x} | 7; hence (2) holds
by Lemma 3.2 and Def. 2.7.
If 7,y ai.oi 4 7 then by Prop. 2.9 7 | €D, ; a;.7; for some
non empty J C I, where 0; 4 7; for all 3 € J. Vice versa
if 7 4 Y000 then 7 | @, o Gr.7i: by the unicity of
the 7’ s.t. 7 | 7' (Lemma 2.3) we conclude that Dje,a5m =
D .c x Tk-Ty, Which establishes (3).
The proof of (4) is analogous. [J

Next we define a concept of sub-behavior which is the seman-
tic counterpart of the notion of subtyping. This concept is the re-
striction to S of the subsieve relation in [5]. We name it semantic
subtyping because it is based on a set theoretic interpretation of the
subtyping relation, and because, as we prove below, it models Gay
and Hole subtype relation among session types.

DEFINITION 3.4 (Semantic Subtyping).
Foro,7 €S8, 0 <:Tifandonlyifc = C 1=+

As anticipated at the beginning of this section, there is a precise
correspondence between the client/server sub-behaviour relations
and the semantic subtyping, namely:

THEOREM 3.5. <= =N =.

The proof of this theorem is deferred to Section 4, where it
is established for the more general case of higher-order session
behaviours.

COROLLARY 3.6. Forany o € S, 7 is minimal in o +
Therefore, for any o, 7 € S,

o7 ifandonly if T X: 0.

w.rt. <.

Proof. Concerning the minimality, if 7 € o then 7 €
Client(o) N Server(c); by Prop. 2.13 both & <. 7 and & <, T, so
that o <: 7 by Theorem 3.5.

For the only if implication, if o <: 7thend € ¢ * C 7+, which
implies 7 <: , as 7 is minimal in 7 * . The inverse implication
follows by the involutivity of ~. [

To provide the correlation between semantic subtyping and the

subtype relation on session types, let us first recall the definition of
session type and give a formal interpretation of session types into
session behaviours.
By considering only the session types (the live channel types) and
disregarding sorts in the terminology used in [12], a first order
session type A is an expression of the language defined by the
grammar:

A, B:z= end |?7(V)A|!Y]A | &l : B; |ie€I) |
@ B liel)| X |pX. A
where v = Int, Bool, ... is some ground type and the recursion

uX. A is guarded. Given that, it is straightforward to interpret
session types into S:

X] = =
[end] = 1 [pX. A] = recx.[4]
[*Al = ~[A]  ['D]A] = ~.[4]
[&{l:Bilie )] = >, 4[Bi]
[eti: Bilie DI = @, Bl

given a canonic choice of the variables x associated to X (e.g. just
the identity) and that the ground types y and the labels £ are in N.
Over session types it is defined a notion of duality: A is obtained

from A by exchanging ? with ! and & with &. Then we immediately
have:

PROPOSITION 3.7. For any first-order session type A and o € S:
o =[A] ifandonlyif &= [A].
Proof. By a straightforward induction over A. [

In [11] the subtyping system is proved sound by a subject
reduction theorem. An equivalent formulation of the system is
given in Figure 1. It is inspired by the analogous system in [2],
for subtyping recursive types of simply typed A-calculus.

The judgments I' - A <: B are formed by a finite set I of type
inequalities C' <: D, and ', C' <: D abbreviates I' U {C <: D},
assuming that C <: D ¢ T,

DEFINITION 3.8 (Session Subtyping).

Let ' = {A; <: B; | i < k} be a finite (possibly empty) set
of statements A; <: B; where A;, B; are session types; then we
say that A is a subtype of B, written A <: B, if ) = A <: B is
derivable using the axioms and rules in Figure 1.

The system in Figure 1 essentially embodies the coinductive
definition in [11]. We omit the proof that the two systems are
equivalent; rather we show by an example how the apparently
circular rule (T-SUB-&) can be used.

Given A = pX.&{{ : X)and B = puX.&({{ : X, : C), set
D={&{{: Ay <: &(¢: B, ¢ : C)}

By (T-SUB-HYP) we have T'  &{¢ : A) <: &{¢ : B,{' : C),
whileI' - A <: &(¢ : A) by (T-SUB-UNFOLD), and

I'H&(¢: B,¢ : C) <: Bby (T-SUB-FOLD).

Hence, by (T-SUB-TRANS), we derive I' - A <: B, which is
an instance of the premise of rule (T-SUB-&). Therefore we have
F&{¢: Ay <: &{¢: B,{' : C), from which we obtain - A <: B
using (T-SUB-UNFOLD), (T-SUB-FOLD) and (T-SUB-TRANS).
The usage of rule (T-SUB-@®) is similar.

The main result of this section is that if A <: B (or more
precisely if - A <: B is derivable) then A <: B. As usual
we prove a more general statement: first define = A <: B iff
[A] =X: [B; ETliff = C <: Dforall C <: D € T'; and
I' = A <: Biff = I' implies = A <: B. Then we show that
' A <: BimpliesT' | A <: B using stratified versions of the
sub-behaviour relations and of the definitions just given.

DEFINITION 3.9. For all k € N, let <: 1, C S? be inductively
defined by =:o =S and by o =<:p17 iff:

1. ol 1implies 7 1
2.0l Ziel a;.0; implies T |} ZjeJaj.Tj for some J O I and
o; ST foralli € 1, and

3. oll @,c; @i-oq implies T4 D, ; @;.7; for some ) # J C 1
and oj X7 forall j € J.

LEMMA 3.10. =i =,y Xtk
Proof. Similar to that of Prop. 2.9 using Lemma 3.3. [J
We define:

1. Er A <: Biff [A] =: x[B];

2. = TiffEp C <: Dforall C <: D €T

3.T Ex A <: Biff =4 I implies = A <: B.

THEOREM 3.11 (Soundness w.r.t. Subtyping).
IfTHA<:BthenT = A<:B.

Proof. By Lemma 3.10 we know that ' = A <: B iff
I' =, A <: Bforall k € N. The proof is via a principal induction



I''rA<:B T'THFB<:C

' A <: A(T-SuB-ID)
r-A<:C

'k puX.A<: A{uX . A/X} (T-SUB-UNFOLD)

(T-SUB-TRANS)

I'’A <: BF A <: B(T-SuB-HYP)

'k A{uX.A/X} <: pX.A (T-SUB-FOLD)

F,&ie[</€i : A7,> <: &]’GJ<Z]' : Bj> FA <:B; VYiel 1 cJ

(T-SuB-&)

'k &ielwi : Ai> <: &j@]@j : Bj)

F,@Z'g[(fi : A7,> <: @je(]wj : Bj) [ Aj <: Bj V] eJ IDJ

(T-SUB-®)

I'F @icr{ls : Ai) <: ®jcs(l; : By)

Figure 1. Coinductive subtyping of first order session types

over the derivation of I' = A <: B, and a subordinate induction
over k.

All cases are trivial but for rules T-SUB-& and T-SUB-@®. Let us
consider the first case (the second one is similar).

I o &ier(li @ Ai) <: &jes(l; : Bj) is trivially true, since
[&icr{ls + Ai)] = 0[&jes () : Bj)] holds always.

To establish I' }=p11 &ier(ls @ As) <: &jes(l; : Bj), assume
Er T

Since <: , D=: ky1, we have that =, I'; by the secondary
induction hypothesis: I' =x &icr (€ : Ai) <: &jecs{l; : Bj), so
that it must be the case that =5 &cr(l; : Ai) <: &;ecs{l; : Bj).
It follows that =5 T, &ier (€ + As) <: &jcs(€; : B;); hence by
the primary induction hypothesis:

F7&iel<€i : Az> <: &je]<éj : Bj) ): A; <: B;foralli € I.
We conclude that =, A; <: B; foralli € 1.

Let |]:&7161<€7' : A~L>]] = E'LEI l;.0;, where o; = [[Al}], and
similarly [&jes(¢; : Bj)] = >2,¢ ;4.7 with 7; = [B;]. Then
trivially Zie[ l;.o; l} Zie[ {;.0; and Zje]zj‘Tj U« E]’EJ fj.Tj.
On the other hand we know that o; <: x7; for all ¢+ € I, since
FEr Ai <t Bi. Hence 3, li.oi =Xt g1, 4.7, that is
':k+l &iel<€i : Ai> <: &j@]@j : Bj) as desired. UJ

A relevant consequence of this theorem and of (1) of Lemma
3.3 is that it is inconsistent with the behavioural interpretation of
session types to postulate end <: A for any A (a similar but weaker
result was stated in [1]). However this can be done by introducing
two new relations among types, denoted by <. and <; below, that
can be naturally interpreted by <. and <.

DEFINITION 3.12 (< and <.. First-order).

1. <. is the relation on session types obtained from the axioms
and rules of Figure 1 by replacing <: by <. and by adding the
axiom

' A<.end (T-AXx-C)

2. <. is the relation on session types defined as <. but using the

following axiom instead of (T-AX-C):

I'kend <, A (T-AX-S)
The above defined relations can be proved sound w.r.t. the
sub-behaviour relations. Let the relations ' = A <. B and

I' = A <, B be defined similarly to I' = A <: B, with <,
and =<, in place of <X: respectively.

THEOREM 3.13 (Soundness w.r.t. Sub-behaviours).

1.IfTHA<.BthenT EA<.B.
2IfTHFA<;Bthenl' =A<, B.

Proof. Observe that [end] = 1 implies [end] < [A] and
[A] <. [end] for any A. The rest of the proof follows the same
lines of the proof of Theorem 3.11. [

REMARK 3.14. In [1], the relation ‘<’ on Session Types was in-
troduced in order to formalize the notion of “enabling longer se-
quences of interactions”. Its definition essentially corresponds to
that of <, above, but replacing the side conditions of (T-SUB-&)
and (T-SUB-®) by the condition I = J. Now we can put ‘<’ in a
broader and clearer context since it is possible to prove that

<y = <:0X = Ko<:and <, = <:0S = So<:

We claim that similar decomposition properties apply to the higher-
order session types as well.

It is natural to use our sub-session relations in type systems for
processes that interact through session typed channels and such
that the two partners of an interaction over a channel ¢ know the
role they shall be playing over their respective ends of c, either as
a client or a server. The interactions can be asymmetric and the
relations <, and <. can be used in two distinct subsumption rules,
as shown in the following example rules, resembling the rules of
the well known process calculus with session types introduced in
[12]. In such rules, polarities (denoted by the superscripts ’s’ and
’c’) on the (live) channel « are used not only to match the two ends
of the channel, but also to distinguish the role played by the process
P over its end of k.

'FPp A-k%:8 §<48 THFPpA-k°:8 §8<.8

'Ppv A-k5:8 P> A-k°:8

4. Higher-order Session
Behaviours

A session is higher order if the private channel of the session
can either send or receive channel names. This is reflected in the
session type theory by extending the grammar of first order types
as follows:
A, B:x=...|7(A)B |![A]B,

where A can be any session type. The modeling of (full) session
types with behaviours requires the introduction of higher order
session behaviours which are essentially terms of CCS with value
passing, but for the fact that the set of values coincides with the set
of behaviours itself.

DEFINITION 4.1 (Higher-Order Session Behaviour). A higher or-
der behaviour is defined by extending the grammar in Definition
2.1:

o,7u=...|7%". 7 |lo?.T
where p € {s, c}. We call HS the resulting set.
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Figure 2. The higher order labelled transition system

This definition follows similar constructions in [5, 17]. A tech-
nical difference is the use of polarities; they have been introduced
in [11] and used in [21] to keep track of the pairing of the two ends
of private channels of sessions; we use polarities also to distinguish
among the actions by a server (p = s) or by a client (p = ¢).

DEFINITION 4.2. The syntactic dual & of o € 'HS is defined as for
behaviours in S by adding the clauses:

2op.1 =67, lop.T =?0" 7.

The modeling of full session types, namely including higher
order sessions, involves higher order labeled transition systems, as
it is the case in [8, 17]. An LTS is higher order if the set of states is
somehow included into that of actions; more, one can either define
(coinductively) relations over the LTS that take into account also
the actions (see e.g. [18]), or a coinductive relation can be used in
the side conditions of transition rules, as in [5, 17].

DEFINITION 4.3. Let HoAct = ActU {?0”,106” | 0 € HS,p €
{s, c}}. Then we extend the definition of the LTS modeling both the
actions and the interaction, as well the definitions of -, <s and <.
to HS by adding the rules in Figure 2.

The intuitive meaning of the new communication rules in Figure
2 is that 70 is the action representing the reception of a channel
on which the receiver has to behave as a server. It is then consistent
with the idea of compliance to allow such an action to synchronize
with !7°, in case 7 <, o, since then any client that is compliant
with the protocol 7, will do the same with o.
Vice versa, and for the same reason, when the input action is 70
the receiver is expected to behave on the received channel as a
client: then this input action will safely synchronize with any !7°¢
such that 7 <. o.

REMARK 4.4. The higher order LTS rises two technical difficul-
ties. The first one, as noted in [17], is that there is a circularity in
the definitions of p 4 ¢ and of <, <., where the latter relations
must be redefined in terms of higher order computations (a similar
problem of circularity has been coped with also in [5]). This can
be remedied by observing that the syntactical complexity of o is
less than the complexity of ?o”.7 and of lo”.7, and by stratifying
the behaviour syntax accordingly, obtaining a hierarchy of relations
<%, X¢. This is left implicit for readability; however the coinduc-
tive characterizations of  and of the other relations studied so far
requires a more careful analysis, and unfortunately a rather com-
plex one.

Second, we haven’t provided a complete axiomatization of the re-
lations <. and =g, as their definition involves a universal quan-
tification over behaviours and reductions. Therefore, to the state of
our knowledge, the higher order LTS should not be considered as a
formal system, rather as an abstract mathematical model.

Lemma 2.3 still holds for higher order behaviours and LTS: in
particular if 0 =>70%.02 or ¢ =07 .09, these are unique, so
that we can write o {}?0% .02 and o !c7.02.

Also Lemma 2.6 holds for the new LTS, with Act replaced by
HoAct.
For any R C HS? define:

Ge(R) = {(0,7) € HS? | Vp.oRp = TRp}
Gs(R) = {(0,7) € HS? | Vp.pRo = pR1}

and write 0G,(R)7 to abbreviate (o, 7) € G,(R), for p € {c, s}.
By their definition <.= G.(H), and <;= G,(-). Now let F’ :
HS? — 'HS? be defined as the least extension of F in Def. 2.7
such that (p, o) € F'(R) if, for p € {c, s}:

1. pi?7p7.p2 implies o Ylo7.02 & 01G,(R)p1 & p2Ro2
2. pdlpl.p2 implies o ?c7.00 & p1G,(R)o1 & p2Ro2

Lemma 2.8 still holds (by considering two more cases), with 7’ in
place of F, and we establish:

LEMMA 4.5. F' is monotonic and < = (", F'* namely the great-
est fixed point of F'.

Proof. The D inclusion is established as in Prop. 2.9 by us-
ing (the extended version of) Lemma 2.8. For the C inclusion it
suffices to prove that 4 C F'(H). The cases of p | p’ with
p= 1,3 ai.pi,@,c; Gi.pi are the same as in the proof
of Prop. 2.9. Suppose that p’ =?p%.p> and that ¢ || o’. Then
plle = p’||e’ — since p’ # 1 and p’ - ¢’ by hypothesis. It fol-
lows that o’ :?o{’.oz for certain 01, 02 s.t. 01 Xp p1 and p2 o2,
and the thesis follows since <,= G, (). The case p’ = !p¥.p2 is
analogous. [

Again, it is easily seen that the relation {(0,7) | o € HS} is
a prefixed point of F”, so that by the last lemma we have that both
oc-dcando Ho.
Now it is possible to provide, also for the respective extensions
to higher order behaviours, a coinductive characterization of the
the sub-behaviour relations. We stress that such a characterization
is essentially more complex than in the first order case, because
the sub-behaviour relations depend on the compliance relation; in
turn compliance depends on the sub-behaviour relations, which
are involved in the definition of the LTS. This forces a mutually
coinductive construction, which is the contents of the following
definition.

DEFINITION 4.6 (Coinductive Client/Server Relation Pair). A pair
(Re, Rs) of binary relations over HS is a coinductive client/server

relation pair if {o | cRc1} = {7 | 1Rs7} and if (0,7) € R,

and p,q € {s,c}, then:

1. ol Ziel a;.o; implies
3J D) 1. TU Z]-EJCL]'.TJ' & VJ € J O'jRij
2.0l EBZ.GI a;.o; implies
dJCI. 7| @jejaj.rj & Vi e J ojRyT;
3. cl?0l. .oz implies T 27 .72 & 1R & 02RpT2
4. o lo}.oo implies T\1{. 72 & TIRq01 & 02Rpm

LEMMA 4.7. (=X, =s) is the largest client/server relation pair
w.r.t. componentwise inclusion.

Proof. (Sketch) If (R, Rs) is a client/server relation pair then
R. C=c and Rs C,=, is shown in the standard way, namely
by considering the operator H : HS? x HS? — HS? x HS?
determined by Def. 4.6 and showing that if R, Z=<. and Rs €
<5 then (R.,Rs) € H" for some k € N contradicting that
hypothesis.
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Figure 3. Rules for polarized higher order session types

To show that (<., <) is a client/server relation pair we proceed by
cases. We consider here only the cases of higher order input/output:

o |?0].02: if ¢ <. 7 then for all p, the fact that ¢ 4 p implies
T 1 p; we know that o 1 & where & =lo}.52, so that 7 - 7. By
Lemma 4.5 it follows that 7 {77 .72 for some 71, 72 such that
01 =X¢ 71 and 72 4 T2. On the other hand 7 4 &2 implies that,
forall p’,if o 4 p’ then 7 4 p’ by (the extension to higher-order
of) Lemma 2.12, hence 72 <. o2 as desired.

o Jlo}.co: we reason as before, obtaining that 7 ||!7.72 where
71 ¢ o1 and 72 - T2. From 72 - T2 we conclude that
T2 X 02 as above; note that 71 <, o1 has been inverted w.r.t.
the previous case.

In both cases if ¢ < 7 then p - o implies p 4 7, and we proceed
similarly. O

LEMMA 4.8. With respect to the higher order LTS, all points of
Lemma 3.3 remain valid, and moreover, for p € {c, s}:

1. (?Uf.o’zj — {rerS|3In, .7l & n 301 &
T2 Eog )

2. (loPoa)t ={reHS | Ir, . TI27Pm & o1 <71 &
T € o5}

Proof. Analogous to that of Lemma 3.3, using Lemma 4.7. [J

We are eventually in place to prove the main result for higher-
order session behaviours.

THEOREM 4.9. <: = =<.N <..

Proof. Assume that 0 <. Tand o <X 7. If p € ot then
o 1 pand p - o, thatis p € Server(c)NClient(o). By assumption
Server(o) N Client(o) C Server(7) N Client(7), so that 7 - p and
pdrT,thatisp et L. We conclude that <D <N =
To prove the inclusion <X: C =<¢ N =g, consider the pair
(2:,=: ). Then by Lemma 4.8 it is a coinductive client/server
relation, so that <: C <. and X: C <, by Lemma 4.7. O

4.1 Subtyping Higher Order Sessions

The (full) theory of subtyping in [11] is equivalent to the theory
obtained by adding the rules in Figure 3 to those for subtyping first
order session types in Figure 1, and by reading the symbol < as <:.
For the sake of brevity we have written I' H A < B,C < D in
place of two premises: ' F A < Band ' C < D.

The use of polarities in the definition of higher order session be-
haviours has no counterpart in the syntax of session types, nei-
ther in the standard session type systems, say those in [21], nor
in [1] by the present authors. The system we proposed and dubbed
“asymmetric session types” can easily accommodate types of the
shape ?(AP)B and ![AP]B for p = ¢, s, by attributing to the
sent/received type the same polarity of the private channel (where
we used + = sand — = ¢), e.g.:

PH{kd/z}P > A-k}:B-kl:A
I+ catch s} (z).P > A- s} :?7(A")B

However the fact that, by Lemma 4.7 (to be compared with Def.
4.6), both <. and <, are covariant w.r.t. higher order input, and

contravariant w.r.t higher order output, and more importantly The-
orem 4.9 allow the treatment of the theory of session subtyping
without resorting to the more complex assignment system. Let us
extend the type syntax by:

A,B,:=...|7(A")B |![A"]B forp =¢,s.

Now the type interpretation can be extended straightforwardly to
denote elements in HS:

[7(A")B] =?[AI’[B], ['[A"]B] ='[A]"[B].

Now, for p = ¢,s,let I' F A <, B be the theory obtained
by adding to the theories of <. and <; in Def. 3.12 the higher
order rules in Figure 3, by replacing < by <. and <, respectively.
Then, the proof of Theorem 3.13 (actually of Theorem 3.11) can
be extended by considering the new cases of rules T-SUB-IN and
T-SUB-OUT in a similar manner to those of rules T-SUB-& and
T-SUB-@, establishing:

THEOREM 4.10 (Higher Order C/S Subtyping).
For any higher order session types A, B, if - A <, B then
[A] = [B], forp=c¢,s.

Proof. Similar to the proof of Theorem 3.11. [J

Let A be a higher order session type in the sense of [12], i.e.
without polarities; we interpret A into HS by arbitrarily assigning
a (fixed) polarity p to all higher order input/output occurring in
A: by abusing notation we call the resulting type A, and [A]
its interpretation into HS. We write A <: B if the judgement
F A <: B can be derived by the rules in Figure 1 and in Figure 3.

COROLLARY 4.11 (Higher Order Subtyping).
If A <: B for any higher order session types A and B, then
[A] = [B].

Proof. By observing that if - A <: B is derivable, then also
F A <. BandF A <; B are such: by Theorem 4.10 we know
that [A] <, [B] for both p = ¢ and p = s so that we conclude by
Theorem 4.9. O

5. Related Works

The starting point of the present research is the compliance relation
among contracts introduced in [13], and in general the theory of
contracts for web services: see [7].

As we have explained, however, we depart from it adopting a more
general concept, such that even non terminating behaviours can be
compliant. In fact we allow the satisfaction in the limit of the re-
quirement that all the actions by the client should find an adequate
reply by the server. This is similar to [17], and we give a definition
which is literally the same as that one used in [16]. In spite of this,
there are some differences indeed: the definition in [16] is given for
finite behaviours, i.e. without recursion. The extension to recursive
behaviours as they are defined in the same paper leads to an un-
reasonable treatment of divergence (see Remark 2.5 in the present
paper). On the other hand, the concept of “subsession” from [17]
(which is the same as that of “compliance” in [8]) is not our com-
pliance, nor one of our sub-behaviour relations. Rather it is compa-
rable to our orthogonality and behavioural subtyping, since for the



test to succeed it is required that both sides of a parallel combina-
tion complete (reach a final state).

The issue of comparing contracts to session types has been ad-
dressed in [5, 14], besides the quoted [8, 17]. As explained in the in-
troduction, we have designed our behaviours (both first and higher
order) to model directly session types. The system we have treated
to axiomatize the subtyping relation is equivalent to that one intro-
duced in [11] but it avoids the function unfold and the concept of
“type simulation” which is external w.r.t. the formal system. Gay
and Hole motivation for adopting that solution was that the pre-
liminary proposal in [10] was not syntax directed, and therefore
unsuitable for developing an algorithm for type reconstruction. By
adapting the idea proposed in [2] for recursive functional types, we
obtain a simpler system, similar to the original one, but syntax di-
rected.

The choice of restricting to session behaviours is responsible for
the neat characterization of the main concepts involved, and first of
all of the the notion of the dual of a behaviour. To appreciate the ad-
vantage of the definition of session behaviours one could compare
it to the difficult treatment of duality for the full set of behaviours
in [14]. A restriction to contracts, producing an effect similar to
the one induced by our restrictions, has been proposed in [3] where
terms like a + b and also like a + b are avoided by imposing any
output action b to be preceded by an internal tau action; however
the absence of an internal choice and the ability of mixing input
(i.e. branching actions in our interpretation) and output summands
(which are naturally interpreted as selection actions) make this be-
haviour calculus rather unsuitable for our purposes.

On the other hand, the other papers appeared so far obtain a better
matching with session types at the price of departing from the orig-
inal type systems and process algebra (e.g. by introducing internal
choice in the term syntax). This clearly opens the question of what
we actually loose w.r.t. contracts in terms of expressivity, that we
leave open; however, the fact that session types can be modelled
by session behaviours makes it reasonable to consider such a set of
behaviours as a basis for describing interaction protocols; besides
all the examples we have found in the cited literature can be written
in our syntax without any essential change.

With respect to the approach followed in the above mentioned
works, we have followed the alternative route: first we see ses-
sion types as some abstract (specification of) behaviour, that can
be fruitfully treated by means of technique from process algebra
(see [6]; apparently behavioural subtyping has been developed first
in the area of OO concurrent languages: see e.g. [15, 18]). Inciden-
tally we observe that the formal description of higher-order interac-
tion rises the intriguing issue of higher order LTS, which deserves
investigation on itself. In doing that we have kept the type syntax
as it is, only by decorating types and channels with polarities to ac-
commodate the new idea of compliance, which we consider as one
of the most relevant contributions of the theory of contracts.

6. Conclusions

We have proposed a simple theory of behaviours and a two sided
sub-behaviour concept, based on the idea of compliance coming
from the theory of contracts. We have studied the basic properties
of these concepts, with special attention to the complementary
roles and views in client/server interactions. We have obtained a
behavioural model of session types which is so close and faithful
that we conjecture to be complete. By this we held to have refined
previous work on web interaction specification by contracts, in the
sense of distilling a simpler and more handy theory, with a clear
semantics of duality. We think that this is not just a technical result,
but also that it could be of use in devising efficient algorithms
implementing tests for sub-contract and sub-behaviour relations.
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