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Abstract

The presence of uncertainties and external disturbances is one of the unavoidable problems with various practical systems

which might be unavailable in real-time. Sliding Mode Control (SMC) is one of the effective robust control methods to deal

with these uncertainties and external disturbances. In this paper, two novel controllers are designed by using Nonsingular

Terminal SMC (NTSMC) and Adaptive Nonsingular Terminal SMC (ANTSMC) methods for synchronization of dual smart

grid chaotic systems with various uncertainties and external disturbances. Indeed, both adaptive and non-adaptive control-

lers based on NTSMC are proposed to provide two alternatives which can adjust by changing operating conditions and

dynamics. The concept of SMC method guarantees controller robustness against various uncertainties and external distur-

bances. Elimination of the undesirable chattering phenomenon is addressed in this study which is one of the common

deficiencies with conventional SMC method. Additionally, finite time concept is used to speed up the convergence rate.

Finite time stability proof is performed by using Lyapunov stability theory. The numerical simulation is carried out in

Simulink/MATLAB to reveal the validity of the proposed controllers for the smart grid chaotic system. A comprehensive

comparison is made by performing simulation for the Fractional Order Adaptive Sliding Mode Control (FOASMC) con-

troller and defining three performance criteria, among the proposed controllers in this study and FOASMC controller.
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Introduction

The traditional power systems are based on centralized gen-

eration with their large power plants located far from the

power consuming loads [21]. Hence the control and central-

ized operation of this large-scale system is very challenging

and complicated task. Smart grids provide smarter opera-

tion of conventional power grids by interconnecting the

grids in a distributed and interactive manner for the well

suitability of distributed multi-agent technologies to allevi-

ate these challenges [24, 25]. Indeed, a smart grids is an

electricity network which insists on various operational

and energy measures including smart appliances, smart me-

ters, renewable energy resources, and energy efficient re-

sources. Smart grids improve efficiency, minimize cost and

consumption of energy, and enhance the reliability and

transparency of the energy supply by having a proper con-

trol, monitoring, communication and analysis within the

supply chain [10, 12, 30].

Recently, many efforts have been made to control these

networks. In [24], a multi-agent based protection frame-

work has been proposed to improve the transient stability

of smart grids. In [17], a comprehensive review on the con-

trol and communication techniques has been done for the

smart grids where the energy efficiency of the smart grids
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has been focused. In (X. [32]), a novel fault tolerant extend-

ed Kalman filter has been proposed for smart grid synchro-

nization. a survey of studying complex network theory has

been reported in [7] for modern smart grids. In [6], a Cyber-

Physical Power System (CPPS) paradigm has been present-

ed for smart transmission grids control, modeling, and mon-

itoring. In [26], a model predictive control (MPC)-based

approach has been proposed for smart grids with multiple

electric-vehicle charging stations. In [34], a resonance at-

tacks have been investigated on Load Frequency Control of

Smart Grids.

The synchronization refers to the process of precisely

matching or coordinating two or more activities, process-

es, devices, or system in time. The synchronization

methods have been used in many applications such as

synchronization of robots for collaborative robots [29]

and the synchronization of chaotic systems with various

goals [33, 35]. In [15], the multiagent cooperative control-

ler has been designed for heterogeneous energy storage

devices in smart grids considering their hierarchical con-

trol structure with droop controls. The active/reactive

power sharing, the frequency/voltage, and the energy of

battery energy storage systems (BESSs) have been syn-

chronized by exchanging local information with a few

other neighboring BESSs.

Finite time stability is a more comprehensive and recent

concept than asymptotic stability. The finite time stability

means that the system state variables reach zero at the

bounded time. The term “terminal” refers to the concept

of finite time stability. Many applications require us to

prove the stability in a finite time. Accordingly, various

finite time theorems and lemmas have been introduced of

which some have been presented in [20, 37]. The finite time

stability has been very much considered in the recent liter-

ature to speed up the convergence rate and improve the

concept of stability [11, 18, 37]. In [2], Finite time concept

has been considered to incorporate with optimal robust con-

trol for Photovoltaic system using the VSC model in Smart

Grid.

SMC method is a well-known control method because of

its main feature which is robustness against a variety of

uncertainties and external disturbances [3, 9]. In [27], opti-

mal real-time control based on the SMC method has been

investigated for discrete-time switched repeated scalar non-

linear systems. This robust control method would guarantee

asymptotic stability of the systems. The Terminal SMC

(TSMC) method has been presented by incorporating finite

time concept and SMC method. The TSMC method accom-

plishes both robustness against external disturbances and

uncertainties and system stability in a finite time.

Subsequently, a Nonsingular TSMC (NTSMC) method

has been introduced to overcome occurrence singularity as

an unwanted problem.

On the other hand, the design of the SMC scheme re-

quires the knowledge of uncertainties and external distur-

bances bound, which might be unavailable in real time. The

adaptive concept provides an effective method to deal with

these unknown external disturbances and uncertainties by

estimating the upper bound of them [4]. Adaptive NTSMC

(ANTSMC) method has been proposed by integration of

the concept of adaptive control method and NTSMC meth-

od. The ANTSMC offers a robust control method with on-

line parameter estimators to provide the information of the

uncertainty upper bound. An ANTSMC method has been

proposed in [23] to control an autonomous underwater ve-

hicles (AUVs). In (H. [31]), Steer-by-Wire Equipped Road

Vehicle has been controlled by using adaptive control con-

cept within a finite time. A fractional order adaptive sliding

mode controllers (FOASMC) has been proposed in [14] for

a fractional order smart grid chaotic system.

The conventional SMC method causes the unwanted

chattering phenomenon due to applying some discontinu-

ous terms in the control input. This undesirable problem

causes some devastating effects on the system actuators

such as reducing the useful life of them. It also reduces

the control accuracy and causes deleterious sound in the

system. Hence, numerous approaches have been proposed

to eliminate or reduce this destructive phenomenon. The

undesirable chattering phenomenon has been thoroughly

eliminated in [1, 8, 16, 22, 36]. In [13], an SMC method

has been proposed for nonlinear fractional-order systems

which has removed the chattering problem completely.

Motivated by the above consideration, in this paper dual

smart grid chaotic systems are synchronized by using the

NTSMC and ANTSMC methods. Indeed, the adaptive and

no-adaptive control methods have been designed by using

two novel control inputs. The finite time stability proof is

performed by using some finite time lemmas and theories

including Barbalet’s Lemmas and Lyapunov stability theo-

ry. The numerical simulation results of the proposed con-

trollers based on NTSMC and ANTSMC reveal the effec-

tiveness of them to synchronize dual smart grid chaotic

system and to suppress the chaotic oscillations. To make a

comprehensive comparison, three well-known performance

criteria are used including integral of the absolute value of

the error (IAE), integral of the time multiplied by the abso-

lute value of the error (ITAE), and integral of the square

value (ISV) of the control input. Furthermore, the numerical

simulation of the FOASMC is done by applying the control

input presented in [14] to the proposed smart grid chaotic

system. Note that the numerical simulation of FOASMC

has been done to calculate the numerical values of the per-

formance criteria and to show the effectiveness of our pro-

posed controllers compared to the FOASMC controller. The

major contributions of the proposed controller designs are

listed as follows
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& Synchronization of dual smart grid chaotic systems by

using two novel adaptive and non-adaptive control

methods.

& Elimination of undesirable chattering phenomenon.

& Robust control with the goal of synchronization of two

identical chaotic smart grid systems in presence of various

uncertainties and external disturbances.

& Estimation of the upper bound of the uncertainties and

external disturbances and using their estimations in the

control input in the adaptive controllers.

& Guarantee the global finite time stability for all proposed

controllers in this study.

& Provide a numerical comparison among the proposed con-

trollers in this study and the FOASMC controller by using

three well-known performance criteria, IAE, ITAE, and

ISV.

The remaining of this note is organized in the following

manner. Section “Mathematical Preliminaries” presents the

mathematical preliminaries about the finite time stability

theorems and the related lemmas. Section “Model

Descript ion of Chaotic Smart Grid and Problem

Statement” is dedicated to the model description of the

smart grid chaotic system and problem statement. In section

“Controller Design”, the adaptive and non-adaptive con-

trollers based-on NTSMC are proposed for the smart grid

chaotic system along with an explanation of detailed meth-

odology. In section “Results and Discussion”, numerical

simulation results of proposed controllers are firstly given.

Then, comparison and discussion are provided by using

three performance criteria. Section “Conclusion” is devoted

to the conclusion.

Mathematical Preliminaries

Definition 1: the function of sgn(x) is defined as (2) and the

mathematical equality of siga(x) = |x|a sgn (x) is always true.

sgn xð Þ ¼
1; x > 0

0; x ¼ 0

−1; x < 0

8

<

:

ð1Þ

Lemma 1: consider the nonlinear system as x˙ ¼ f xð Þ; f
0ð Þ ¼ 0; xϵRn with initial conditions x(0) = x0. Suppose

there exists candidate Lyapunov function V(x) which is

globally positive definite, radially unbounded and only at

x = 0 is zero, such that; the time derivative of the candidate

Lyapunov function will be as V˙ xð Þ≤−ρ1Vρ2 xð Þ, where ρ1 is
a positive number and ρ2 is a constant between zero and

one. Then, the variable x of the system from any initial

conditions, it reaches zero in a finite time, and since then

it remains exactly equal to zero, i.e. lim
t→T

x→0 and the upper

bound of the settling time, T, will be as T ≤ V1−ρ2 x0ð Þ
ρ1 1−ρ2ð Þ [23].

Lemma 2: Assume that a1; a2;…; anR and 0 < q < 2, then

we have [5].

a1j jq þ a2j jq þ…þ anj jq≥ a21 þ a22 þ…þþa2n
� �

q

2 ð2Þ

Lemma 1: Consider the nonlinear system

x˙ ¼ f xð Þ þ g xð Þuþ d, where d is the model of the uncer-

tainties and external disturbances of the system which is esti-

mated at any moment of time as h≤ ĥ. At any moment of time,

there exist positive constants h∗, such that ĥ≤h* [23].

Model Description of Chaotic Smart Grid
and Problem Statement

In [14, 28], a model for the smart grid chaotic system has

been presented as Eq. (3). Where the vector X = [x1, x2, x3,

x4]
T = [δt, ω, δL, VL]

T is assumed as the vector of system var-

iables. δt is the rotator angle and ω is the angular rotation. δL
is the load voltage angle and VL is the load voltage. io is the

inverter current and we have s(ϑ) = sin(ϑ), c(ϑ) = cos(ϑ).

x˙ 1 ¼ x2
x˙ 2 ¼ 0:573−0:167x2 þ 20x4c x1−x3 þ 1:483ð Þ

þ11:667x4c x1 þ 1:483ð Þ
x˙ 3 ¼ 69−93:33x4−179:05x

2
4−50iox4s x3ð Þ

−300x4s x3ð Þc x1−1:483ð Þ
x˙ 4 ¼ 25:322x24 þ 13:054x4 þ 3:529x4c x1−1:483ð Þ
3:529x4c x3ð Þc x3−1:483ð Þ−42:353x4s x3 þ 1:483ð Þ
−35:294x4s x3 þ 1:483ð Þ þ 2:941x4c x3−1:483ð Þ
þ42:353x4s x3ð Þc x1−1:483ð Þ þ 7:059iox4s x3ð Þ

þ0:588iox4c x3ð Þ þ 1:31778

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð3Þ

Where this system shows chaotic behavior for the io = 0.01

and selected initial conditions as X(0) = [0.3,0.2,0.1,0.97]T.

Figures 1, 2 and 3 display the 3D-phase diagram of the chaotic

behavior of the smart grid system.

In this paper, we intend to synchronize two identical cha-

otic systems presented in Eq. (3). For this purpose, the master

system is considered as Eq. (4) and the slave system is con-

sidered as Eq. (6).

x˙ 1m ¼ f 1m þ d1m
x˙ 2m ¼ f 2m þ d2m
x˙ 3m ¼ f 3m þ d3m
x˙ 4m ¼ f 4m þ d4m

8

>

>

>

<

>

>

>

:

ð4Þ

Where dim ; i ¼ 1; 2; 3; 4ð Þ is a variety of uncertainties and

external disturbances. Note that, f im is presented in Eq. (5).
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f 1m ¼ x2m
f 2m ¼ 0:573−0:167x2m

þ20x4mc x1m−x3m þ 1:483ð Þ
þ11:667x4mc x1m þ 1:483ð Þ

f 3m ¼ 69−93:33x4m−179:05x
2
4m
−50iox4ms x3mð Þ

−300x4ms x3mð Þc x1m−1:483ð Þ
f 4m ¼ 25:322x24m þ 13:054x4m

þ3:529x4mc x1m−1:483ð Þ
−3:529x4mc x3mð Þc x3m−1:483ð Þ
þ42:353x4ms x3mð Þc x1m−1:483ð Þ

þ7:059iox4ms x3mð Þ−42:353x4ms x3m þ 1:483ð Þ
−35:294x4ms x3m þ 1:483ð Þ þ 0:588iox4mc x3mð Þ

þ2:941x4mc x3m−1:483ð Þ þ 1:31778

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð5Þ

The slave system is as follows

x˙ 1s ¼ f 1s þ u1 þ d1s
x˙ 2s ¼ f 2s þ u2 þ d2s
x˙ 3s ¼ f 3s þ u3 þ d3s
x˙ 4s ¼ f 4s þ u4 þ d4s

8

>

>

>

<

>

>

>

:

ð6Þ

Where dis ; i ¼ 1; 2; 3; 4ð Þ is a variety of uncertainties and ex-
ternal disturbances. ui is the control input that will be de-

signed. Note that, f is is presented in Eq. (7).
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f 1s ¼ x2s
f 2s ¼ 0:573−0:167x2s

þ20x4sc x1s−x3s þ 1:483ð Þ
þ11:667x4sc x1s þ 1:483ð Þ

f 3s ¼ 69−93:33x4s−179:05x
2
4s
−50iox4ss x3sð Þ

−300x4ss x3sð Þc x1s−1:483ð Þ
f 4s ¼ 25:322x24s þ 13:054x4s

þ3:529x4sc x1s−1:483ð Þ
−3:529x4sc x3sð Þc x3s−1:483ð Þ
þ42:353x4ss x3sð Þc x1s−1:483ð Þ

þ7:059iox4ss x3sð Þ−42:353x4ss x3s þ 1:483ð Þ
−35:294x4ss x3s þ 1:483ð Þ þ 0:588iox4sc x3sð Þ

þ2:941x4sc x3s−1:483ð Þ þ 1:31778

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð7Þ

For the synchronization of two identical chaotic sys-

tems (mater and slave systems), the synchronization error

system will be defined as ei ¼ xis−xim . Hence, the synchro-
nization error system is given as Eq. (8)

e˙ 1 ¼ f 1s− f 1m þ u1 þ d1

e˙ 2 ¼ f 2s− f 2m þ u2 þ d2

e˙ 3 ¼ f 3s− f 3m þ u3 þ d3

e˙ 4 ¼ f 4s− f 4m þ u4 þ d4

8

>

>

>

<

>

>

>

:

ð8Þ

Where we have di ¼ dis−dim . In the following sections,

control inputs, ui are designed; in such a way that, by

applying these designed control inputs, the system will

be stable in a finite time and robust against various un-

certainties and external disturbances.
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Controller Design

In order to achieve the proposed controllers in this study, some

mathematical finite-time theorem and lemmas are used such

as the Lyapunov stability theory and Barbalat’s lemmas. First,

the chaotic dynamics of the smart grid is presented in presence

of the uncertainties and external disturbances. Then, the finite

time stability proofs are performed mathematically by apply-

ing the designed controllers into the proposed system. Then

the numerical simulation results are carried out in MATLAB/

Simulink to verify the validity of proposed controller designs

and comparing them. Note that the non-adaptive control

methods (NTSMC) are designed by assuming that the upper

bound of uncertainties and external disturbances is available.

On the contrary, the adaptive control methods (ANTSMC) are

designed by assuming that the upper bound of uncertainties

and external disturbances is not available and needs to esti-

mate. For this reason, the adaptive concept is employed to deal

with these unknown external disturbances and uncertainties

by estimating the upper bound of them (where their estima-

tions are used in the control input). In fact, both adaptive and

non-adaptive controllers based on NTSMC are proposed to

provide two alternatives which can adjust by changing oper-

ating conditions and dynamics and comparing them from var-

ious aspects. The flow chart of the methodology for the pro-

posed controllers with detail mathematic procedures repre-

sents in Fig. 4.

Two Novel Approaches of Terminal Sliding Mode
Control

In this section, two control inputs are designed by using two

different sliding surfaces based on the NTSMC method (non-

adaptive control methods) for the presented synchronization er-

ror system of Eq. (8). Note that the upper bound of the sum of

the uncertainties and external disturbances (di) and their deriva-

tives (d˙ i ) are assumed to be available; accordingly, we have

dij jj j≤ηi1
d˙ i
�

�

�

�

�

�

�

�≤ηi2

�

ð9Þ

Theorem1 (NTSMC1) By considering a system in Eq. (8), and

the considered conditions for the upper bound of the uncer-

tainties and external disturbances in Eq. (9), using the sliding

surfaces in Eq. (10), and the designed control input in Eq. (11),

the finite time stability will be guaranteed. Therefore, the slave

system will be synchronized to the master system in the finite

time T. Note that the stability time for the system is the sum of

the stability of sliding surfaces ( Tr) and the reaching time to

the sliding surfaces (Ts). Accordingly, the stability time of the

system is equal to T = Tr + Ts, of which the upper bound of Tr,

Ts is presented in the following.

s1 ¼ ∫
t f

0 e1dt þ α11e
α21

1

s2 ¼ ∫
t f

0 e2dt þ α12e
α22

2

s3 ¼ ∫
t f

0 e3dt þ α13e
α23

3

s4 ¼ ∫
t f

0 e4dt þ α14e
α24

4

8

>

>

>

<

>

>

>

:

ð10Þ

Where α1i are positive constants and α2i are constants be-

tween one and zero.

ui ¼ ueqi þ uri

ueqi ¼ − f is− f im
� �

−α−1
1i α

−1
2i e

−α−1
2i
þ2

1

uri ¼ −c1isig
β1i sið Þ−ηi1sgn sið Þ

8

>

<

>

:

ð11Þ

Where c1i are positive constants and β1i are constants between

one and zero.

Proof To prove the finite time stability of the system in Eq. (8),

we need firstly to prove that the system reaches to the sliding

surface in a finite time by using the designed control input in

Eq. (11). Hence, the candidate Lyapunov function is consid-

ered as V xð Þ ¼ ∑4
i¼1

1
2
s2i . This candidate function possesses

condition of Lyapunov function in lemma 1. By differentiating

this candidate function with respect to time and applying the

control input to the system, yields

V˙ xð Þ ¼ ∑4
i¼1si −c1isig

β1i sið Þ−ηi1sgn sið Þ þ di
� �

ð12Þ

Since we have ‖di‖≤ηi1 and in accordance with definition

1, there comes

V˙ xð Þ≤−∑4
i¼1c1i sij jβ1iþ1 ð13Þ

By substituting sij j ¼
ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffi

V xð Þ
p

into Eq. (13) and in ac-

cordance with lemma 2, one can obtain

V˙ xð Þ≤−∑4
i¼1c1i

ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffi

V xð Þ
p

� �β1iþ1

ð14Þ

Now, by choosing ρ1 ¼ c1i
ffiffiffi

2
p� �β1iþ1

and ρ2 ¼ β1iþ1

2
, we

have

V˙ xð Þ≤−ρ1Vρ2 ð15Þ

According to Lemma 1, the system reaches to the sliding

surfaces in a finite time as T s≤4
V x 0ð Þð Þð Þρ2
ρ1 1−ρ2ð Þ .

For the second part of the system stability proof, the finite

time stability proof of the sliding surface of si = 0 must be

performed. For this purpose, the Eq. (10) is equalized to zero,

and then its time derivation is taken as follows (note that si

¼ ∫
t f

0 ei þ α1ie
α2i

i is a general form of Eq. (10))

s˙ i ¼ 0→e˙ i ¼ −α−1
2i α

−1
1i e

2−α2i

i ð16Þ
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Also, we have

ei tð Þ ¼ eα2i−1 tsið Þ−α−1
2i−1 1−α−1

2i

� �

t−tsið Þ
� �

1
α2i−1 ð17Þ

The numerical solution of Eq. (17) shows that the variables

converge to zero in the finite time, Tr, and the upper bound of

this time is as below [23].

T r ≤∑
4
i¼1

α1i

1−α−1
2i

� � e T sið Þj j α2i−1ð Þ ð18Þ

As a result, the system finite time stability proof is com-

pleted and the system stability time is as T = Tr + Ts. ∎.
Note that using the sgn function in the designed control

input in this section is likely to cause the undesirable

chattering phenomenon. To overcome this deficiency, we will

design control input in the next section in such a way that we

use of integral of sgn function in the control input, which can

reduce or eliminate this unwanted problem.

Theorem 2 (NTSMC2) By considering the system in Eq. (8),

and the considered conditions for the upper bound of the un-

certainties and external disturbances in Eq. (9), using the slid-

ing surfaces in Eq. (19), and the designed control input in Eq.

(20), the finite time stability will be guaranteed. Therefore, the

slave system will be synchronized to the master system in the

finite time T. Note that the stability time for the system is the

sum of the stability of sliding surfaces ( Tr) and the reaching

time to the sliding surfaces (Ts). Accordingly, the stability time

of the system is equal to T = Tr + Ts, of which the upper bound

of Tr, Ts is presented in the following.

s1 ¼ e˙ 1 þ α11e
α21

1

s2 ¼ e˙ 2 þ α12e
α22

2

s3 ¼ e˙ 3 þ α13e
α23

3

s4 ¼ e˙ 4 þ α14e
α24

4

8

>

>

<

>

>

:

ð19Þ

Where α1i are positive constants and α2i are constants be-

tween one and zero.

ui ¼ ueqi þ uri
ueqi ¼ − f is− f im

� �

−α1ie
α2i

i

u˙ ri ¼ −c1isig
β1i sið Þ−ηi2sgn sið Þ

8

<

:

ð20Þ

Where c1i are positive constants and β1i are constants between

one and zero.

Proof To prove the finite time stability of the system in Eq. (8),

we need firstly to prove that the system reaches to the sliding

surface in a finite time by using the designed control input in

Eq. (20). Hence, the candidate Lyapunov function is consid-

ered as V xð Þ ¼ ∑4
i¼1

1
2
s2i . This candidate function possesses

condition of Lyapunov function in lemma 1. By differentiating

this candidate function with respect to time and applying the

control input to the system, yields

V˙ xð Þ ¼ ∑4
i¼1si −c1isig

β1i sið Þ−ηi2sgn sið Þ þ d˙ i
� �

ð21Þ

Since we have ‖di‖≤ηi1 and in accordance with definition

1, there comes

V˙ xð Þ≤−∑4
i¼1c1i sij jβ1iþ1 ð22Þ

By substituting sij j ¼
ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffi

V xð Þ
p

into Eq. (22) and in ac-

cordance with lemma 2, one can obtain

V˙ xð Þ≤−∑4
i¼1c1i

ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffi

V xð Þ
p

� �β1iþ1

ð23Þ

Now, by choosing ρ1 ¼ c1i
ffiffiffi

2
p� �β1iþ1

and ρ2 ¼ β1iþ1

2
, we

have

V˙ xð Þ≤−ρ1Vρ2 ð24Þ

According to lemma 1, the system reaches to the sliding

surfaces in a finite time as T s≤4
V x 0ð Þð Þð Þρ2
ρ1 1−ρ2ð Þ .

For the second part of the system stability proof, the finite

time stability proof of the sliding surface of si = 0 must be

performed. For this purpose, the Eq. (19) is equalized to zero,

and then its time derivation is taken as follows (note that si

¼ e˙ i þ α1ie
α2i

i is a general form of Eq. (19))

s˙ i ¼ 0→e˙ i ¼ −α1ie
α2i

i ð25Þ

Also, we have

ei tð Þ ¼ eα2i−1
�

tsi

� �

−α−1
2i−1 1−α−1

2i

� �

t−tsið Þ
�

1
α2i−1 ð26Þ

The numerical solution of Eq. (26) shows that the variables

converge to zero in the finite time, Tr, and the upper bound of

this time is as below [23]

T r ≤∑
4
i¼1

α1i

1−α−1
2i

� � e T sið Þj j α2i−1ð Þ ð27Þ

As a result, the system finite time stability proof is com-

pleted and the system stability time is as T = Tr + Ts. ∎

Two Novel Approaches of Adaptive Nonsingular
Terminal Sliding Mode Control

In this section, two control inputs are designed by using two

different sliding surfaces based on the ANTSMC method

(adaptive control methods) for the presented synchronization

error system of Eq. (8). The adaptive concept is used to esti-

mate the unknown external disturbances and uncertainties and

their estimation is used in the both designed control inputs.

Note that the upper bound of the sum of the uncertainties and

external disturbances (di) are assumed to be not available and

need to estimate, accordingly we have (in accordance with

lemma 3)
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di ¼ hi pi xð Þj j≤ ĥ̂i pi xð Þj j≤h*i pi xð Þj j ð28Þ

Where ĥ is the estimation of the unknown upper bound of the

uncertainties and external disturbances. h∗ is the upper bound

of this estimation which exists according to Lemma 3. Also,

|p(x)| is a nonlinear function of the model of uncertainties and

external disturbances.

Theorem 3 (ANTSMC1) By considering the system in Eq. (8),

and the considered conditions for the upper bound of the un-

certainties and external disturbances in Eq. (28), using the

sliding surfaces in Eq. (10), which is repeated in (29), and

the designed control input in Eq. (30), as well as the adaptive

laws in relation (31), the finite time stability will be guaran-

teed. Therefore, the slave system will be synchronized to the

master system in the finite time T. Note that the stability time

for the system is the sum of the stability of sliding surfaces

( Tr) and the reaching time to the sliding surfaces (Ts).

Accordingly, the stability time of the system is equal to T =

Tr + Ts, of which the upper bound of Tr, Ts is presented in the

following. Note that the unknown upper bound of uncer-

tainties and external disturbances are estimated in this finite

time T and their estimation used in the control input.

s1 ¼ ∫
t f

0 e1dt þ α11e
α21

1

s2 ¼ ∫
t f

0 e2dt þ α12e
α22

2

s3 ¼ ∫
t f

0 e3dt þ α13e
α23

3

s4 ¼ ∫
t f

0 e4dt þ α14e
α24

4

8

>

>

>

<

>

>

>

:

ð29Þ

Where α1i are positive constants and α2i are constants be-

tween one and zero.

ui ¼ ueqi þ uri

ueqi ¼ − f is− f im
� �

−α−1
1i α

−1
2i e

−α−1
2i
þ2

1

uri ¼ −ĥ̂isgn sið Þ pi xð Þj j

8

>

<

>

:

ð30Þ

Where c1i are positive constants and β1i are constants between

one and zero.

ĥ̂˙ i ¼ δiα1iα2ie
α2i−1
i sij j pi xð Þj j ð31Þ

Where δi are positive constants and less than one.

Proof 3 To prove the finite time stability of the system in Eq.

(8), we need firstly to prove that the system reaches to the

sliding surface in a finite time by using the designed control

input in Eq. (30). Hence, the candidate Lyapunov function is

considered as V xð Þ ¼ ∑4
i¼1

1
2
s2i þ 1

2
~h
2

i , where we have

~hi ¼ ĥi−h
*
i . This candidate function possesses condition of

Lyapunov function in lemma 1. By differentiating this candi-

date function with respect to time and by considering ~h˙ i ¼ ĥ˙ i,

yields

V˙ xð Þ ¼ ∑4
i¼1sis

˙
i þ ĥ̂˙ i~hi ð32Þ

By differentiating the Eq. (29) with respect to time and

applying the control input (30), resulting in

V˙ xð Þ ¼ ∑4
i¼1siα1iα2ie

α2i−1
i −ĥ̂isgn sið Þ pi xð Þj j þ hi pi xð Þj j

� �

þ δiα1iα2ie
α2i−1
i sij j pi xð Þj j

� �

~hi

ð33Þ

By adding the term �∑4
i¼1α1iα2ie

α2i−1
i jsijh*i to Eq. (33),

yields

V˙ xð Þ≤∑4
i¼1− sij j α1iα2ie

α2i−1
i h*i pi xð Þj j−hi pi xð Þj j

� �� �

− α1iα2ie
α2i−1
i sij j pi xð Þj j

� �

1−δið Þj~hij
ð34Þ

By assuming ∆1 ¼ ∑4
i¼1 α1iα2ie

α2i−1
i h*i pi xð Þj j

��

−hi pi xð Þj jÞ
Þ and ∆2 ¼ ∑4

i¼1α1iα2ie
α2i−1
i sij j pi xð Þj j 1−δið Þ, there comes

V˙ xð Þ≤ ∑
4

i¼1

− sij j ∆1ð Þ− ∆2ð Þj~hij ð35Þ

Then, by defining ∆min as ∆min ¼ min
ffiffiffi

2
p

∆1;
ffiffiffi

2
p

∆2

� �

and

in accordance with lemma 2, we have

V˙ xð Þ≤−∆minV
1
2 xð Þ ð36Þ

Finally, by choosing ρ1 = ∆min and ρ2 ¼ 1
2
, yields

V˙ xð Þ≤−ρ1Vρ2 xð Þ ð37Þ

According to Lemma 1, the system reaches to the sliding

surfaces in a finite time as T s≤4
V x 0ð Þð Þð Þρ2
ρ1

1
2ð Þ .

The second part of the system stability proof is investigat-

ing the finite time stability of the sliding surface in Eq. (10)

(which is repeated in Eq. (29)). In Eqs. (16) and (17) the finite

time stability proof of the sliding surfaces of Eq. (29) or Eq.

(10) has been performed. Also, its stability time has been

presented in Eq. (18).

As a result, the system finite time stability proof is com-

pleted and the system stability time is as T = Tr + Ts. ∎

Theorem 4 (ANTSMC2) By considering the system in Eq. (8),

and the considered conditions for the upper bound of the un-

certainties and external disturbances in Eq. (28), using the

sliding surfaces in Eq. (19), which is repeated in (37), and

the designed control input in Eq. (38), as well as the adaptive

laws in relation (39), the finite time stability will be guaran-

teed. Therefore, the slave system will be synchronized to the

master system in the finite time T. Note that the stability time

for the system is the sum of the stability of sliding surfaces

( Tr) and the reaching time to the sliding surfaces (Ts).
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Accordingly, the stability time of the system is equal to T =

Tr + Ts, of which the upper bound of Tr, Ts is presented in the

following. Note that the unknown upper bound of uncer-

tainties and external disturbances are estimated in this finite

time T and their estimation used in the control input.

s1 ¼ e˙ 1 þ α11e
α21

1

s2 ¼ e˙ 2 þ α12e
α22

2

s3 ¼ e˙ 3 þ α13e
α23

3

s4 ¼ e˙ 4 þ α14e
α24

4

8

>

>

<

>

>

:

ð38Þ

Where α1i are positive constants and α2i are constants be-

tween one and zero.

ui ¼ ueqi þ uri
ueqi ¼ − f is− f im

� �

−α1ie
α2i

i

uri ¼ −ĥ̂isgn sið Þ pi xð Þj j

8

<

:

ð39Þ

Where c1i are positive constants and β1i are constants between

one and zero.

ĥ̂˙ i ¼ δi sij j pi xð Þj j ð40Þ

Where δi are positive constants and less than one.

Proof 4 To prove the finite time stability of the system in

Eq. (8), we need first to prove that the system reaches to the

sliding surface in a finite time by using the designed control

input in Eq. (39). Hence, the candidate Lyapunov function is

considered as V xð Þ ¼ ∑4
i¼1

1
2
s2i þ 1

2
~h
2

i , where we have

~hi ¼ ĥi−h
*
i . This candidate function possesses condition of

Lyapunov function in lemma 1. By differentiating this candi-

date function with respect to time and by considering ~h˙ i ¼ ĥ˙ i,

yields

V˙ xð Þ ¼ ∑4
i¼1sis

˙
i þ ĥ̂˙ i~hi ð41Þ

By differentiating the Eq. (38) with respect to time and

applying the control input (39), resulting in

V˙ xð Þ ¼ ∑4
i¼1

si −ĥ̂i pi xð Þj j þ hi pi xð Þj j
� �

þ −2 sij j pi xð Þj jð Þ~hi
ð42Þ

By adding the term �∑4
i¼1jsijh*i to Eq. (42), yields

V˙ xð Þ≤∑4
i¼1− sij j h*i pi xð Þj j−hi pi xð Þj j

� �� �

− sij j pi xð Þj jð Þj~hij ð43Þ

By assuming ∆1 ¼ ∑4
i¼1 h*i pi xð Þj j

��

−hi pi xð Þj jÞÞ and

∆2 ¼ ∑4
i¼1 sij j pi xð Þj j 1−δið Þ, there comes

V˙ xð Þ≤∑4
i¼1− sij j ∆1ð Þ− ∆2ð Þj~hij ð44Þ

Then, by defining ∆min as ∆min ¼ min
ffiffiffi

2
p

∆1;
ffiffiffi

2
p

∆2

� �

and

in accordance with lemma 2, we have

V˙ xð Þ≤−∆minV
1
2 xð Þ ð45Þ

Finally, by choosing ρ1 = ∆min and ρ2 ¼ 1
2
, yields

V˙ xð Þ≤−ρ1Vρ2 xð Þ ð46Þ

According to Lemma 1, the system reaches to the sliding

surfaces in a finite time as T s≤4
V x 0ð Þð Þð Þρ2
ρ1

1
2ð Þ .

The second part of the system stability proof is investigat-

ing the finite time stability of the sliding surface in Eq. (19)

(which is repeated in Eq. (37)). In Eqs. (25) and (26) the finite

time stability proof of the sliding surfaces of Eq. (37) or Eq.

(19) has been performed. Also, its stability time has been

presented in Eq. (27).

As a result, the system finite time stability proof is com-

pleted and the system stability time is as T = Tr + Ts. ∎

Results and Discussion

Numerical Simulation

In this section, the numerical simulations of the four proposed

control approaches have been done for the smart grid chaotic

system. The numerical simulation results are carried out in

Simulink/MATLAB by using the ode45 solver and with a

simulation step size of 0.001. The initial conditions of the

master system have been considered as in Section “Model

Description of Chaotic Smart Grid and Problem Statement”.

All initial conditions of the slave systems have been consid-

ered zero, i.e. Xs(0) = [0, 0, 0, 0]T. The selected control param-

eters for this simulation are presented in Table 1.

Also, we have

c1i ¼ 0:5; pi xð Þj j ¼ xis−ximj j;
di ¼ xis−ximj j; δi ¼ 0:5

ð47Þ

The upper bound of the uncertainties and external distur-

bances is considered for two non-adaptive approaches of

NTSMC, as a constant and equal to one i.e.

Table 1 Selected control parameters for the proposed controllers

NTSMC1 NTSMC2 ANTSMC1 ANTSMC2

α11 5.99 60 0.03 60

α12 0.04 60 0.03 60

α13 0.04 60 0.03 60

α14 0.04 60 0.03 60

α21 103/101 7/5 7/5 7/5

α22 103/101 7/5 7/5 7/5

α23 103/101 7/5 7/5 7/5

α24 103/101 7/5 7/5 7/5
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ηi1 ¼ 1; ηi2 ¼ 100. Figures 5, 6, 7 and 8, represent the state

variables x1 to x4 of the master and slave systems for four

designed control methods. It can be obviously observed that

the state variables of the slave system (by applying the pro-

posed controllers) converge precisely to the state variables of

the master system in a finite time (approximately in less than

1 s). In other words, the synchronization errors converge to

zero precisely as soon as the controller is introduced (see

Figs. 5 to 8).

Figures 9, 10, 11 and 12 show the control inputs u1 to u4
for four designed control methods. The unwanted

chattering phenomenon is observed (see Fig. 9) in the con-

trol input of the first designed non-adaptive control method

(NTSMC1). However, this undesirable phenomenon is

eliminated completely in the designed control inputs of

the proposed NTSMC2, ANTSMC1, and ANTSMC2 (see

Figs. 9 to 12).

Comparison and Discussion

To perform a comprehensive comparison, the three following

performance criteria, IAE, ITAE, and ISVare used which have

been presented in [19]. Note that, if the numerical value of

each performance criterion is less than another one, it will

signify that the method is more appropriate. The performance

criteria are defined as follows

(a) Integral of the absolute value of the error (IAE)

IAEi ¼ ∫
t f

0 ei tð Þj jdt ð48Þ

(b) Integral of the time multiplied by the absolute value of

the error (ITAE)
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ITAEi ¼ ∫
t f

0 t ei tð Þj jdt ð49Þ

(c) Integral of the square value (ISV) of the control input

ISVi ¼ ∫
t f

0 ui tð Þj j2dt ð50Þ

The IAE and ITAE are used as the goal numerical measures

of tracking performance for an entire error curve, where tf
shows the total running time. The IAE criterion will provide

an intermediate result. In the ITAE criterion, time appears as a

factor, which will deeply emphasize the errors that occur late

in time. The ISV criterion represents the consumption of en-

ergy [19].

To reveal the effectiveness of the designed controllers in

this study, we have performed the numerical simulation by

using the control input of FOASMCwhich has been presented

in [14] for the considered smart grid chaotic system in Eq. (3).

In fact, the numerical simulation of FOASMC has been done

to calculate the numerical value of the performance criteria

and tomake a comparison with our proposed control methods.

The considered control parameters for the numerical simula-

tions of the FOASMC has been presented in [14]. Note that

the exact same initial conditions have been considered for all

numerical simulations in this study which have been presented

in [14] and Sections “3 and 5” of this article.

The value of the performance criteria is calculated by using

the Trapezoidal method, implemented in the software

Matlab® through command “trapz(t,Xi)” and the numerical

results are presented in Table 2.
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Figures 13, 14, and 15 represent the mean of each perfor-

mance criterion for different considered control methods in the

comparison section.

The key points of the comparison are listed as follows,

& As shown in Fig. 15, both proposed adaptive control

methods (ANTSMC1 and ANTSMC2) and the proposed

NTSMC2 method have a smaller value for the ISV than

two other methods. Note that, The ISV criterion is related

to the amplitude of the control input and lower values of

ISV can be deduced as the lower cost of construction and

lower consumption of energy. Accordingly, ANTSMC1,

ANTSMC2, and NTSMC2 methods are more cost-

effective than two other methods in terms of constructing

control inputs.

& In terms of the value of ITAE criterion, both proposed

adaptive control methods (ANTSMC1 and ANTSMC2)

and the proposed NTSMC1 method are more appropriate

(due to a smaller value of ITAE) than two other methods.

& In terms of the value of the IAE criterion, the proposed

ANTSMC1 method provides the best controller for the

smart grid chaotic system (due to a smaller value).

& The NTSMC1 method in its control input creates the

chattering problem as it is predicted (see Figs. 9 to 12).

However, this destructive phenomenon is eliminated thor-

oughly in the proposed NTSMC2, ANTSMC1, and

ANTSMC2 methods.

& In terms of constructing control inputs, the NTSMC1

and ANTSMC1 methods (where at their sliding sur-

faces the integral elements are used) in comparison

to the other two methods, NTSMC2 and ANTSMC2

(where at their sliding surfaces the derivative ele-

ments are used) are superior. Note that the derivative

elements not only boosts the noise, but it is also

difficult to construct an ideal derivative element.

Conclusion

In this paper, two robust finite time controllers are designed to

synchronize dual smart grid chaotic systems by using non-

Table 2 Performance criteria for different methods

NTSMC1 NTSMC2 ANTSM1 ANTSM2 FOASMC

IAE1 0.1142 0.2717 0.0056 0.1332 0.0242

IAE2 0.0119 0.2427 0.0032 0.1042 0.0152

IAE3 0.0057 0.2072 0.0012 0.0685 0.0067

IAE4 0.0679 0.4098 0.0288 0.2705 0.0877

ITAE1 0.9792 0.5115 0.0021 0.0142 0.2761

ITAE2 0.0930 0.5102 0.0017 0.0128 0.1716

ITAE3 0.0858 0.5084 0.0014 0.0107 0.0736

ITAE4 0.2904 0.5160 0.0079 0.0189 1.0290

ISV1 46.5377 13.6650 22.2144 14.5287 16.7790

ISV2 90.6944 18.1175 24.7743 16.9378 22.8813

ISV3 5843.8 3949.6 4631.2 3872.5 4622.5

ISV4 84.8396 154.8209 36.1542 159.3897 68.5617
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Fig. 13 Comparison of the mean of different methods in terms of the IAE

criterion
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adaptive and adaptive control methods based-on NTSMC.

The adaptive and non-adaptive controllers based on NTSMC

are proposed to provide two alternatives which can adjust by

changing operating conditions and dynamics as well as com-

paring them. The numerical simulation results are carried out

to show the validity of the four proposed controllers for syn-

chronization objective. Then, by performing the simulation

for the FOASMC controller and using three performance

criteria, a comprehensive comparison is made among the pro-

posed controllers in this study and FOASMC controller. In

terms of the numerical values of the performance criteria,

our proposed control methods (especially the proposed adap-

tive control methods) outperform FOASMCmethod. The key

features of the proposed control methods in this study are

finite time stability and robustness against a variety of uncer-

tainties and external disturbances. The elimination of undesir-

able chattering problem is also addressed in this study.

Additionally, the upper bounds of uncertainties and external

disturbances are estimated in a finite time in the proposed

adaptive control methods.
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