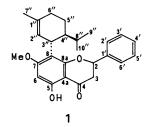
Chem. Pharm. Bull. 35(2) 920-923 (1987)

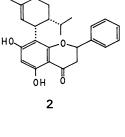
> TWO NOVEL FLAVANONES, METHYLLINDERATONE AND ISOLINDERATONE, FROM LINDERA UMBELLATA THUNB. VAR. MEMBRANACEA (MAXIM.) MOMIYAMA

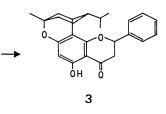
Kazuhiko Ichino, Hitoshi Tanaka, and Kazuo Ito^{*} Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya 468, Japan

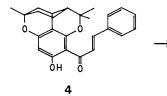
From the fresh leaves of <u>Lindera umbellata</u> Thunb. var. <u>membranacea</u> (Maxim.) Momiyama two new flavanones, methyllinderatone (1) and isolinderatone (2), were isolated. Their structures were established by chemical and spectroscopic means.

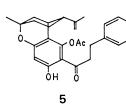
KEYWORDS — Lauraceae; Lindera umbellata var. membranacea; linderatin; linderatone; methyllinderatone; isolinderatone; flavanone; p-menthene

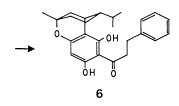

In a previous paper,¹⁾ we reported the isolation and the structural determination of a dihydrochalcone, linderatin (8), from <u>Lindera umbellata</u> Thunb. var. <u>lancea</u> Momiyama and a flavanone, linderatone (7), from <u>Lindera</u> <u>umbellata</u> Thunb. Both compounds are novel flavonoids having a <u>p</u>-menthene substituent. In the course of further investigation of the genus <u>Lindera</u>, we isolated two new flavanone derivatives, named methyllinderatone (1) and isolinderatone (2) from the fresh leaves of <u>Lindera</u> <u>umbellata</u> Thunb. var. <u>membranacea</u> (Maxim.) Momiyama. Here we describe the structure elucidation of these compounds.

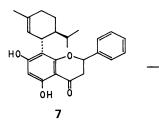

Methyllinderatone (1), a viscous oil, $[\alpha]_D + 68.6^{\circ}$ (c=0.35, CHCl₃), gave a bluish color with ethanolic ferric chloride and was positive to the magnesium-hydrochloric acid test. The molecular formula was determined to be $C_{26}H_{30}O_4$ by the high-resolution mass spectrum (m/z 406.2158). The ¹³C-NMR spectrum indicated the presence of twenty-six carbons (Table I). Other spectra of this compound are: IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3600, 1630, 1570, 1495; UV λ_{max}^{MeOH} nm: 232 (sh), 292, 341 ($\lambda_{max}^{MeOH+AlCl_3}$ nm: 315, 364); ¹H-NMR (CDCl₃) &: 0.79, 0.84 (6H, d x 2, J=7 Hz, two 8"-Me), 1.66 (3H, br s, 1"-Me), 2.76 (1H, dd, J=4, 17 Hz, 3-H_{eq}), 3.10 (1H, dd, J=13, 17 Hz, 3-H_{ax}), 3.77 (3H, s, 7-OMe), 5.16 (1H, br s, 2"-H), 5.43 (1H, dd, J=4, 13 Hz, 2-H), 6.08 (1H, s, 6-H), 7.44 (5H, s, Ar-H), 12.34 (1H, s, 5-OH); CD (c=0.012, MeOH): [0]₃₁₀ +2.00 x 10³, [0]₂₈₉ -6.32 x 10³, [0]₂₅₅ +6.99 x 10³.

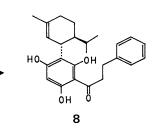

The mass spectrum of 1 showed a molecular ion at m/z 406 indicating an increase of fourteen mass units in comparison with 7. This spectrum also had the characteristic peak at m/z 336 which was formed by the retro Diels-Alder reaction²) of a <u>p</u>-menthene unit as in 7. The ¹H-NMR and ¹³C-NMR spectra of this compound were very similar to those of 7 except for the signal due to a methoxyl function. These results suggest that 1 may be a 7-0-methyl ether of 7 (¹H-NMR


 δ : 3.77 (7-OMe), 12.34 (5-OH)). And treatment of 7 with CH_2N_2 in ether afforded a monomethyl derivative which was identical with 1 in all respects. Therefore, the structure of methyllinderatone is represented by the formula 1.


Next, isolinderatone 2, a viscous oil, $[\alpha]_D - 67.1^\circ$ (CHCl₃, c=1.25), gave a bluish color with ethanolic ferric chloride and was positive to the magnesium-hydrochloric acid test. The molecular formula was determined to be $C_{25}H_{28}O_4$ by the high-resolution mass spectrum (m/z 392.1975). The ¹³C-NMR spectrum indicated the presence of twenty-five carbons (Table I). Other spectra of this compound are: IR ν_{max}^{CHCl} 3 cm⁻¹: 3370, 1640, 1600, 1445; UV λ_{max}^{MeOH} nm: 222, 294, 325 ($\lambda_{max}^{MeOH+AlCl}$ nm: 218 (sh), 315, 384); ¹H-NMR (CDCl₃) &: 0.55, 0.79 (6H, d x 2, J=7 Hz, two 8"-Me), 1.77 (3H, br s, 1"-Me), 2.75 (1H, dd, J=4, 17 Hz, 3-H_{eq}), 3.07 (1H, dd, J=13, 17 Hz, 3-H_{ax}), 3.66-3.92 (1H, m, 3"-H), 5.30 (1H, dd, J=4, 13 Hz, 2-H), 5.50 (1H, br s, 2"-H), 6.04 (1H, s, 6-H), 7.39 (5H, s, Ar-H), 12.34 (1H, s, 5-OH); CD (c=0.333, MeOH): [θ]₃₀₈ +2.12 x 10³, [θ]₂₈₈ -9.42 x 10³, [θ]₂₄₈ +4.71 x 10².







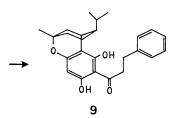


Table I.	' ^S C-NMR Ch	emical Shifts of	1, 2 and 7
	in	Acetone-d ₆	
Carbon	1	2	7
C-2	80.1	79.9	79.7
C-3	43.8	43.8	43.7
C-4	197.4	197.5	196.7
C-4a	103.6	103.5	103.0
C-5	162.6*	165.6*	165.6*
C-6	92.1	96.8	95.8
C-7	167.4*	163.1*	163.3*
C-8	113.3	110.7	111.8
C-8a	162.2*	162.1*	161.7*
C-1'	140.1	140.2	139.9
C-2'	129.5	129.2	129.2
C-3'	127.3	129.1	127.1
C-4'	126.5	127.0	126.2
C-5'	127.3	129.1	127.1
C-6'	129.5	129.2	129.2
C-1"	132.5	133.5	134.0
C-2"	126.5	126.4	126.2
C-3"	35.9	36.3	35.7
C-4"	42.4	43.2	42.4
C-5"	23.6	23.5	23.6
C-6"	31.5	30.3	31.4
C-7"	23.9	23.5	23.9
C-8"	29.3	29.3	29.1
C-9"	16.7	16.7	16.7
C-10"	21.8	21.9	21.9
OMe	56.4	-	-

Table T. 13 C-NMR Chemical Shifts of 1, 2 and 7

* Assignments may be interchanged.

Like 7, the mass spectrum of 2 showed a molecular ion at m/z 406. This spectrum also had a characteristic peak at m/z 322 which was formed by the retro Diels-Alder reaction of a <u>p</u>-menth-1-ene unit as in 1 and 7. The 13 C-NMR spectrum was similar to that of 7 except for a few signals assigned to the carbons of monoterpene unit (Table I). The ¹H-NMR spectrum also showed close similarity to that of 7 except for the chemical shifts of the geminal methyl groups. Comparison of the ^{13}C - and ^{1}H -NMR spectra of 2 with those of 5,7dihydroxyflavanone also showed close similarity. This compound also seemed to be a 5,7-dihydroxyflavanone containing a monoterpene substituent on the A ring. The stereochemistry of its flavanone skeleton was the 2S configuration as in 7 according to the CD spectrum.³⁾ And the negative result of the Gibbs test and the bathochromic shift in the UV spectrum support the idea that 2 has a \underline{p} -menth-1-ene group, not on the C-6 but on the C-8 position in the A ring, as mentioned^{1b)} about 7.

No. 2

Next, from careful investigation by ¹H-NMR spectroscopy, we found that the signal of $C_{3"}$ -H was observed as multiplet⁴) in 2, while it was found to be doublet in 7^{1b} ($J_{3"}H, 4"_{H} = 10 \text{ Hz}$) and 8^{1a} ($J_{3"}H, 4"_{H} = 12 \text{ Hz}$). This suggests that 2 might have been a C-4" epimer (cis-isomer) of 7 concerning on the substitution pattern of the monoterpenoid unit. We already reported¹) that hydrogenolysis of 7 followed by acid treatment of the resulting product 8 gave cyclolinderatin (9). Isolinderatone (2), the C-4" epimer (cis-isomer) of 7, also can be converted into the corresponding dihydrochalcone 6 (C-4" epimer of 9), which can be obtained from the readily available rubranin (4).⁵

Thus, catalytic reduction of 4 with Pd-C in AcOEt followed by selective cleavage of the pyran ring with Ac_2O afforded an isopropenyl derivative 5. And compound 5 was transformed into the cis-isomer 6^{6} by catalytic reduction and subsequent hydrolysis. Next, acid treatment of 2, followed by hydrogenolysis of the resulting cyclization product 3, gave a compound which was identical in all respects, not with 9 but with product 6 derived from 4.

Therefore, the structure of isolinderatone must be represented by the formula 2. It is particularly interesting that we could obtain the two epimers 2 and 7 from the same natural source.

REFERENCES AND NOTES

- a) H. Tanaka, K. Ichino, and K. Ito, Chem. Pharm. Bull., 32, 3747 (1984);
 b) idem, ibid., 33, 2602 (1985).
- 2) T. Nomura, T. Fukai, Y. Hano, K. Nemoto, S. Terada, and T. Kuramochi, Planta Medica, 47, 151 (1983).
- 3) W. Gaffield, Tetrahedron, 26, 4093 (1970).
- 4) In the ¹H-NMR spectrum of 7 or 8, the signal of $C_{3"}$ -H was observed as doublet $(J_{3"H,4"H} = 10 \sim 12 \text{ Hz})$ and no coupling was found between $C_{2"}$ -H and $C_{3"}$ -H. Further investigation with molecular models (Dreiding models) revealed the fact that the dihedral angle between the two protons was approximately a right angle. On the other hand, the signal of $C_{3"}$ -H in 2 was observed as complicated pattern, in which the dihedral angle between $C_{2"}$ -H and $C_{3"}$ -H was not a right angle.
- 5) G. Combes, and Ph. Vassort, Tetrahedron, 26, 5981 (1970).

(Received December 23, 1986)