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Abstract: For the purpose of broadening the understanding of the sulfonic acid coordination mecha-
nism, a coordination system consisting of Eu(III) ion and 1,3,6,8-pyrene tetra-sulfonate (1,3,6,8-PTS)
ligand was chosen as the typical research object. By step regulating the volume ratio of mixed
solvents and the molar ratio of metal salts to ligands, two pyrene tetra-sulfonate europium co-
ordination polymers, Eu6(µ6-O)(µ3-OH)8(NO3)6(1,3,6,8-H2PTS)(H2O)10 (1) and Eu(NO3)(1,3,6,8-
PTS)0.5(H2O)3·0.5bipy (2), were obtained in sequence. Compound 1 shows a 1D chain-like structure
interconnected with 1,3,6,8-PTS bridging ligands and rare [Eu6(µ6-O)(µ3-OH)8(NO3)6]2+ cluster
nodes, while compound 2 shows a 2D layered structure. Further structural comparison with com-
pound Eu(1,3,6,8-PTS)(H2O)7·4H2O·Hbipy (EuPTSbp-1) was discussed in detail and the structure
formation mechanism was analyzed. On this basis, a sequential modulation strategy for pyrene
tetra-sulfonate europium coordination polymers was proposed.

Keywords: MOCPs; aryl sulfonic acid; coordination modes; crystal structure regulation

1. Introduction

Metal–organic coordination polymers (MOCPs), or commonly known as metal–organic
frameworks (MOFs) or metal–organic coordination networks (MOCNs) in some cases,
usually refer to coordination compounds with a periodic extended infinitely in a one-
dimensional, two-dimensional, or three-dimensional network structure formed by the
coordination of bonds between metal ions and organic ligands. They have diverse and eas-
ily modified skeletal structures, and many of them also have a functionalized pore structure
with large porosity and specific surface area. These intriguing features lead widespread
applications including gas storage and separation, catalysis, fluorescence sensing, opto-
electronics, magnetic materials, bioengineering, and so on [1–15]. In recent years, MOCPs
have also received extensive attention as precursors and templates for the preparation of
various kinds of derivatives, including nanostructured carbon; metal oxides (MOs); metal
composites (M/MO@C); and other metal-containing compounds such as metal nitrides
(MNs), metal carbides (MCs), and so on [16–26]. As the properties of MOCPs and even
their derivatives are significantly affected by the MOCPs’ structures, it is crucial to have a
fundamental understanding of the effects of synthesis conditions (e.g., temperature, solvent
environment, pH, reagent concentration and molar ratio, the presence of counter ions, and
template reagent, among others) for structure regulation [27–31].

As the essential components of MOCPs, the coordination habit of metal ion centers
and various organic ligands can easily become research hotspots. Among them, aryl
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sulfonic acid ligands have attracted extensive attention in recent years owing to their
flexible coordination modes, including but not limited to η1, η2, η2µ2, η1µ2, η3µ3, and so
on [32–34]. Besides, sulfonic-acid-derived MOCPs exhibit excellent structural stability and
excellent biocompatibility in general [35–39]. However, the studies on the regulation of
sulfonic acid coordination mode are still lacking. Therefore, it’s worth the effort to study
the factors that affect coordination modes and explore a sequential modulation strategy for
aryl sulfonic-acid-derived MOCPs.

In this work, Eu(III) ion and 1,3,6,8-pyrenetetra-sulfonic (1,3,6,8-PTS) ligand were se-
lected as research objects for the following reasons: (1) rare earth ions are easily coordinated
with oxygen and may be sensitive to aqueous mixed solvent systems; (2) the PTS ligand
with a large conjugated system and four sulfonic groups can easily form various kinds of
π−π interactions and bridge connections, potentially increasing the coordination flexibility.

Previously, we reported an MOCP named Eu(1,3,6,8-PTS)(H2O)7 · 4H2O · Hbipy
(now abbreviated as EuPTSbp-1) [40]. The unique structure provides a 1D snake-shaped
chain structure with the aid of the π–π stacking effect of the 4,4′-bipyridine auxiliary
template. For the purpose of exploring the sequential modulation strategy for pyrene tetra-
sulfonate europium coordination polymers (EuPTS-CPs), a series of solvothermal synthesis
experiments were carried out and two EuPTS-CPs with different crystallographic structures
were successively obtained. Their crystal structures were described and compared with
EuPTSbp-1 in detail.

2. Materials and Methods

All starting materials and solvents were obtained from commercial sources and used
without further purification.

2.1. Synthesis of Eu6(µ6-O)(µ3-OH)8(NO3)6(1,3,6,8-H2PTS)(H2O)10 (1)

In a typical synthesis procedure, a mixture of 1,3,6,8-pyrenetetra-sulfonic acid tetra-
sodium salt (1,3,6,8-PTS, 1.25 mmol, 0.763 g), Eu(NO3)3·6H2O (1.25 mmol, 0.558g), and
4,4′-bipyridine (1.25 mmol, 0.195 g) was added into a 25 mL Teflon inner liner, followed
by the addition of 0.5 mL distilled water and 4.5 mL anhydrous ethanol. After stirring
for 5 min, the Teflon inner liner was sealed into a stainless-steel vessel, heated to 90 ◦C
within 120 min, kept at 90 ◦C for 3 days, and cooled to room temperature for 3 days. A
mixture of the compound 1 and residue of yellow precipitation and structurally unknown
yellow polycrystalline was obtained; no compound 2 or compound EuPTSbp-1 was found
in this mixture. Colorless prism shaped crystal samples for single crystal X-ray diffraction
analysis were carefully picked manually from the mixture, under an optical microscope.
For the purpose of obtaining the pure phase for compound 1, many efforts were made to
optimize the synthesis conditions, but they turned out to fail.

2.2. Synthesis of Eu(NO3)(1,3,6,8-PTS)0.5(H2O)3·0.5bipy (2)

In a typical synthesis procedure, a mixture of 1,3,6,8-pyrenetetra-sulfonic acid tetra-
sodium salt (1,3,6,8-PTS, 1.25 mmol, 0.763 g), Eu(NO3)3·6H2O (15 mmol, 6.692 g), and
4,4′-bipyridine (1.25 mmol, 0.195g) was added into a 25 mL Teflon inner liner, followed
by the addition of 1.0 mL distilled water and 9.0 mL anhydrous ethanol. After stirring for
5 min, the Teflon inner liner was sealed into a stainless-steel vessel, heated to 90 ◦C within
120 min, kept at 90 ◦C for 3 days, and cooled to room temperature for 3 days. A mixture of
compound 2 and the residue of yellow precipitation and structurally unknown colorless
polycrystalline was obtained; no compound 1 or compound EuPTSbp-1 was found in this
mixture. Colorless flake crystal samples for single crystal X-ray diffraction analysis were
carefully picked manually from the mixture, under an optical microscope. In order to
obtain the pure phase for compound 2, many experiments were carried out to optimize the
synthesis conditions, but the results were unsuccessful.
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2.3. X-ray Crystallographic Study

The single crystal X-ray diffraction intensity data of compounds 1 and 2 were col-
lected on a Saturn 724HG CCD single crystal X-ray diffractometer using a graphite-
monochromatic Mo Kα radiation (λ = 0.71073 Å) at 153K under N2 flow. Diffraction
intensity data were corrected by CrystalClear program (version 1.3.6). Using Olex2 (version
1.3.0) [41], the structure was solved with the olex2.solve [42] structure solution program
using Charge Flipping and refined with the SHELXL (version 2018/3) [43] refinement
package using least squares minimisation. A solvent mask supported by Olex2 was used
to omit the free solvent molecules in compound 1. The volume of these voids is 527.9 Å3

based on the formula unit. All nonhydrogen atoms were refined anisotropically. Hydrogen
atoms were generated at geometrically calculated positions. The relevant crystallographic
data and structure determination are listed in Table 1. The nearest metal–metal distance
[Å] and main bond length [Å], and bond angle [◦] in compound 1 and 2 are listed in Tables
S1 and S2. CCDC 2213150 and 2213151 contain the supplementary crystallographic data.
These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/
(accessed on 11 December 2022) or from the CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement parameters for compounds 1–2.

Compounds 1 2

Empirical formula C16H36O49N6S4Eu6 * C13H13O12N2S2Eu
Formula weight 2136.51 605.33
Color and habit Colorless Prism Colorless Flake
Crystal system Triclinic Triclinic
Space group P-1 P-1
a (Å) 9.658(11) 7.376(5)
b (Å) 10.668(14) 11.682(9)
c (Å) 17.12(2) 11.757(9)
α (◦) 89.46(4) 110.813(10)
β (◦) 82.75(5) 104.856(9)
γ (◦) 81.24(3) 95.367(3)
V (Å3) 1729(4) 896.0(12)
Z 1 2
Dc (g cm−3) 2.052 2.244
µ (mm−1) 5.578 3.806
F (000) 1008 592
θ range (◦) 3.02 to 27.42 2.96 to 27.53

h, k, l, ranges
−12 to 12, −9 to 9,
−13 to 13, −15 to 15,
−21 to 21 −15 to 15

T/K 153(2) 153(2)
R1, a wR2

b [I > 2σ(I)] 0.0868, 0.2394 0.0479, 0.1118
GOF on F2 1.008 0.993

a R1 = ∑||Fo | − |Fc||/ ∑|Fo |. b wR2 = [∑ w
(

F2
o − F2

c
)2/ ∑ w

(
F2

o
)2
]
1/2

. * The listed parameters do not take into
account the full chemistry of compound 1.

3. Results and Discussion
3.1. Crystal Structure

As mentioned above, compounds 1 and 2 with two different crystal structures were
synthesized by the solvothermal method, with different metal/ligands molar ratio in
reactants. It is a pity that the pure phase for neither compound 1 nor compound 2 was
obtained in the end, despite a series of attempts. The crystal samples for single crystal
X-ray diffraction analysis were picked manually from the corresponding impure products
under an optical microscope. Nevertheless, crystal samples of compounds 1 and 2 are still
reproducible, and discussing the crystal structure evolution of compounds EuPTSbp-1 to 1

https://www.ccdc.cam.ac.uk/structures/
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to 2 with the change of solvothermal synthesis conditions is still of positive significance for
studying the coordination habit of aryl sulfonic acids.

3.1.1. Eu6(µ6-O)(µ3-OH)8(NO3)6(1,3,6,8-H2PTS)(H2O)10 (1)

According to single crystal X-ray diffraction data, compound 1 belongs to the triclinic
P1 space group. As shown in Figure 1a, [Eu6(µ6-O)(µ3-OH)8(NO3)6]2+ hexanuclear eu-
ropium oxygen cluster nodes were contained in compound 1. In this europium oxygen
cluster, six Eu(III) ions are connected by eight µ3-OH group and one µ6-O2− ion to form an
eight-caped octahedron structure, of which Eu(III) ions, µ3-OH groups, and µ6-O2− ion are
located at the vertices, the face-centers, and the body center, respectively, as shown in Fig-
ure 1b. Besides these bridge-linked oxygen atoms, Eu2 is coordinated by two oxygen atoms
from coordinated H2O molecules and chelated by two oxygen atoms from one NO3

− ion.
The coordination environment of Eu3 is similar to that of Eu2, but the spatial orientation of
coordination groups is different. For Eu1, a coordinated oxygen atom from H2O is replaced
by an oxygen atom from the ligand sulfonic acid group, in which way two 1,3,6,8-PTS
ligands are connected by the europium oxygen clusters to form 1D chains, as shown in
Figure 2. Such 1D chains pack through weak interactions and form the spatial structure of
compound 1, as shown in Figure 3. For demonstrating the asymmetric unit in compound 1,
an ORTEP representation is shown in Figure S1. By simplifying the europium oxygen
clusters to a node and the 1,3,6,8-pyrene tetra-sulfonic acid ligand to a two-connected node,
the simple 1D chain-like structure topology diagram of compound 1 was obtained, as
shown in Figure S2.
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Figure 1. (a) Coordination environment of the Eu(III) ions in compound 1; (b) hexanuclear Eu(III)-O
clusters in compound 1. Symmetry codes: (A) −x + 2, −y+4, −z + 2; (B) −x + 3, −y + 4, −z + 1 (the
C atoms and H atoms were omitted for clarity).
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3.1.2. Eu(NO3)(1,3,6,8-PTS)0.5(H2O)3·0.5bipy (2)

According to the single crystal X-ray diffraction data, compound 2 belongs to the
triclinic P1 space group. As shown in Figure 4, each Eu(III) ion is coordinated with three
oxygen atoms (O1, O2, and O4) from two sulfonic acid groups of 1,3,6,8-pyrene tetra-
sulfonic acid ligands and three oxygen atoms (O10, O11, and O12) from coordinated H2O
molecules, and is chelated by two oxygen atoms from one NO3

− ion, showing an eight-
coordinate configuration. For demonstrating the asymmetric unit in compound 2, an
ORTEP representation is shown in Figure S3. A 2D layered structure is formed by the
1,3,6,8-pyrene tetra-sulfonic acid ligands connecting the Eu(III) ion nodes, as shown in
Figure 5. The sulfonic acid groups of pyrene tetra-sulfonic acid ligands are coordinated
with Eu(III) ions in two different modes. One is to connect one Eu(III) ion node in a η1 way,
and the other is to connect two Eu(III) ion nods in the form of η2-µ2 mode. By simplifying
the 1,3,6,8-pyrene tetra-sulfonic acid ligand to a four-connected node, the layered structure
topology diagram of compound 2 can be obtained, as shown in Figure 5b. The Schläfli
symbol can be expressed as (333 · 433).
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Figure 5. (a) Two-dimensional layered structure and (b) corresponding topological diagram in
compound 2.

The spatial structure of compound 2 is formed by the stacking of pyrene tetra-sulfonic
acid ligands in each layer through 4,4′-bipyridine molecules between layers, as shown in
Figure 6. It can be speculated that 4,4′-bipyridine molecules play a template role in the
synthesis of this compound.
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3.2. Structure Comparison and Formation Mechanism Speculation for EuPTS-CPs

As mentioned above, the compound EuPTSbp-1 has a 1D snake-shaped structure
in which the 4,4′-bipyridine auxiliary template acts as an important media of the π−π
stacking effect, eventually leading to the formation of such a structure. It is synthesized by
the solvothermal method, where the molar ratio of metal/PTS ligand is 1:1 and the volume
ratio of mixed H2O/EtOH solvent is also 1:1.

To regulate the crystal structure of the product, the volume ratio of mixed H2O/EtOH
solvent was modulated to be 1:9 and the other reaction conditions including reactant ratio
remain unchanged. The obtained compound 1 shows a 1D chains structure, which is
similar to EuPTSbp-1 (Figure 7). The coordination modes of the PTS ligands in these
two compounds are the same too. In this way, only two para-sulfonic acid groups are
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involved in coordination, who connects one Eu(III) ions in a η1 way, respectively (the
second line in Figure 8). The main difference is the coordination environment of Eu(III)
ions. As shown in Figure 8, for compound EuPTSbp-1, the Eu(III) ion is coordinated with
nine oxygen atoms, two of which belong to sulfonic acid groups of PTS ligands and the
other seven oxygen atoms come from coordinated H2O molecule. While the situation is
different in compound 1, presumptively owing to the reduction of H2O content in mixed
solvents, nitrate ionization becomes difficult in ethanol-rich solvents, leading to partially
maintain chelated to Eu(III) ions and occupying two coordination sites. On the other hand,
because of the strong coordination effect of hydroxide on rare earth ions [44,45], hydroxide
and even O2− ions ionized from H2O molecules bridges with multiple Eu(III) ions in an
efficient µ3 even µ6 bridging mode result to form an hexanuclear europium oxygen cluster
nod, so that the relatively scarce hydroxides in ethanol-rich solvents can be fully utilized.
As a rough estimate, each Eu(III) ion coordinates with seven H2O molecules in EuPTSbp-1,
while six Eu(III) ions only share fifteen hydroxide or O2− ions ionized from H2O.
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It is worth mentioning that, except for the different ligands and other non-bridged
coordination groups such as coordinated water molecules and nitrate ions, the hexanuclear
[Eu6(µ6-O)(µ3-OH)8(NO3)6]2+ clusters in compound 1 are almost identical to the lanthanide-
based octahedral hexanuclear complexes reported by Guillaume Calvez et al. [46], though
different synthesis methods are used. The lanthanide-based octahedral hexanuclear com-
plexes were synthesized by dropwise adding an aqueous solution of sodium hydroxide
to a solution of lanthanide nitrate in a mixture water/ethanol (1:9) while vigorously mag-
netically stirring. Compared with the synthesis methods in this paper, it is not difficult
to find that the reaction products are both obtained in an alkaline mixture water/ethanol
solution environment (1:9) in these two different synthetic methods. This is not entirely
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a coincidence. It is well known that the lanthanide ions are easily hydrolyzed in water-
rich environments to form stable polymeric species such as Ln(OH)2NO3, LnONO3, and
Ln(OH)3 [47–49]. Reacting in an alkaline mixture water/ethanol solution environment
seems to be necessary to inhibit the hydration of lanthanide ions.

Furthermore, several derived complexes based on this previous reported lanthanide-
based octahedral hexanuclear complexes have been reported [50–54]. In these studies, a
sequential synthesis strategy was used by means of substituting coordination groups on
the base of pre-synthesized lanthanide-based octahedral hexanuclear complexes, which
indicates a new research direction for the optimization of synthesis methods for compound 1
and even for the development of a family of MOCPs constructed by the lanthanide-based
octahedral hexanuclear complexes as net nodes.

Furtherly, based on the synthesis conditions of compound 1, the molar ratio of
metal/ligands was modulated to be 15:1.25 and the other reaction conditions remain
the same. Here, the metal salts are severely excessive in comparison with ligands. The
obtained compound 2 turns out to be a 2D layered structure, which is packed by the π−π
stacking effect with the help of the 4,4′-bipyridine auxiliary template (Figure 7). Obviously,
high concentrations Eu(III) ions cause each PTS ligand coordinate to have six Eu(III) instead
of two. It should be noted that all the four sulfonic acid groups of PTS ligand are involved
in the coordination to Eu(III) ions, and the coordination modes include η1 and η2-µ2, which
highlights the richness and flexibility of the coordination modes of sulfonic acid ligands.
It is worth mentioning that the coordination modes of Eu(III) ions are unlike that of the
compound 1, which has a hexanuclear europium oxygen cluster, with neither similar than
the compound EuPTSbp-1. As a synthetic product in the same solvent ratio with com-
pound 1, chelated nitrate ions still occupies two coordination sites in compound 2, which is
the same as the former. Because of the domination of sulfonic acid group coordination and
the space steric hindrance effect of PTS ligands, only three coordination sites are left for
H2O molecules, which eventually leads to an eight-coordination mode of Eu(III) ion.

In summary, the coordination habit of rare earth ions and the coordination modes of
sulfonic acid ligands are both diverse and flexible. Modulating the solvent environment
could regulate the coordination modes of rare ions, and modulating the metal/ligands
molar ratio could stimulate or inhibit the coordination of sulfonic acid groups of ligands.
This allows sequential modulation on the coordination modes of rare-earth metal ions and
aryl sulfonate acid ligands, presenting a new way for structure regulation of sulfonic acid
coordination polymers.
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