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ABSTRACT
Two subproblems that arise when routing channels with interchangeable terminals are shown to
be NP-hard. These problems are:

P1: Is there a net to terminal assignment that results in an acyclic vertical constraint graph?

P2: For instances with acyclic vertical constraint graphs, obtain net to terminal assignments for
which the length of the longest path in the vertical constraint graph is minimum.
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1 Introduction
The problem of routing channels with interchangeable terminals arises, for example, when

the cells on either side of the channel are programmable logic cells (e.g. ROMs and PLAs). An
instance of this problem is shown in Figure 1(a). This instance consists of eight cells A − H.
Cells A − D are on one side (top/upper) of the channel while cells E − H are on the other
(bottom/lower). On the top side, terminals 1 − 4 are in cell A. While terminals 12 − 15 on the bot-
tom side of the channel are in cell H. The nets to be assigned to the terminals of a cell are given
in braces. Thus, the nets for cell C’s five terminals are NETS(C)={1,1,3,4,5}. Since the termi-
nals in a cell are interchangeable, all net to terminal assignments are permissible. Figures 1(b)
and 1(c) show two possible assignments of nets to terminals.

With any assignment of nets to terminals, we may associate a vertical constraint graph
(VCG). This graph has one vertex for each net. In addition, the directed edge <i, j > is an edge of
the VCG iff there is a k such that net i is assigned to terminal k on the top side of the channel and
net j is assigned to terminal k on the bottom side of channel. The VCGs for the assignments of
Figures 1(b) and (c) are shown in Figures 1(d) and (e), respectively.

Many channel routing algorithms require the VCG to be acyclic. Futher, the height of the
VCG (i.e., the length of the longest path in the VCG) is a lower bound on the number of horizon-
tal tracks needed to route the channel when two routing layers ( one for horizontal and the other
for vertical routes ) are available. Keeping these factors in mind, Kobayashi and Drozd
[KOBA85] have proposed a three step method to assign nets to terminals. The three steps are:

1. Permute the terminals in each cell so as to maximize the number of aligned terminal pairs.

2. Exchange terminals that are in nonaligned pairs so as to remove cyclic constraints in the
resulting vertical constraint graph.

3. Exchange terminals so as to reduce the height of the vertical constraint graph.

Lin and Sahni [ LIN86 ] have developed a linear time algorithm for step 1. In this paper,
we show that the remaining two steps are NP-hard. We show this by reducing the known NP-
complete problem monotone 3SAT to each of these. Monotone 3SAT [ GARE79]

INPUT:Set V of variables, collection C of clauses over V such that each clause cεC has
�
 c  

�
 = 3 and

contains either only negated variables or only un-negated variables.

QUESTION:Is there a satisfying truth assignment for C ?

2 Basic constructs
In this section we develop some interchangeable terminal instances that will be used in our

proofs. We show how the possible terminal assignments for these instances may be interpreted
as truth assignments for logical variables.

2.1 Truth Assignment Box
A truth assignment box for a variable x consists of two cells A and B on the upper side of the

channel and one, C, on the lower side ( see Figure 2(a) ). Cells A and B each have one terminal
while cell C has two. NETS(A)= { x }, NETS(B)= { x

_
}, and NETS(C)= { T, F }. There are

exactly two ways in which the nets can be assigned to the terminals of A, B, and C. These are
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shown in Figures 2(b) and (c). We shall interpret the assignment of Figure 2(b) as setting vari-
able x to true and x

_
to false. This assignment is called a true assignment. The assignment of Fig-

ure 2(c), called a false assignment, corresponds to setting x to false and x
_

to true. The VCG
corresponding to the assignment of Figure 2(b) is shown in Figure 2(d) and that corresponding to
the assignment of Figure 2(c) is shown in Figure 2(e). A truth assignment box for variable x,
TAB( x ), will be drawn schematically as in Figure 2(f). We will refer to the four terminals as
TAB(x).x, TAB(x).x

_
, TAB(x).T, and TAB(x).F .
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{x
_
}
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x x
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T F
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x x
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T F

x x
_

T F

x x
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(a) (b) (c) (d) TAB(x)=1 (e) TAB(x)=0 (f) TAB(x)
x set to true x set to false

Figure 2: Truth assignment box
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_

(a) (b) (c) (d)ITAB(x)=1 (e)ITAB(x)=0 (f)ITAB(x)
x set to true x set to false

Figure 3:Inverted truth assignment box

2.2 Inverted Truth Assignment Box
An inverted truth assignment box, ITAB, is identical to a TAB except that the schematic is

drawn upside down ( see Figure 3 ). The upside down drawing of the schematic results in cleaner
figures.
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(d) VCG for (b)
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5

4

3

(e) VCG for (c)

Figure 1: An instance of the interchangeable terminal routing problem.

2.3 TAB Connection Box
A TAB connection box is used to connect the VCGs of two TABs. Consider the two TABs
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of Figure 4(a). The connection box for these consists of four cells D, E, F, and G as shown in Fig-
ure 4(b). There are four possible VCGs for the interchangeable terminal instance that consists of
the two TABs and the connection box. These correspond to the four terminal assignments TT (x
and y are true ), TF, FF, and FT and are shown in Figure 5. Figure 5(e) shows the schematic for
two TABs and a connection box. >From Figure 5, we observe that the TF terminal assignment
results in a VCG with a cycle while the VCG for the remaining three terminal assignments are
acyclic.

x x
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Tx Fx

y y
_

Ty Fy

(a)

D

{Fy}
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{Fx}

{x
_
}

F

{y}
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(b)

Figure 4: TAB Connection Box
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x x
_

Tx Fx

y y
_
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(e) schematic

Figure 5

2.4 TAB Chain
A TAB chain consists of k,  k  ≥ 1, TABs, TAB(x 1), ..., TAB(xk) with a connection box for

each pair of TABs, ( TAB(xi), TAB(xx +1) ), 1 ≤ i  < k. The schematic for this is shown in Figure 6.
The following property is an immediate consequence of our discussion of the preceding section.
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Property 1:The VCG for a TAB chain is acyclic iff one of the following is true:

a) The terminal assignment for all TABs is true.

b) The terminal assignment for all TABs is false.

c) There exists a j, 1≤j<k, such that the terminal assignment for TAB(xi), 1≤i≤j is false and that
for the remaning TABs is true.

k −6 TABs
.. . . . . . . . . . . . . . . . .. . .

Figure 6: TAB Chain

2.5 ITAB connection box
The connection box for two inverted truth assignment boxes ITAB(x) and ITAB(y) is simi-

lar to that for two TABs and is shown in Figure 7. The schematic for the two ITABs and their
connection box is shown in Figure 8(e). Figures 8(a)-(d) show the VCGs for the four possible
terminal assignments. The VCG for the TF assignment contains a cycle. The remaning three
VCGs are acyclic.

x x
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y y
_

Ty Fy

(a)

D

{Fy}

E
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{x
_
}

F

{y}
G

(b)

Figure 7: ITAB Connection Box

2.6 ITAB Chain
This is just k ITABs and k −1 ITAB connection boxes. The schematic is shown in Figure 9.

The following property is readily verified.

Property 2:The VCG for an ITAB chain is acyclic iff one of the following is true:

a) All ITABs are assigned true.

b) All ITABs are assigned false.
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Figure 8

c) There exists a j,  1 ≤ j  < k, such that the terminal assignment for ITAB(xi), 1 ≤ i  ≤ j, is false
and that for the remaining ITABs is true.

k −6 ITABs
.. . . . . . . . . . . . . . . . .. . .

Figure 9: ITAB Chain

2.7 TAB to ITAB Isolation Connection
An isolation connection is used to connect together a truth assignment box TAB(x) and an

inverted truth assignment box ITAB(y). The connection is established using six cells as shown in
Figure 10(a). As can be seen from Figures 10(b)-(e), if the TAB and ITAB have different truth
assignments, then the VCG has a cycle. Figure 11(a) shows the schematic for a TAB chain and
an ITAB chain. The rightmost TAB is connected to the leftmost ITAB using an isolation connec-
tion.

Property 3:
Assume that a TAB and ITAB chain are connected using an isolation connection as in Fig-

ure 11(a). If the VCG for the resulting chain has no cycles, then the following are true:

(i) The VCG has no path that begins in a TAB other than the rightmost one and ends in an
ITAB other than the leftmost ITAB.

(ii) The VCG has no path that begins in an ITAB other than the leftmost one and ends in a TAB
other than the rightmost one.

In other words, an isolation connection isolates the TABs from the ITABs and vice versa.
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Proof: >From Figures 10(b)-(e), it follows that if the VCG of Figure 11(a) has no cycle, then the
rightmost TAB and leftmost ITAB have the same truth assignment. Hence there are only
two possibilities for the VCG for the rightmost TAB, the leftmost ITAB, and the isola-
tion connection. Thus, this part of the VCG has one of the forms given in Figures 11(b)
and (c). As can be seen, there can be no path that violates (i) or (ii).
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_
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_
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_
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x x
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y y
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(f) schematic

FIGURE 10: Isolation connection

2.8 ITAB to TAB Isolation Connection
This is shown in Figure 12. It has the same properties as a TAB to ITAB isolaion connec-

tion.

3 Acyclic VCG ( Problem P1 ) is NP-hard

We show this by reducing monotone 3SAT to P1. Specifically, we show how to construct
an instance P (S) of P1 for any given instance S of monotone 3SAT. P (S) has the following pro-
perties:

(i) P (S) may be constructed from S in polynomial time.

(ii) P (S) has a terminal assignment with an acyclic VCG iff S is satisfiable.

Properties (i) and (ii) imply that P1 is NP-hard. Actually, P1 is readily seen to be solvable
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FIGURE 11: Isolation from TAB chain to ITAB chain
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FIGURE 12: Isolation from ITAB chain to TAB chain

in nondeterministic polynomial time. Hence this observation together with our NP-hard proof
imply that P1 is NP-complete.
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3.1 Construction of P (S)
Let S be any instance of MONOTONE 3SAT. Let m and k, respectively, be the number of

variables and clauses in S. The clauses in S may be partitioned into two sets U and N. U contains
all clauses that contain only unnegated variables and N contains all clauses that contain only
negated variables. Let u and n, respectively, be the number of clauses in U and N. Clearly,
u +n  = k. As an example, consider the case: S  = ( A+B+C  ) . ( A+C+D ) . ( B

_
+C

__
+D

__
 ) . For this, U

= { (A+B+C), (A+C+D) }, N  = {(B
_

+C
__

+D
__

) }, u  = 2, and n  = 1.

For each of the m variables in S, construct a row of TABs and ITABs. Each such row con-
sists of k ( note k is the number of clauses in S ) TAB and ITAB chains connected by TAB to
ITAB or ITAB to TAB isolation connections as appropriate. Specifically, each row is a TAB
chain with two TABs followed by an ITAB chain with 3 ITABs; followed by a TAB chain with 3
TABs; followed by an ITAB chain with 3 ITABs; etc.

For our example S,  m = 4 and k  = 3. So we will have 4 rows of TABs and ITABs with each
row consisting of a TAB chain with 2 TABs; followed by an ITAB chain with 3 ITABs; followed
by a TAB chain with 2 TABs. This is shown in Figure 13. Note that TAB to ITAB isolation con-
nections are used to connect the first TAB chain of each row to the ITAB chain in that row and
that ITAB to TAB isolation connections are used to connect the ITAB chain in each row to the
second TAB chain in that row.

For each i,  1 ≤ i  ≤ k, the truth boxes in column 3i −2 of the above construction will be used to
represent a distinct clause of S. The first u of these columns ( i.e., columns 1, 4, 7, ..., 3u −2 ) will
represent the u unnegated clauses of S while the last n of these columns ( i.e., columns
3u +1, 3u +4, ..., 3k −2 ) will represent the n negated clauses.

Let U1 , U2 , ..., Uu be the u unnegated clauses. Let Ui = (xi 1
+xi2

+xi3
). Without loss of gen-

erality, we may assume that the TAB/ITAB row for variable xi 1
is above that for xi 2

, which in turn
is above that for xi3

. Column 3i −2 of the truth box construction of Figure 13 is used to represent
Ui. If i is odd, this column contains TABs. Otherwise, it contains ITABs. We introduce the three
edges < TAB(xi 1

).F , TAB(xi2
).xi2

 > , < TAB(xi 2
).F , TAB(xi3

).xi3
 > , < TAB(xi3

).F , TAB(xi1
).xi1

 > in
case this is a column of TABs and the three edges < ITAB(xi1

).F , ITAB(xi 3
).xi 3

 > , < ITAB(xi3
).F ,

ITAB(xi 2
).xi 2

 > , < ITAB(xi2
).F , ITAB(xi 1

).xi 1
 > in case this is a column of ITABs.

Let N1 , N2 , ..., Nn be the n negated clauses. Let Ni = ( x
_

i1
+x

_
i 2

+x
_

i3
 ). Once again , we assume

that the row for xi1
is above that for xi2

which is above that for xi 3
. Column  3(u +i)−2 is used to

represent Ni. Into this column, the three edges < TAB(xi1
).F , TAB(xi 2

).x
_

i 2
 > , < TAB(xi2

).F ,

TAB(xi3
).x

_
i3

 > , < TAB(xi3
).F , TAB(xi 1

).x
_

i 1
 > are introduced if this is a column of TABs. The three

edges < ITAB(xi1
).F , ITAB(xi 3

).x
_

i 3
 > , < ITAB(xi 3

).F , ITAB(xi2
).x

_
i2

 > , < ITAB(xi 2
).F , ITAB(xi1

).x
_

i1
 >

are introduced if this is a column of ITABs.

The resulting edges for our example are shown in Figure 13. Recall that to introduce an
edge <a, b> into the VCG, we need merely add two cells to the terminal assignment instance.
Each of these has exactly one terminal; one cell is above the other; the upper cell has net a; the
lower cell has net b. Futher, note that while we have used the symbols T and F for the lower nets
of all TABs and the upper nets of all ITABs, the intent is that all these nets are different. This
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FIGURE 13: F = (A +B +C) . (D +C +A) . (B
_

+C
__

+D
__

)

completes the construction of P (S).

Property 4:If all the literals in clause i are false, then column 3i −2, 1 ≤ i  ≤k of P (S) contains a
cycle.

3.2 Correctness Proof
We need to show that P (S) as constructed in Section 3.1 has the two properties listed in

Section 3. It is obvious that property (i) ( i.e., P (S) may be constructed in polynomial time ) is
satisfied. For property (ii), first suppose that S is satisfiable. Consider any truth assignment that
satisfies S. Use this truth assignment for all the truth boxes ( TABs and ITABs ) in the construc-
tion. >From properties 1-4, it follows that the resulting VCG contains no cycles. Note that
because of the isolation property (property 3) there can be no path that includes boxes from two
or more clause columns.

Next, suppose that P (S) has a terminal assignment that contains no cycles. >From Property
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4, it follows that this assignment corresponds to a truth assignment in which every clause has at
least one literal set to true. However, since the truth assignment along a TAB or ITAB chain may
change from false to true without introducing a cycle ( Properties 1 and 2 ), it is possible that the
terminal assignment that results in an acyclic VCG results in an inconsistent truth assignment to
the variables of S ( i.e., a variable is false in some clauses and true in others ). If this is the case,
the truth assignment may be made consistent in the following way:

Suppose xj is false in the first q of the truth boxes in columns 3i −2, 1 ≤ i  ≤ k  ( only
those boxes in the row for xj are considered ) and true in the remaining k − q boxes in
columns 3i − 2, 1 ≤ i  ≤ k  .

(a) If q ≤ u, then set x j to true and ( x
_

j to false ) in all the clauses in which xj or x
_

j appear.
This makes the truth assignment for xj the same in all clauses and does not reduce the
number of true literals in any clause.

(b) If q > u, then set x j to false ( and x
_

j to true ). This does not reduce the number of true
literals in any clause and results in a consistent truth assignment for xj.

Hence, if there is a terminal assignment for P (S) that results in an acyclic VCG, S is satisfiable.
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4 Minimum Height VCG (Problem P2) Is NP-hard
We actually prove a stronger result than this in this section. We show that the correspond-

ing decision problem (P3) is NP-complete:

P3: Let Q be a terminal assignment instance with an acyclic VCG and r an integer. Does Q

have a terminal assignment for which the length of the longest path in the VCG is < r ?

P3 is easily seen to be solvable in nondeterministic polynomial time. So we need only
show that P3 is NP-hard. For this, we show how to construct an instance Q (S) of P3 correspond-
ing to any instance S of monotone 3SAT. This instance Q (S) satisfies properties (i) and (ii) of
Section 3. Once we know that the decision problem P3 is NP-complete, we can conclude that the
optimization problem P2 is NP-hard.

4.1 Construction of Q (S)
For any instance S of monotone 3SAT, we first construct P (S) as in Section 3. Next, we

replace the edges introduced for clauses by edges with weight w as shown in Figure 14. The
cyclic clause constructs of Figure 13 are replaced by path constructs. Each clause is represented
by a ( possible ) path from a newly introduced top vertex ti to a newly introduced bottom vertex
bi. Each of the weighted edges of Figure 14 is really a path of length w and is realized by the
construct of Figure 15. Let Q (S) be the instance constructed in Figure 14.

{A} {v 1} {v 2}
...

{vw−2}{vw−1}

{v 1} {v 2} {v 3}
...

{vw−1} {B}

(a) instance (b) notation

FIGURE 15: Weighted edge with weight = w

w

4.2 Correctness Proof
Consider a segment of one row of Q (S). This segement consists of five truth boxes as

shown in Figure 16 ( the case when the middle box is a TAB is similar ). As can be seen, no path
confined to a row of truth boxes can have length larger than 9 (unless the row contains a cycle ).
Suppose that w ≥ 9. If P (S) has no acyclic terminal assignment, then every terminal assignment
for Q (S) has at least one path from a ti to a bi. This path has length 4w +3. If P (S) has an acyclic
terminal assignment, then the corresponding assignment in Q (S) results in a VCG for which the
maximum path length is no more than 3w +2+9 = 3w +11 < 4w +3.
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Hence, Q (S) has a terminal assignment for which the length of the longest path in the VCG
is < 4w +3 iff P (S) has a terminal assignment for which the VCG is acyclic. This, in turn, is possi-
ble if and only if S is satisfiable.
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(a) schematic

(b) TTTTT

(c) FFTTT

(d) FFFTT

(e) FFFFF

FIGURE 16
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5 Conclusions
We have shown that both problems P1 and P2 are NP-hard. Consequently, it is very

unlikely that either of these is solvable in polynomial deterministic time. Our results motivate
the study of fast heuristic methods for these two problems.
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