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Abstract: Various multi-objective evolutionary algorithms (MOEAs) have been applied to 4 

solve the optimal design problems of a Water Distribution System (WDS). Such methods are 5 

able to find the near-optimal trade-off between cost and performance benefit in a single run. 6 

Previously published work used a number of small benchmark networks and/or a few large, 7 

real-world networks to test MOEAs on design problems of WDS. A few studies also focused 8 

on the comparison of different MOEAs given a limited computational budget. However, no 9 

consistent attempt has been made before to investigate and report the best-known 10 

approximation of the true Pareto front (PF) for a set of benchmarks problems, and thus there 11 

is not a single point of reference. This paper applied five state-of-the-art MOEAs, with 12 

minimum time invested in parameterisation (i.e., using the recommended settings), to twelve 13 

design problems collected from the literature. Three different population sizes were 14 

implemented for each MOEA with respect to the scale of each problem. The true Pareto 15 

fronts for small problems and the best-known Pareto fronts for the other problems were 16 

obtained. Five MOEAs were complementary to each other on various problems, which 17 

implies that no one method was completely superior to the others. The non-dominated sorting 18 

genetic algorithm-II (NSGA-II), with minimum parameters tuning, remains a good choice as 19 

it showed generally the best achievements across all the problems. In addition, a small 20 

population size can be used for small and medium problems (in terms of the number of 21 
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decision variables). However, for intermediate and large problems, different sizes and 22 

random seeds are recommended to ensure a wider Pareto front. The publicly available best-23 

known PFs obtained from this work are a good starting point for researchers to test new 24 

algorithms and methodologies for WDS analysis. 25 
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 30 

Introduction 31 

Multi-objective design of a Water Distribution System (WDS) has received increasing 32 

attention during the past two decades. Much effort (Farmani et al., 2006; Fu et al., 2012a; 33 

Halhal et al., 1997; Keedwell and Khu, 2003; Prasad and Park, 2004; Prasad and Tanyimboh, 34 

2008) has been made to identify the trade-off, expressed as the Pareto front (PF), between 35 

cost and performance type benefit using various indicators. Multi-objective evolutionary 36 

algorithms (MOEAs) are widely accepted for addressing this kind of problem as they are 37 

capable of approximating the PF effectively and efficiently in a single run (Farmani et al., 38 

2005a). Many benchmark networks and some real networks have been used to demonstrate 39 

the strength of MOEAs. For instance, Cheung et al. (2003) applied both strength Pareto 40 

evolutionary algorithm (SPEA) and multi-objective genetic algorithm (MOGA) to the 41 

rehabilitation problem of a hypothetical network. Minimisation of cost and the total pressure 42 

deficit were taken as two objectives. Farmani et al. (2004) contributed a new benchmark 43 

network based on a real system and used the non-dominated sorting genetic algorithm-II 44 

(NSGA-II) to solve the two-objective rehabilitation of this large network, minimising cost 45 

and number of nodes with head deficiency. Besides using pressure deficit and its analogues 46 

as the second objective, other formulations were aimed at optimising resilience based 47 

indicators (Basupi et al., 2013; Farmani et al., 2005b; Prasad and Park, 2004), flow entropy 48 

(Prasad and Tanyimboh, 2008), and other mixed indicators (Raad et al., 2010). 49 
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Apart from the aforementioned MOEAs, other methods have been applied to solve 50 

benchmark problems, such as SPEA2 (Farmani et al., 2003), Cross Entropy (Perelman et al., 51 

2008), Particle Swarm Optimisation (PSO) (Montalvoa et al., 2010), and Cuckoo search 52 

(Wang et al., 2012). Recently, hybrid algorithms (Vrugt and Robinson, 2007; di Pierro et al., 53 

2009; Hadka and Reed, 2013), which combine different schemes and components together in 54 

an attempt to further enhance search ability, have demonstrated significant improvement over 55 

previous MOEAs, like NSGA-II (Deb et al., 2002) and SPEA2 (Zitzler et al., 2002). The 56 

encouraging performance of these newly-proposed MOEAs has gained interest for the design 57 

of WDS. Raad et al. (2009) for the first time applied a modified multi-algorithm, genetically 58 

adaptive multi-objective (AMALGAM) to the two-objective design of WDS, using cost and 59 

network resilience (Prasad and Park, 2004) as objectives. Wang et al. (in press) compared the 60 

performance of two distinct hybrid algorithms (including the original AMALGAM) against 61 

NSGA-II on a wide range of benchmark problems. Creaco and Franchini (2012; 2013) set up 62 

a hybrid procedure where NSGA-II coordinates various subordinate algorithms to perform 63 

the multi-objective design under pressure and velocity constraints. Fu et al (2012b) proposed 64 

a novel hybrid approach where global sensitivity analysis is used before applying the ε-65 

NSGA-II method to reduce the complexity of the search space size of a multi-objective WDS 66 

design problem. 67 

Most comparative studies concerned the ultimate performance of MOEAs. However, as 68 

Kollat and Reed (2006) emphasised, it is equally important to assess the dynamic 69 

performance of MOEAs. To this end, a reference set of the true PF is generally required to 70 

calculate the metrics of convergence and diversity. In practice, a reference set is usually 71 

generated by extracting the non-dominated solutions obtained by one or more algorithms 72 

through multiple runs. However, none of the aforementioned studies paid attention to 73 

generating the best-known PF for benchmark problems. One reason for this lies in the fact 74 

that the problem is non-deterministic polynomial-time hard (NP-hard) (Papadimitriou and 75 

Steiglitz, 1998), which cannot be enumerated in an acceptable time frame. Another one is 76 

probably due to the lack of universally accepted formulation for design problems. To date, a 77 

limited effort has been made to provide the suitable reference sets for various benchmark 78 

problems in a single location. For this reason, the paper is aimed at finding the best-known 79 

approximation to the true PF of each benchmark design problem of WDSs collected from the 80 
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literature. In addition, for small problems full enumeration is implemented to produce the true 81 

PF. 82 

The multi-objective design of benchmark WDSs is formulated to minimise the total cost and 83 

to maximise the network resilience (Prasad and Park, 2004). Five predominant MOEAs 84 

including two hybrid algorithms are implemented, and then their attainments are aggregated 85 

to produce the optimal front for each problem. Also, these MOEAs are compared in terms of 86 

the ultimate performance, which assists with identification of the overall best candidate for 87 

the task. This paper contributes to the best-known approximations to the true PFs of a wide 88 

range of benchmark problems. Hence, these fronts can facilitate rigorous assessment of both 89 

ultimate and dynamic performance of newly-developed algorithms. On the other hand, 90 

researchers and practitioners alike can decide which algorithm to choose when facing real-91 

world problems, which are complex and inevitably time-consuming. 92 

Multi-objective design of a WDS 93 

The optimal design of a WDS is an intractable problem due to its size, discrete (combinatorial) 94 

nature and non-linearity associated with a number of complex constraints. Strictly speaking, 95 

for the design problem all the components should be determined, e.g., pipe diameters, pump 96 

capacities, valve settings, and tank sizes, to name a few; while for the extended design 97 

problem replacement of existing components and/or adding new elements into the system 98 

should be carefully decided. Nonetheless, most existing work focuses on the narrow sense of 99 

the task, i.e. the pipe sizing problem without considering the other components. Even with 100 

this simplification, the problem is still NP-hard and thus a great challenge to tackle especially 101 

for large, real-world networks. 102 

Historically, the design problem was treated as single-objective optimisation focusing on 103 

economic considerations, but the drawbacks of this formulation have been criticised broadly 104 

(Engelhardt et al., 2000; Fu et al., 2012a; Walski, 2001). In transforming the least-cost 105 

formulation to the multi-objective, or more precisely, two-objective formulation, many 106 

indicators have been proposed as additional objectives. At the very beginning, variants of 107 

pressure deficit were used to account for the second objective, such as minimising the total 108 

pressure deficit, minimising the maximum of pressure deficiency, and minimising the number 109 

of nodes with pressure deficit (Cheung et al., 2003; Farmani et al., 2005a). However, these 110 

aforementioned formulations do not necessarily result in looped networks, which are reliable 111 
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configurations under abnormal conditions (e.g., pipe burst). On the other hand, a resilience 112 

index formulation (Todini, 2000) was introduced as a surrogate measure for hydraulic 113 

benefits. The index is based on the concept that the total input power into a network consists 114 

of the power dissipated in the network and the power delivered at demand nodes. So, less 115 

power consumed internally to overcome the friction results in more surplus power at demand 116 

nodes and thus being able to counter the failure scenarios. Later on, an improved version of 117 

the resilience indicator (Prasad and Park, 2004), called network resilience, was proposed 118 

taking the uniformity of pipes around each demand node into account. Network resilience 119 

considers the effect of redundancy of a pipe network and maximising this indicator can 120 

ensure reliable loops. It is proved that using network resilience as another objective alleviates 121 

the shortcomings of the resilience index (e.g., resulting in impracticable loops) and yields the 122 

solutions which are robust under pipe failure conditions (Prasad and Park, 2004; Raad et al., 123 

2010). For this reason, network resilience is used as the second objective for the two-124 

objective optimisation of benchmark problems. 125 

In this paper, only the expenditure of pipe components (new pipes and/or existing pipes) is 126 

considered for the total cost of a design solution. The unit cost of a specific diameter for each 127 

problem is derived from the relevant paper. EPANET 2 software (Rossman, 2000) is taken to 128 

run the hydraulic simulation, in which the variables required for the evaluation of network 129 

resilience are obtained. The formulation of the objectives is given in Eq. 1 and Eq. 2-3, 130 

respectively. 131 

    np
i i

b
i LDaC 1min  (1) 

Where C=total cost (monetary units problem dependant); np=number of pipes; a and 132 

b=constants depending on a specific problem; Di=diameter of pipe i; Li=length of pipe i. 133 
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Where In=network resilience; nn=number of demand nodes; Cj, Qj, Hj and Hj
req=uniformity, 134 

demand, actual head and minimum head of node j; nr=number of reservoirs; Qk and 135 

Hk=discharge and actual head of reservoir k; npu=number of pumps; Pi=power of pump i; 136 
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γ=specific weight of water; npj=number of pipes connected to node j; Di=diameter of pipe i 137 

connected to demand node j. 138 

Most papers in the literature solved two or three benchmark problems for explanatory 139 

purposes. Some also tried to tackle large, real-world networks. However, normally only a 140 

small number of problems were tested, thus making it hard to generalise the conclusions and 141 

guide practitioners in dealing with new problems. On the other hand, several benchmark 142 

networks already exist, derived from papers and reports, which makes it possible to set up an 143 

archive of benchmark problems and to benefit other researchers in this community. In this 144 

paper, twelve such networks were collected and categorised into four groups according to the 145 

size of search space. Table 1 gives a summary of these benchmark problems including the 146 

number of demand loading conditions, water sources, decision variables and pipe diameter 147 

options. For small problems, the true Pareto front is obtained via full enumeration which can 148 

be completed within a short time using a modern personal computer. For the other three 149 

groups, the aim is to approximate the true PFs by taking advantage of five state-of-the-art 150 

MOEAs given various computational budgets. A very brief introduction to the various 151 

benchmark networks is given below. Readers are referred to the corresponding papers for 152 

additional details. 153 

In these problems, the two-loop network (Alperovits and Shamir, 1977) is a hypothetical 154 

network, while the others are real networks or simplified networks in the real-world. The 155 

New York tunnel network (Schaake and Lai, 1969) and the Exeter network (Farmani et al., 156 

2004) were originally presented as extended design problems. The rest are design problems 157 

except the BakRyan network (Lee, 2001) and the Two-Reservoir network (Gessler, 1985) 158 

which are a mix of design and extended design. There are both minimum and maximum 159 

pressure requirements for demand nodes in the Blacksburg network (Sherali et al., 2001), the 160 

Fossolo network (Bragalli et al., 2008), the Pescara network (Bragalli et al., 2008), and the 161 

Modena network (Bragalli et al., 2008), whereas the others only have minimum pressure 162 

requirements. In addition, there are upper bounds for velocity in the pipes of the four 163 

aforementioned networks. The Hanoi network and the GoYang network are taken from 164 

(Fujiwara and Khang, 1990) and (Kim et al., 1994), respectively. Unlike a WDS, the water 165 

consumption is fixed at 5.55 l/s across all the demand nodes in the Balerma irrigation 166 

network (Reca and Martínez, 2006). 167 
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[Table 1 goes here] 168 

MOEAs used in the analysis 169 

In this paper, five MOEAs in total are applied to solve the benchmark problems. Two of them 170 

are high-level hybrid algorithms (Talbi, 2002), namely AMALGAM (Vrugt and Robinson, 171 

2007) and Borg (Hadka and Reed, 2013). The others are NSGA-II (Deb et al., 2002),  -172 

MOEA (Deb et al., 2005), and  -NSGA-II (Kollat and Reed, 2006), which is an enhanced 173 

algorithm based on NSGA-II. 174 

The reasons for choosing these MOEAs are as follows. NSGA-II has been widely used as a 175 

benchmark MOEA in water engineering (Farmani et al., 2005a; Kollat and Reed, 2006; Raad 176 

et al., 2009), and it serves as the prototype of AMALGAM (except in the case of the 177 

genetically adaptive multi-operators). Borg was developed based on  -MOEA as it is a 178 

highly efficient steady-state model (Hadka and Reed, 2013).  -NSGA-II proved to be 179 

superior to NSGA-II and  -MOEA on a four-objective long-term groundwater monitoring 180 

design case (Kollat and Reed, 2006). Most recently, Guidolin et al. (2012) further highlighted 181 

the strength of  -NSGA-II by winning the title in the Battle of Water Networks II (BWN-II, 182 

Marchi et al 2013), using a master-slave parallel version of this algorithm. Fu et al. (2012a) 183 

also applied  -NSGA-II as well as a tool for visually interactive decision-making (Kollat and 184 

Reed, 2007) to the many-objective (up to six) rehabilitation of Anytown network (Walski et 185 

al., 1987), revealing the complex tradeoffs that would not be identified in a lower-186 

dimensional formulation. On the other hand, Hybrid algorithms have been developed in an 187 

attempt to overcome the “No Free Lunch” theorem (Wolpert and Macready, 1997) by 188 

combining the power of different methods. Therefore, it is worth comparing their 189 

performance with benchmark MOEAs on various design cases. Note that no other MOEAs 190 

were considered in the paper due to the findings in the relevant comparative studies (Raad et 191 

al., 2011; Reed et al., 2013). A brief introduction to these algorithms is given below. 192 

Hybrid MOEAs 193 

AMALGAM 194 

AMALGAM is a hybrid optimisation framework which employs simultaneously four sub-195 

algorithms within its structure, including NSGA-II, adaptive metropolis search (AMS) 196 

(Haario et al., 2001), particle swarm optimisation (PSO) (Kennedy and Eberhart, 2001) and 197 
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differential evolution (DE) (Storn and Price, 1997). It is designed to overcome the drawbacks 198 

of using an individual algorithm. The strategies of global information sharing and genetically 199 

adaptive offspring creation are implemented in the process of population evolution. Each sub-200 

algorithm is allowed to produce a specific number of offspring based on the survival history 201 

of its solutions in the previous generation. The pool of current best solutions is shared among 202 

sub-algorithms for reproduction. Simulation results on a set of well-known multi-objective 203 

benchmark functions suggest that AMALGAM achieves a tenfold improvement over current 204 

MOEAs for the more complex, higher dimensional problems (Vrugt and Robinson, 2007). In 205 

addition, AMALGAM provides a general template which is flexible and extensible, and can 206 

easily accommodate any other population-based algorithm. Raad et al. (2011) subsequently 207 

demonstrated that this hybrid framework, with other ingredients tailored for WDS design, 208 

convincingly outperformed NSGA-II for a large problem. 209 

Borg 210 

Using  -MOEA as its predecessors, Borg incorporates more advanced features into a unified 211 

framework, including  -dominance (Laumanns et al., 2002),  -progress (a measure of 212 

convergence speed), randomised restart, and auto-adaptive multi-operator recombination 213 

(similar to AMALGAM). The comparative study on 33 instances of three well-known test 214 

suites reveals that it is efficient and reliable on various problems with difficult characteristics. 215 

Besides its flexibility, another point that should be highlighted is its large regions of high-216 

performing parameterisations (Goldberg, 1989) in terms of so-called sweet spots (Purshouse 217 

and Fleming, 2007). 218 

The advantages of Borg are threefold: (1) usage of  -box dominance archive contributes to 219 

maintaining the convergence and diversity concurrently throughout search; (2) the 220 

combination of time continuation (Srivastava, 2002), adaptive population sizing, and two 221 

types of randomised restart (i.e.  -progress triggered restart and population-to-archive ratio 222 

triggered restart) boosts the algorithm towards global optima; (3) simultaneous employment 223 

of multiple recombination operators enhances performance on a wide assortment of problem 224 

domains. In addition, the adoption of the steady-state, elitist model of  -MOEA (Deb et al., 225 

2005) make it easily extendable for use on parallel architectures. Borg has also been 226 

successfully used to solve challenging, many-objective, real-world problems in the domain of 227 

water resources, a detailed review of which can be found in (Reed et al., 2013). 228 
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Referential MOEAs 229 

NSGA-II 230 

NSGA-II (Deb et al., 2002) is arguably the most popular MOEA and is regarded as an 231 

“industry standard” algorithm which has been successfully applied to a variety of fields. As a 232 

result, it is usually taken as a benchmark MOEA and compared with other algorithms (Deb et 233 

al., 2001; Zitzler et al., 2002; Farmani et al., 2005a; Raad et al. 2011). NSGA-II features a 234 

fast non-dominated sorting approach, implicit elitist selection method based on Pareto 235 

dominance rank and a secondary selection method based on crowding distance, which 236 

significantly improve its performance on difficult multi-objective problems. Moreover, it 237 

provides a constraint-handling technique to deal with constrained problems efficiently and 238 

supports both binary and real coding representations. Since it serves as the outer framework 239 

of AMALGAM (Vrugt and Robinson, 2007), it is included in this comparative study. 240 

 -MOEA 241 

Unlike the NSGA-II,  -MOEA (Deb et al., 2005) is a steady-state MOEA in which only one 242 

solution is generated per iteration. It incorporates the concept of epsilon-dominance 243 

(Laumanns et al., 2002), being able to preserve a good representation of Pareto front in terms 244 

of convergence and diversity. At the beginning, a population is initialised randomly and the 245 

non-dominated solutions are retained in an archive. Next, a solution is created via crossover 246 

and mutation using two parents each of which is selected from the population and the archive. 247 

Then, this solution is checked for acceptance or rejection by the population and the archive, 248 

using Pareto dominance and  -dominance, respectively. The abovementioned procedure is 249 

repeated until a stopping criterion is met. Deb et al. (2005) compared  -MOEA with four 250 

other state-of-the-art MOEAs on many test problems and concluded that it was able to find 251 

well-converged and well-distributed solutions in a shorter computational time. Since Borg 252 

uses  -MOEA as the basic framework, it is taken into account for comparative purposes. 253 

 -NSGA-II 254 

The  -NSGA-II method (Kollat and Reed, 2006; Tang et al., 2006) goes beyond the common 255 

implementation of MOEA by building on NSGA-II (Deb et al., 2002) and three key 256 

components, namely  -dominance archiving (Laumanns et al., 2002), adaptive population 257 

sizing with archive injection, and automatic termination. The  -NSGA-II differs from the 258 
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NSGA-II primarily in two aspects: (1) while the population evolves in the same manner as 259 

NSGA-II, an offline archive is frequently updated by selecting the  -non-dominated 260 

solutions from the elitist population at current generation; (2) the optimisation is implemented 261 

in consecutive epochs, each of which is terminated automatically according to the user-262 

specified improvement criteria. The next epoch is populated by injecting the members in the 263 

archive and generating new random solutions. The  -dominance archiving maintains the 264 

convergence and diversity of the archive concurrently. It also allows users to specify the 265 

precision of each objective and thus is more flexible in practice. Adaptive population sizing 266 

contributes to balance the exploration and exploitation throughout the search, which is 267 

achieved by increasing or decreasing the capacity of the population based on the number of 268 

members in the archive. Additionally, several connected runs, known as time continuation 269 

(Srivastava, 2002), enhance the possibility to explore other regions of search space. The 270 

comparative study on  -NSGA-II as well as three benchmark MOEAs (NSGA-II,  -MOEA 271 

and SPEA2) showed its superiority in terms of efficiency and reliability (Kollat and Reed, 272 

2006). Moreover, the aforementioned key components of  -NSGA-II remedy the issue of 273 

parameterisation commonly found in MOEAs, thus making it easy-to-use for a wide range of 274 

applications. 275 

Benchmarking setup 276 

Each benchmark problem was formulated as two-objective design or extended design, taking 277 

total cost and network resilience into account. For a design problem, the decision variables 278 

were the diameters of individual pipes in the network. While for an extended design problem, 279 

the decision variables included the diameters of duplicate pipes as well as the other two 280 

options, i.e. leaving alone (do-nothing option) and cleaning of existing pipes. Note that all the 281 

MOEAs used real coding but all the decision variables were of integer type. So the real 282 

values passed in by MOEAs were rounded down (e.g., 12.9457 becomes 12). For each 283 

problem, a solution was considered as infeasible if there were violations of pressure 284 

requirements (minimum and maximum if any) and upper bound of flow velocity (if any). 285 

Note that no penalty function is used to handle infeasible solutions; instead, infeasibility 286 

situations are dealt with by implementing the constrained-domination principle (Deb et al., 287 

2002). 288 

Parameter settings of MOEAs 289 
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To ensure as fair comparison as possible, a uniform computational budget in terms of number 290 

of objective function evaluations (NFE) has been allowed to solve each benchmark problem 291 

across all the MOEAs considered in the paper. In addition, it is worth mentioning that there 292 

are various individual parameters in each MOEA, particularly in hybrid algorithms, which 293 

can have an impact on the algorithm performance. In this paper, the individual parameters are 294 

not fine tuned for three main reasons. Firstly, Borg and  -NSGA-II both feature adaptive 295 

population sizing and “time continuation” strategy (involving several connected runs 296 

triggered by automatic restart). In fact, one of the main advantages of these algorithms is to 297 

eliminate the need for parameterisation, resulting in highly reliable and efficient MOEAs. 298 

Secondly, the primary control parameters in AMALGAM are not fixed by default. Instead, 299 

these parameters are randomly sampled from the high-performance ranges recommended in 300 

relevant papers (Parsopoulos and Vrahatis, 2002; Hu et al., 2003; Gelman et al., 2003; Iorio 301 

and Li, 2005). Hence, it is expected to reduce the issue of parameterisation to some extent. 302 

Thirdly, NSGA-II and  -MOEA are implemented as referential MOEAs and parameterised 303 

according to the widely recommended settings from the literature (Deb and Agrawal, 1995; 304 

Deb et al., 2002; Kollat and Reed, 2006). Most recently, Reed et al. (2013) conclude that 305 

Borg, -NSGA-II and AMALGAM represent the top performing MOEAs which demonstrate 306 

a satisfactory achievement in terms of effectiveness, efficiency, reliability and scalability. 307 

However, it should be noted that these default parameter settings do not necessarily result in 308 

the best performance for a variety of benchmark problems. In practice, it is recommended to 309 

fine-tune some key parameters of an MOEA via the sensitivity analysis before application. 310 

This is usually feasible for solving small problems with a limited number of decision 311 

variables. However, it may be extremely computationally expensive to do so for solving large 312 

and complex problems. Since this paper is aimed at obtaining the best-known PFs for many 313 

benchmark problems given extensive computational budgets, but not at comparing different 314 

MOEAs, the default parameter settings for these MOEAs are adopted. 315 

In addition, all the algorithms considered in this paper share similarities in that they use 316 

tournament selection, real-valued simulated binary crossover (SBX), polynomial mutation 317 

(PM) (Deb et al., 2002). Therefore, unified settings of these factors are kept the same for all 318 

the algorithms. More specifically, a tournament size of 2 is applied except for Borg and  -319 

NSGA-II (tournament size changed due to adaptive population sizing). The probabilities of 320 

SBX and PM are 0.9 and the inverse of the number of decision variables respectively, and the 321 
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distribution index of SBX and PM are 15 and 7 respectively. Note that these values are 322 

selected according to the most commonly recommended parameter settings in the literature 323 

(Deb et al., 2002; Kollat and Reed, 2006). A smaller distribution index of SBX or PM enables 324 

the search operator to create solutions with more spread (Deb and Agrawal, 1995), hence it is 325 

effective to avoid premature. 326 

In short, default settings of control parameters in each algorithm are maintained across the 327 

experiments except for those related to population size. Table 2 gives a summary of the 328 

specific parameter settings of each MOEA used in the paper. 329 

[Table 2 goes here] 330 

Epsilon precision 331 

Of the five MOEAs, three of them (  -MOEA,  -NSGA-II, and Borg) require the 332 

specification of epsilon precision for both objectives of each problem. Table 3 gives the 333 

specifications of epsilon values which were obtained via trial runs with respect to the range of 334 

each objective and for each problem. 335 

[Table 3 goes here] 336 

Computational budget 337 

The benchmark problems cover a wide range of complexity, hence the need for investing 338 

different computational budgets for different cases. Based on preliminary tests, each type of 339 

problem was solved by complying with the budget in terms of NFE specified in Table 4, and 340 

each MOEA was run ten times independently using a certain population size (thirty runs in 341 

total) to solve each problem. It is worth noting that all the MOEAs took full use of these 342 

budgets. In other words, each algorithm was run on each benchmark problem for equal NFE. 343 

Thus, any other stopping criteria (or techniques allowing early stopping) were omitted. 344 

Additionally, in order to avoid premature convergence of optimisation for large problems by 345 

using a small population size, three varied population sizes (referred to as ‘group’ in the 346 

subsequent paragraphs) with respect to the number of decision variables and the size of 347 

search space are implemented for each problem. This approach also assists in exploring the 348 

impact of the population size on the final achievement of MOEAs. 349 

[Table 4 goes here] 350 
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Performance assessment 351 

This paper aims at finding the best-known PF of each benchmark problem, thus facilitating 352 

quantitative comparison of the performance of different MOEAs in future research. 353 

Meanwhile, the impact of population size on the achievement of MOEAs involved is also 354 

investigated.  355 

To achieve the two goals above, a dual-stage procedure for data post-processing is illustrated 356 

in Fig. 1. In stage I, raw data reported by each MOEA for each problem via thirty runs are 357 

rounded according to the epsilon precision specified in Table 3 and duplicates in the dataset 358 

of each group (obtained using a specific population size) are checked and removed. Then, 359 

data from different groups are merged together and duplicates are checked and removed once 360 

again. Next, the non-dominated sorting procedure (Deb et al., 2002) is applied to the 361 

aggregated dataset to produce the best PF obtained by the current MOEA. Finally, the 362 

contribution from each group to the best PF is counted. Three kinds of number of solutions 363 

were recorded during stage I, namely the number of solutions finally obtained from multiple 364 

runs by each MOEA (before being processed, denoted as SolFO), the number of solutions 365 

excluding duplicates (denoted as SolED), and the number of solutions contributed from each 366 

group to the best PF of each MOEA (denoted as SolCT), respectively. 367 

In stage II, for each problem, the best PF obtained by each MOEA are firstly aggregated and 368 

duplicates in the merged dataset are checked and removed. Next, the non-dominated sorting 369 

procedure (Deb et al., 2002) is used to generate the best-known PF of the current problem. 370 

Lastly, the contribution from each MOEA to the best-known PF is identified. 371 

[Figure 1 goes here] 372 

As there is no reference set of the true PFs to hand, various performance indicators existing in 373 

the literature (Deb et al., 2002; Knowles and Corne, 2002; Zitzler et al., 2003) cannot be 374 

applied directly. Therefore, the number of solutions contributed by each MOEA to the best-375 

known PF of each problem is counted. This will demonstrate the general capability (including 376 

convergence and diversity) of an MOEA to find the optimal non-dominated solutions to a 377 

problem. On the other hand, as mentioned before, for each MOEA three different population 378 

sizes are implemented for each benchmark problem (see Table 4). To investigate the impact 379 

of population size on the performance of each MOEA, the number of solutions contributed 380 



To be cited as: Wang, Q., Guidolin, M., Savic, D., and Kapelan, Z. (2015). ”Two-Objective Design of 
Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known 
Approximation of the True Pareto Front.” J. Water Resour. Plann. Manage., 141(3), 04014060. 
 

14 
 

from each population size to the best PF is also counted. It is also worth noting that the 381 

computational time spent by each MOEA on each problem are not compared due to the fact 382 

that these algorithms were developed in different languages and implemented on various 383 

machines with different operating systems. For example, AMALGAM was built in Matlab 384 

and run on a desktop computer (Windows 7) with 2.66GHz and 3GB RAM. While a parallel 385 

version of  -NSGA-II was written in C language and executed on a supercomputer, called 386 

“Zen”, which consists of diskless compute nodes each with twelve cores and 24GB of RAM. 387 

Instead, a rough observation about the runtime spent on algorithm steps and objective 388 

function evaluations (including hydraulic simulations) is provided as follows. Generally 389 

speaking, all the methods spent a higher proportion of CPU time on the objective function 390 

evaluations for large problems. AMALGAM took more CPU time on algorithm steps on 391 

average than the C language based MOEAs because it was developed and implemented in 392 

Matlab which is an interpreted language. For the C language based MOEAs, Borg and  -393 

MOEA spent less CPU time on algorithm steps compared with NSGA-II and  -NSGA-II 394 

(non-Parallel version) because they followed the steady-state algorithmic framework, which 395 

did not involve time-consuming ranking and sorting as in NSGA-II and  -NSGA-II. 396 

In addition, since the number of solutions from each MOEA alone cannot demonstrate the 397 

distribution of solutions in the best-known PF, a novel projection plot is developed to 398 

illustrate the distribution of solutions contributed by a specific MOEA. A clear advantage of 399 

using this projection plot is that it can deliver the preferred information of convergence 400 

(secondary) and diversity but avoid showing the overlaps between different Pareto fronts, 401 

when they are drawn in the same objective space (commonly seen in comparative studies). 402 

The procedure of generating such a projection plot is explained as follows. For each problem, 403 

firstly, data in the best-known PF are sorted according to the values of either objective in 404 

ascending or descending order. Here the ascending order of cost objective was chosen for the 405 

purpose of demonstration. Note that the other objective is inevitably ignored by using the 406 

projection plot, but this will not affect the interpretation of the results. Then, these solutions 407 

(in the space of Cost vs. In) are evenly projected on to a 1-D axis, from 1 to the length of data 408 

set (i.e., the number of solutions in the best-known PF). Next, by comparing the overlaps 409 

(duplicates) of solutions from each MOEA with those in the best-known PF, the 410 

corresponding positions of solutions contributed from each MOEA on the 1-D axis can be 411 

identified. Finally, these solutions from each MOEA are also projected on to the 1-D axis in a 412 
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stacking fashion (as shown in Fig. 2). It is worth noting that the convergence of each 413 

algorithm is implicitly considered by using the novel projection plot, because only the fully 414 

converged solutions with respect to the non-dominated solutions in the best-known PF are 415 

shown for each MOEA. Therefore, this approach facilitates a direct comparison of the 416 

relative distribution of solutions from each MOEA. 417 

Results and Discussion 418 

Table 5 shows the number of solutions found in the best-known PF as well as the percentage 419 

of contribution from each MOEA. Note that the impact of  -precision has been taken into 420 

account by rounding off the solutions in each best-known PF and the approximation set 421 

obtained by each MOEA according to the settings specified in Table 3. It can be observed 422 

that MOEAs using the  -dominance concept contributed on average less solutions than 423 

NSGA-II and AMALGAM, which take the ordinary dominance concept for sorting the 424 

solutions. For small problems, as well as FOS, PES and EXN cases,  -dominance based 425 

MOEAs were comparable or even superior to AMALGAM. NSGA-II demonstrated the best 426 

overall performance in terms of solutions found in the best-known PF across the whole 427 

spectrum of problems. AMALGAM was quite close to NSGA-II for small and medium sized 428 

problems, and exceeded NSGA-II’s performance for BLA and GOY cases. However, it 429 

showed poor results for FOS, PES, BIN and EXN cases as it found less than half of the 430 

solutions obtained by NSGA-II.  -MOEA demonstrated the worst performance in the 431 

experiment as it was dominated by the other MOEAs in half of the test problems. It is hard to 432 

distinguish Borg and  -NSGA-II but the latter consistently found the solutions in the best-433 

known PF of all the problems. Borg failed to contribute a single solution to the best-known 434 

PF of BIN, while  -MOEA encountered the same difficulty for EXN problem. Surprisingly, 435 

Borg proved to be exceptional powerful for EXN problem by finding more than 60% 436 

solutions in the best-known PF followed by  -NSGA-II. In addition, all the MOEAs failed to 437 

discover the entire solutions in the true PFs of small problems, which can be partly attributed 438 

to the usage of  -dominance concept. Nevertheless, NSGA-II and AMALGAM performed 439 

satisfactorily for a problem of such size. Here, it is worth noting that the comparison of 440 

MOEAs according to the number of solutions contributed to the best-known PFs can be 441 

biased, as it did not consider the spread of solutions in the objective space. Due to the lack of 442 

reference sets for benchmark problems, it is currently difficult to explain why certain MOEA 443 

performed better than others for particular cases. However, it is believed that the best-known 444 
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PFs obtained in this paper can facilitate a more comprehensive comparison in a quantitative 445 

way, which provides an opportunity to find the reasons. 446 

[Table 5 goes here] 447 

Fig. 2(a) to 2(d) illustrates the relative distribution of solutions contributed by each MOEA in 448 

the best-known PF of four selected benchmark problems (i.e. BAK, NYT, PES and EXN 449 

cases), selected from each type of problem (small to large). The true PF of BAK problem is 450 

also added to Fig. 2(a) for the purpose of comparison. By using the innovative projection plot, 451 

it is much easier to compare their performance (both convergence and diversity) in an 452 

intuitive sense. Since the solutions in the best-known PF are evenly mapped (except Fig. 2(a) 453 

due to the existence of true PF), the gaps appearing in the graph for each MOEA denote the 454 

absence of solutions in the corresponding position within the set of best-known PF. Therefore, 455 

a longer (in the absolute sense) and more uniform band indicates better achievement of the 456 

particular MOEA. 457 

Generally speaking, NSGA-II and AMALGAM were able to provide consistently long and 458 

uniform bands of solutions for small and medium sized problems. The other  -dominance 459 

based MOEAs showed acceptably good performance on these problems except that  -460 

MOEA was unable to cover the high cost region (high network resilience) for NYT problem. 461 

Contrastingly, for intermediate and large sized problems, all MOEAs were capable of 462 

locating only a portion of solutions in the best-known PFs, which implies that no one method 463 

is versatile enough for complex cases. However, except for the EXN problem, NSGA-II 464 

always captured the solutions in the region of low to medium cost, while AMALGAM was 465 

effective at finding solutions in the region of medium to high cost. Three  -dominance based 466 

MOEAs did not perform well on complex problems as their bands were short and/or 467 

discontinuous or even missing (Borg for BIN problem and  -MOEA for EXN problem). 468 

More interestingly, a collaborative effort from different MOEAs was made to solve the EXN 469 

problem as there are no overlaps on the bands discovered by each individual MOEA. 470 

[Figure 2 goes here] 471 

As shown in Fig. 1, variations in the number of solutions during data post-processing are 472 

recorded for further analysis. The number of solutions in different steps varies due to the 473 

existence of duplicates in the non-dominated sets and the stochastic nature of MOEAs. For 474 
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non- -dominance based MOEAs, SolFO is equal to the size of each group times the number 475 

of runs (10 in this paper). While SolFO of  -MOEA is the number of solutions in the 476 

aggregated archive across multiple runs. This figure is expected to be different from those of 477 

NSGA-II and AMALGAM as the size of archive keeps changing during optimisation. Similar 478 

to  -MOEA, the archive sizes of  -NSGA-II and Borg change over time due to the strategy 479 

of adaptive population sizing with time continuation. 480 

Fig. 3(a) to 3(d) demonstrates these variations for each MOEA on four benchmark problems 481 

(i.e. BAK, NYT, PES and EXN cases) according to the different population sizes. The light 482 

grey bar, medium grey bar and dark grey bar represent SolFO, SolED, and SolCT  in percentage, 483 

respectively. Note that SolCT is the most important value as it indicates the efficiency of 484 

solutions found by an algorithm. There is a clear trend of fewer redundancies occurring for 485 

large problems, which is to be expected as they have larger search spaces. In other words, for 486 

all MOEAs the majority of solutions overlapped with each other for small problems, but the 487 

degree of overlap decreased gradually with the increasing complexity of problems. From the 488 

viewpoint of efficiency of non-dominated solutions,  -dominance based MOEAs, especially 489 

 -NSGA-II and Borg, showed consistently more stable convergence than non- -dominance 490 

based approaches. This is demonstrated by the differences between SolED and SolCT, which 491 

are smaller for small and medium problems (i.e. BAK and NYT cases). However, on 492 

intermediate and large sized problems, all the MOEAs suffered from inefficiency of solutions, 493 

or even failed to discover any solutions in their best PFs. Note that SolCT of each MOEA on 494 

each problem does not represent the amount of solutions appearing in the best-known PF of 495 

that problem as these solutions may be dominated by those reported from other MOEAs. 496 

On the other hand, in response to the impact of population size on the final achievement, it 497 

seems that a small population size is good enough for small and medium problems. However, 498 

as shown in the EXN problem, larger population sizes (group 2 and 3) generally produced 499 

more solutions of high quality. Therefore, different population sizes are still recommended, 500 

no matter which MOEA is chosen, for solving intermediate and large sized problems. In fact, 501 

for each MOEA there are rarely overlapping parts in the set of best PF from different groups 502 

for intermediate and large problems. 503 

[Figure 3 goes here] 504 



To be cited as: Wang, Q., Guidolin, M., Savic, D., and Kapelan, Z. (2015). ”Two-Objective Design of 
Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known 
Approximation of the True Pareto Front.” J. Water Resour. Plann. Manage., 141(3), 04014060. 
 

18 
 

The best-known PF of each benchmark problem is provided in Appendix A. Note that these 505 

best-known PFs are different from the ones used in Results and Discussion, since the data 506 

were not processed according to the epsilon precision in Table 3. Thus, a more complete 507 

reference set of each benchmark problem is provided. The corresponding data of these best-508 

known PFs can be downloaded from the website of the Centre for Water Systems. 509 

Conclusions 510 

This paper set up the methodology of benchmarking MOEAs for two-objective design of 511 

Water Distribution System. Five representative MOEAs were applied to solve twelve 512 

benchmark problems. An innovative projection plot was applied to facilitate the comparison 513 

of MOEAs in terms of convergence and diversity. The best-known Pareto front of each 514 

problem was obtained in the space of cost against network resilience. Note that these Pareto 515 

fronts are not necessarily uniformly distributed (as shown in Appendix A) due to the discrete 516 

nature of Water Distribution System design. The benchmark problems (including the 517 

EPANET input files) written in C code and the associated best-known Pareto fronts (as 518 

reference sets) are provided on the website of Centre for Water Systems. This is expected to 519 

benefit future research work which formulates the problem in the same manner. In particular, 520 

the capability of newly-proposed algorithms can be rigorously tested (both ultimate and 521 

dynamic performance) in a much easier way, since various performance indicators are ready 522 

for use, requiring only the reference set. 523 

On the other hand, the strength of MOEAs tested in the paper, including two modern hybrid 524 

MOEAs and three frequently used MOEAs, was compared in the context of optimal design of 525 

Water Distribution System. The results obtained proved that NSGA-II remains one of the best 526 

MOEAs, which is suitable for two-objective optimisation of a Water Distribution System. It 527 

generally outperformed the other MOEAs in terms of the number of solutions contributed to 528 

the best-known PF of each problem. The spread (both extent and uniformity) of its 529 

contribution was also comparable, if not better, to those of other MOEAs. AMALGAM is 530 

promising for this task as it contributes more than 85% non-dominated solutions in the best-531 

known PFs for small and medium problems consistently. It always discovered solutions in the 532 

region of high network resilience, although there is a clear drop in performance on 533 

intermediate and large problems. Three  -dominance based MOEAs failed to demonstrate 534 

any clear advantage over NSGA-II and AMALGAM in the experiment. Nevertheless, all of 535 
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them showed evident advantage in the convergence and efficiency of non-dominated 536 

solutions for small and medium problems. Besides, Borg was shown to be exceptionally 537 

superior to the other MOEAs for the EXN problem by finding more than 60% solutions in the 538 

best-known PF. In short, the MOEAs considered were complementary to each other 539 

especially for complex cases, albeit no versatile MOEA was found in this study. Therefore, 540 

when facing large sized problems, different MOEAs should be considered to ensure a reliable 541 

Pareto front if both time and computational resources are available. 542 

In addition, the impact of the combination of population size and generations on the 543 

performance of each MOEA was also investigated given the same computational budget. 544 

Small size (e.g. less than 100) seems to work well for small and medium problems. On the 545 

other hand, it is advisable to use multiple runs of different population sizes and random seeds 546 

as they can cover different parts in the best-known PFs for large problems. 547 

It is worth noting that there is no attempt in this work to fine tune the specific parameters of 548 

each MOEA. So the conclusions drawn here should not be generalised especially when a 549 

certain MOEA is well adjusted for a particular purpose. However, if resources (time and/or 550 

hardware) are limited for fine-tuning the parameters of an optimisation algorithm, NSGA-II 551 

is probably a good choice for two-objective optimisation of Water Distribution Systems. 552 

In the future, Sensitivity Analysis can be carried out to investigate the parameterisation issue 553 

of MOEAs, especially hybrid algorithms, for the design of a Water Distribution System. 554 

Future work is to diagnose the failure mode of MOEAs, like Borg or AMALGAM, for 555 

further improvement. Moreover, the many-objective (more than two) formulation should be 556 

considered for benchmarking these MOEAs towards a more realistic design perspective. 557 
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Appendices 

Figures 

 

Fig. 1. Flowchart of data post-processing
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(a) BAK Problem 

 

(b) NYT Problem 

 

(c) PES Problem 

 

(d) EXN Problem 

Fig. 2. Distribution of non-dominated solutions from each MOEA in the best-known PF
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(a) BAK Problem 

 

(b) NYT Problem 

 

(c) PES Problem 

 

(d) EXN Problem 

Fig. 3. Variation in the number of solutions in percentage during data post-processing (based 

on the data given in Table B.1 in Appendix B) 
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(a) TRN Problem (b) TLN Problem 

(c) BAK Problem (d) NYT Problem 

(e) BLA Problem (f) HAN Problem 
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(g) GOY Problem (h) FOS Problem 

(i) PES Problem (j) MOD Problem 

(k) BIN Problem (l) EXN Problem 

Fig. A.1 Best-known PF of each benchmark problem 
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Tables 

Table 1. Benchmark design problems considered in the paper 

Type Problem Acronym 
Number of Search Space 

Size LC WS DV PD 

SP 
Two-Reservoir Network TRN 3 2 8 8* 3.28x107 
Two-Loop Network TLN 1 1 8 14 1.48x109 
BakRyan Network BAK 1 1 9 11 2.36x109 

MP 

New York Tunnel Network NYT 1 1 21 16 1.93x1025 
Blacksburg Network BLA 1 1 23 14 2.30x1026 
Hanoi Network HAN 1 1 34 6 2.87x1026 
GoYang Network GOY 1 1 30 8 1.24x1027 

IP 
Fossolo Network FOS 1 1 58 22 7.25x1077 
Pescara Network PES 1 3 99 13 1.91x10110 

LP 
Modena Network MOD 1 4 317 13 1.32x10353 
Balerma Irrigation Network BIN 1 4 454 10 1.00x10455 
Exeter Network EXN 1 7 567 11 2.95x10590 

Note: SP-Small Problems; MP-Medium Problems; IP-Intermediate Problems; LP-Larger Problems; LC-number of loading conditions; WS-number of water 

sources; DV-number of decision variables; PD-number of pipe diameter options. *For TRN problem, three existing pipes have 8 diameter options for 

duplication and 2 extra options, i.e. cleaning and leaving alone. 

 

 


