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Abstract .  A particular case of interface cracks is considered. The materials at each side of the interface are assumed 
to have different yield strength and plastic strain hardening exponent, while elastic properties are identical. The 
problem is considered to be a relevant idealization of a crack at the fusion line in a weldment. A systematic 
investigation of the mismatch effect in this bi-material plane strain mode I dominating interface crack has been 
performed by finite strain finite element analyses. Results for loading causing small scale yielding at the crack tip are 
described. It is concluded that the near-tip stress field in the forward sector can be separated, at least approximately, 
into two parts. The first part is characterized by the homogeneous small scale yielding field controlled by J for one 
of the interface materials, the reference material. The second part which influences the absolute value of stresses 
at the crack tip and measures the deviation of the fields from the first part can be characterized by a mismatch 
constraint parameter M. Results have indicated that the second part is a very weak function of distance from the 
crack tip in the forward sector, and the angular distribution of the second part is only a function of the plastic 
hardening property of the reference material. 

1. Introduction 

Many of the studies on the fracture of weldments in the literature have neglected the presence of 

heat affected zones (HAZ) and placed the crack in the center of weld metal which is surrounded 

by base metal [1, 2]. However, experimental studies have indicated that an interface crack 

between the weld metal and heat affected zone (HAZ) may be the most critical one [3, 4]. In 

many cases, the crack in a weldment can be idealized as a bi-material (weld metal and HAZ 

or weld metal and base metal), interface crack or a tri-material (weld metal, HAZ and base 

metal) crack, see Figure 1. 

Current standards for failure assessment based on fracture mechanics were developed for 

homogeneous materials and can not be directly applied to the assessment of fracture behavior of 
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Figure 1. Idealization of cracks in weldments, (a) bi-material crack, (b) tri-material crack. 
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weldments. In a weldment, there are two constraints which invalidate the fracture mechanics 

parameters. They are the constraint caused by geometry and the constraint caused by the 

heterogeneous material properties or material mismatch. In order to predict the weldment 
toughness and to understand the fracture behavior of high strength steel weldments and 

particularly the effect of mismatch conditions, it is essential to investigate the interface crack- 

tip fields and the constraint caused by material mismatch. In this study, only the bi-material 

interface crack (Figure 1 a) is studied. Study of the tri-material crack is currently being carried 

o u t .  

The linear elastic solution for a general bi-material interface crack predicts rapid oscillation 

of the near-tip fields when the crack tip is approached. Here a 'general' interface crack implies 

that the bi- material constant e is not zero (the elastic properties for both materials are different), 

where ~ is defined as [5, 6] 

F3-4~1 + 1 
1 / u~ m 

L~ /Z2 

(1) 

and #i, ui are the shear moduli and Poisson's ratio for material i. With respect to the coordinate 

system shown in Figure 1 (a), the linear elastic near-tip field for an interface crack can be written 

a s  

aij(O,r) -- ~V~r[Re{Krie}~[j(O,e) + Im{Krie}a[J(O,e)], (2) 

where K is the complex stress intensity factor, and ~[j(O,e) and ~/]  (0,e) are the universal 

dimensionless angular functions which depend on the elastic bi-material constant ~. For the 

problem considered, we assume that the elastic properties above and below the interface are 

the same, i.e. e = 0. When ~ = 0, ~[j(8, ~) and ~././(0u~, e) reduce to the standard mode I and II 

functions for homogeneous material. In other words, the elastic near-tip field for a bi-material 

crack with e = 0 is equivalent to the homogeneous case. In a steel weldment, the elastic 

properties for base metal, weld metal as well as HAZ materials are usually assumed to be the 

same. 
In the literature it has been claimed that the crack-tip fields for a general interface elastic- 

plastic crack are not of the usual separate form [5, 6]. Nevertheless, there are strong similarities 

between them and the mixed mode I and II fields for cracks in homogeneous materials. For the 

elastic-plastic interface crack case with elastic constant ~ = 0, Shih and Asaro [5, 6] proposed 

that the near-tip field can be organized in the form 

( ( ) O'ij = (TO O~ hi j  O~ j - ~ o ~ n  , (3) 

where the material constants are for the weak material, J is the J-integral and h O is a bound 

function which changes slowly with respect to r/(J/ao). 
Recently results by Aoki et al. [7] have concluded that for an elastic- plastic interface crack 

with e = O, the stress distributions at various load levels with and without microvoid damage 
can be superimposed by normalizing the distance from the crack tip by the J-integral and that 

the J-integral is path-independent except for the immediate vicinity of the crack tip. 
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Figure 2. Small scale yielding modified boundary layer model, (a) global mesh, (b) crack-tip mesh arrangement. 
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Wide plate analysis results by Minami et al. [3] have indicated that crack-opening stress 
distributions along the fusion line for different mismatch conditions under the same loading 

level are similar to each other. 

All these investigations indicate that for the elastic-plastic interface crack (e = 0), the 

d-integral still sets the size scale of the zone of high stresses and strains and is still a useful 

fracture mechanics parameter. However, the exact stress level in front of the crack is influenced 

by the mismatch conditions. We define the deviation of the mismatched stress fields from the 

homogeneous stress field for one material (the reference material) as the constraint caused by 

mismatch. A quantitative assessment of the mismatch effect on the constraint is the purpose of 

this study. Detailed investigations show that stress fields in the forward sector can be, at least 

approximately, separated into two parts. The first part is the homogeneous small scale yielding 

field for the reference material, which can be characterized by the HRR theory. Here HRR is 

the widely accepted term in nonlinear fracture mechanics. The second part can be separated 

into a function of mismatch constraint parameter M and an angular function which depends 

only on the property of the reference material. It is demonstrated that M is a measure of the 

constraint caused by the material mismatch and is practically independent of the normalized 

distance to the crack tip. 

2. N u m e r i c a l  p r o c e d u r e  

The problem considered in this study is a plane strain crack at the interface between two 

infinite dissimilar materials with the same elastic properties. Small scale yielding is invoked. 

Here small scale yielding is defined such that the plasticity zone is embedded within the 
region where the asymptotic elastic field dominates the crack-tip field. A modified boundary 

layer (MBL) model (Figure 2) is applied for studying. The remote boundary displacements 

are given by the elastic asymptotic stress field of plane strain mode I crack 

u(r,O) = g l + v  f T - c o s ( ½ 0 ) ( 3 _ 4 v _ c o s 0 )  ' 
I - ' - ~  V ~-~ 

_ 1 + v /-r-- 
u(r,O) = / Q - - - ~ - V ~ - - £ s i n ( ½ 0 ) ( 3 - 4 v - c o s  0), 

(4) 

/ _ 
where Kl = ~/EJ/1 - u 2 under plane strain condition, r and 0 are polar coordinates centered 

at the crack tip with 0 = 0 corresponding to the interface. 
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The materials below and above the interface are indicated as reference material (material 1 ) 

and mismatch material (material 2), respectively (Figure 1). The yield stress for the reference 

material (o-10) is fixed in the calculations. The elastic properties for the two materials are 

taken as E/o-lo = 500 and u = 0.3. In the present work, rate-independent power law strain 

hardening materials were assumed. For a material 

o - i=o- i0(1  + ~p~ni,E~0j (5) 

where o-i is the flow stress, E~ is the equivalent plastic strain, o-i0 is the yield stress, ci0 is the 

yield strain ci0 = o-io/E, and ni is the strain hardening exponent for material i. 
The finite element meshes in the global scale and at crack tip are shown in Figure 2. There 

are a total of 1906 8-node elements and 5893 nodes. Finite deformation formulations with 

reduced integration scheme in ABAQUS were used. The crack tip is assigned a finite root 

radius. The initial notch radius is 5 × 10 -5 times the radius of the MBL model. Another initial 

notch radius, 0.5 × 10 -5 times the model radius has been tested and we found that once the 

crack tip has been blunted to about 2 times the initial notch radius, the solutions do not depend 

on the initial notch radius, i.e. the fields are almost self-similar (see Figure 3). Figure 3 shows 

the self-similar results for the case with o-2o/o-lo = 1.5, nl = 0.1 and n 2 : 0.2. Similar 

findings have been reported by O'Dowd and Shih [8, 9] for homogeneous material and by 

Asaro et al. [10] for inhomogeneous material. Due to reduced computing time, the notch tip 
radius, 5 × 10 -5 times the radius of the model has been used. 

The computed J-integral by ABAQUS has been compared with the applied J-integral 

(loading) to the MBL model. A strong path dependence has been shown in the finite-strain 

zone, but the J-integral becomes practically path-independent beyond the zone of finite strains. 

Similar findings have been reported in [7] for interface cracks with and without microvoid 

damage. There are differences between the computed J-integral of the homogeneous case 

and those of the mismatch cases in the finite strain zone. However, the differences are rea- 

sonably small for the weak plastic hardening materials for the contours with mean radius 

r/(Japplied/Cro) > 1. For cases with nl = 0.1 and n 2  : 0.1 studied in the paper the error 

ranges from - 6  percent to 3 percent. The overmatch cases overestimate the J-integral com- 

pared with the homogeneous case, while the undermatch cases are just the opposite. When 

the plastic hardening exponents increase, the computed J agrees better with the applied one. 
In order to facilitate the calculations of the different stress fields, the applied J has been used 

in the presentation of the results. 

For simplicity, in the following, m is defined as the ratio of the yield stresses between the 

mismatch material and the reference material 
O20 

m - (6) 
o-10" 

Thus a combination of m, hi ,  n2 uniquely define an interface crack. It must also be noted 
that the subscript 1 in the following stands for the 'maximum principal stress'. The subscript 

'applied' has been omitted for the J-integral ,  and therefore J in the following means the 

applied J .  

3. Results for small scale yielding 

The results reported here are from the integration points. Polar coordinates, r, 0 have been 

used and all the stresses are normalized by the yield stress of the lower part material, o-lo. 



Two-parameter characterization of the near-tip stress fields 69 

6 

5 

4 

lo 
" -  3 

2 

1 

0 

0 . 0 1 0  

.~ 0 . 0 0 8  

0 . 0 0 6  

0.004 

tu 0 . 0 0 2  

0.000 
0 

o o D / D 0 = 0 . 4 3  

~, a D / D 0 = 0 . 8 9  

o * D/D0=1.52 

......... D/D0=2.31 

- - -  D / D 0 = 3 . 2 6  

- - -  D / D 0 = 5 . 6 1  

- - - -  D/D0--8.50 

I I I 

2 3 4 5 

r / (J/(~jo) (a) 

o o D/D0=0.43 

= = D / D 0 = 0 . 8 9  

,:, o DID0=1.52 

- - D/D0=2.31 

......... D/D0=3.26 

2 4 6 8 

rl(J  /(YlO) 
10 
(b) 

Figure 3. Solutions at different loading stages for the case azo/alo = 1.5, nl = 0.1, n2 = 0.2. (a) is for the 
normalized maximum principal stress in the mismatch material at 0 = 2.37 °, and (b) for the equivalent plastic 
strain in the reference material at 0 = -2.37 ° . In the figures, DO is the initial notch opening, D is the notch opening 
displacement. 

Two kinds of  mismatches have been considered separately, i.e, yield stress mismatch with 

the same plastic strain hardening and plastic strain hardening mismatch with the same yield 

stresses. For  the first kind of  mismatch, two constant plastic hardening exponents have been 

examined,  both nl  = n2 = 0.1 and 0.2. In each case, six mismatch sub-cases have been 

calculated with ra = 2, 1.75, 1.5, 1.25, 0.85 and 0.75. For the plastic hardening mismatch, 

the case with m = 1 and nl  = 0.1, n2 = 0.2 has been studied. A general case with both 

yield stress mismatch and plastic hardening mismatch has also been examined. The cases 

considered are documented in Table 1. The ranges cover many of  the practical situations in a 

steel weldment. 

The results are presented first as a function of  the similarity length scale (r/(J/cro)), in 

the range 1 ~< r/(J/~ro) ~< 5. In the range r/(J/ao) < 1, finite strain effect dominates,  

the solution is not compared. The range 1 ~< r/(J/ao) ~< 5 has been selected since this 

zone encompasses  the microstructually significant length scales for both brittle and ductile 

fracture. The objective is to sample the stress field at locations outside the finitely deformed 
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Table 1. M i s m a t c h  ca se s  c o n s i d e r e d  in  the  s t u d y  

Y i e l d  s t ress  m i s m a t c h  

n l  = n2 = 0.1 and  n1 = n2 = 0 .2  

m = 2 . 0  

m = 1.75 

m = l . 5  

m = l . 0  

m = 1.25 

m = 0 .85  

m = 0 .75  

H a r d e n i n g  m i s m a t c h ,  m = 1 n l  = 0.1,  n2 = 0 .2  

G e n e r a l  m i s m a t c h  m = 1.5, n l  = 0.1,  n2 = 0 .2  

zone r ) 2~ ~ r~ (J/or0), but within the process zone applicable for cleavage fracture (r ~< 8~) 

[11], where ~ is the crack-tip opening displacement. Angular distributions of the stress fields 

at selected distances to the crack tip have also been examined. 

In addition to the radial and angular variations of the stress fields presented, the difference 

fields between the mismatch cases and the homogeneous solution of the lower part material, 

the reference material, have been calculated and displayed in the corresponding figures 

_ R e f  

O10 0"10 
, ( 7 )  

where a M represents the crack-tip field for a mismatch case and _Ref. uij denotes the reference 

field taken from the homogeneous small scale yielding solution for the lower part material. 

The M in ai M and A a  M is omitted in the figures for simplicity of presentation. 

3.1. Y I E L D  S T R E S S  M I S M A T C H  

3.1.1. nl = n2 ~--- 0.2 

The radial variation of the stress components, cr00 , O'rr and err0 along with the maximum 

principal stress, ~rl is presented for the six mismatch cases together with the homogeneous 

solution in Figure 4 at four different angles. The corresponding difference fields for the six 

mismatch cases are also shown in the same figures. 0 = -t-2.37 ° represents the (integration 

points) lines closest to the interface in the upper part and lower part materials, respectively. 

It can generally be seen that overmatch of the upper part material to the lower part material 

raised the normal stress levels in both sides of the interface. The undermatch effect is just 

the opposite. The singularity of the stress fields is more or less the same as the homogeneous 

one. However, the distributions of the stresses in the upper and lower parts are not symmetric. 

The differences of cr00 at 0 = - 4 5  ° are much smaller than those at 0 = 45 °. We have also 

found that at 0 = 45 °, mismatch has a very minor effect on Crrr. Considering the angular 
distributions of the stresses below, it will be noticed that 0 = 45 ° is close to a special position 

where mismatch has almost no effect on the difference field of O'rr. 
By examining the difference field of tr00, it is interesting to find that it has a very weak 

dependence on the normalized distance, especially when the mismatch ratio is not very severe 
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Figure 4a. 

(less than 1.5). Similar behavior is seen in the fields for other stress components at the four 

angles examined. 

Figure 5 displays the angular variations of the stress fields and their difference fields for 

all the cases at distance r/(J/cro) = 2. This distance has been suggested for the definition of  

Q [11]. The distributions at r/(J/ao) = 4 have also been examined and, as can be expected 

from the radial distribution results, no significant difference was found. First we observe that 

the difference fields have a strong dependence on the angle. It is found that a0o is continuous 

across the interface and that there is a jump in O-rr. The mismatch has elevated or00 more on 

the strong material side than in the weak material side. This tendency is opposite for o'rr. It 

is interesting to note that changing the mismatch parameter of the upper part material has 

greatly influenced the (Trr in the lower part, however, the influence on the upper part itself is 

not significant. From Figure 5 we can observe that stress o-rr around about 0 = 25 ° is almost 

constant in all the six cases examined. This is the special position which has been mentioned 

in the radial distribution discussed above. We can also notice that the maximum value of  the 

maximum principal stress appeared in the weak material, nevertheless the absolute maximum 

difference values in both sides of  the interface are nearly the same. 

The absolute amplitudes of  the difference fields depend on the mismatch properties. How- 

ever, the functional dependence of  the difference fields for all the mismatch cases are very 

similar to each other. It has been realized that it could be possible to normalize these angular 

functions by dividing difference fields by the corresponding maximum values of  the difference 
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fields. This gives the normalized functions fij as shown in Figure 6. The amplitudes were 

taken from the reference material (lower part) for all the stresses except the or00 which has 
only one maximum value in the mismatch material (see the discussion of the shape of the 

normalized functions below). Quite good consistent functions for the stress components and 

the maximum principal stress have been obtained. 

We note from Figure 6 that foo has only one maximum point which appears in the mismatch 

material. There are two local maximum points in frr  and the global maximum point appears 

in the reference material. The function for the maximum principal stress f l  is similar to frr, 

but the two maximum points have nearly the same value. The normalized function fro has the 

maximum in the reference material. The normalized functions correspond better with each 
other in the reference material but slightly worse in the mismatch material. We recall that 

in the calculation of the difference fields, we used the lower part material as the reference 

material, because the purpose was to see how the stress fields in the lower part material are 
affected by the property of the upper part material. We also note that the reference field in (7) 

is derived from the homogeneous solution for the reference material. 
Figure 6 shows that, in general, undermatch and overmatch have nearly the same function 

shapes but an angular shift can be noticed. It is found that the following transformation (for 

the undermatch cases) 
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(8) 

gives better consistent functions. Figure 7 shows the corrected normalized functions d~;yer and 

j~3 nder This behaviour suggests that the angular dependence for the stresses can be normalized 

so that one unique function f/ j  can be used for both overmatch and undermatch cases such 
that 

L 9 y e r ( 0 ]  = f i j ( O ) ,  3 \ - - ]  

fzunder(o] = ~j(O + 12)• 
f f  \ - - 1  

(9) 

The maximum values of the difference fields Mq used for the normalization are shown in 

Figure 8 as a function of m. It must be noted that Mro in Figure 8 is - 2  times the maximum 

difference value of err0 in Figure 6. As mentioned before, except cr00, all the other maximum 

difference values were taken from the lower part material. It can be observed that the maximum 

difference value for Crrr deviates from the others when the m is larger than 1.5. However, when 

m is smaller than 1.5, the amplitudes of the stress difference fields Mij and M] can be identified 

by a common parameter M which is a function of the mismatch ratio m. 
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3.1.2. nl = r ~ 2 = 0 . 1  

The angular distributions of the stresses and their corresponding difference fields for the 

cases with plastic hardening components nl = n2 = 0.1 are shown in Figure 9. In order 

to save space, the radial distributions were not presented. Very similar results to the cases 

with nl = n2 = 0.2 have been found. The corrected normalized functions f/ j  using the 12 

degree shift (8) are shown in Figure 10. By comparing with Figure 8 and Figure 10, indeed 

the shapes of the normalized functions are very similar. However, it should be pointed out that 
the functions are not 'exactly' the same, because different reference fields have been used in 

subtracting the difference fields. Figure 11 shows the amplitudes of the difference fields Mij 

and M1, as a function of m. In general, the same conclusions to the cases nl = n2 = 0.2 can 

be drawn. 

3.2. P L A S T I C  S T R AIN H A R D E N I N G  M I S M A T C H  A N D  G E N E R A L  MISMATCH 

In this section the effect of strain hardening mismatch and general mismatch on the difference 

fields has been investigated. The case for plastic hardening mismatch considered is with 
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Figure 5. Angular variations of  the normalized stress fields and their different fields at the distance r / ( J / a l O )  = 2 

for the cases with nl  = n2 = 0.2. 

m : 1.0, n2 : 0.2, 721 = 0.1. The general mismatch case contains both yield stress mismatch, 

m = 1.5, and plastic hardening mismatch, n2 = 0.2, nl = 0.1. 

Similar weak dependence of the stress components on the normalized radial distance has 

been observed, see Figure 12 for the general mismatch case at 0 = - 2 . 3 7  ° and 0 = - 4 5  °, 

respectively. Figure 13 shows the normalized angular functions for the plastic hardening 

mismatch and general mismatch cases together with the functions for the case with nl = 

n2 = 0.1 and m = 1.5. Surprisingly, as far as the lower part material is concerned, the 

three pairs of normalized functions are consistent with each other to a large extent. Figure 

13 indicates that the normalized angular functions for overmatch cases can be approximately 

used for the plastic hardening mismatch and general mismatch cases without angular shift. 

The Mij and M1 for the plastic hardening mismatch (m = 1.0) and the general mismatch 

(m = 1.5) are shown in Figure 14. Similar observations to the yield stress mismatch can be 

drawn for the two cases. It other words, the mismatch effects in all the cases considered can 

be treated in a consistent way as explored in the next section. 

4. Approximate structure of the interface crack-tip stress field 

4 . 1 .  STRUCTURES OF THE INTERFACE CRACK-TIP STRESS FIELD 

The results in the last section can be summarized as follows. The near-tip stress fields can 

be separated into two parts. The first part is the solution for the homogeneous small scale 
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Figure 6. Normalized difference functions for the cases with nt = n 2  = 0.2. 

yielding reference material which can be characterized by the HRR field and the second part 

measures the deviation of the stress fields under mismatch conditions from the reference 

case. The difference field in the forward sector is very weakly dependent on the radial distance 

(normalized) from the tip and can be approximately separated into one part which characterizes 

the mismatch propriety (Mij) and another part which is a function of the angle and depends 

only on the plastic property of the reference material. The Mij represents the amplitudes of the 

stress difference fields. Figures 8, 11 and 14 have shown that Mij can be approximated by an 

unique constant M which characterizes the mismatch constraint. The angular dependence of 

the difference fields can be normalized for different mismatch conditions. Based on the above 

observations, the following formulations can be approximately constructed for the bi-material 

interface crack defined in the paper 

M o) +  loM(m, n2)A (0 + 12#, . , )  O'ij (7", O) Ref., : ai j  [n l ,  J,r, ( l o )  

where frr(0) = frr(O),fo0(O) = foo(o),fro(O) = -0 .5j~0(0) , f l  = 0 for m /> 1 and 
/3 -- 1 for m < 1. In (10), _Ref. t, ij denotes the small scale yielding solution for the reference 

material, and the normalized angular functions depend only on the plastic property of the 

reference material. M is the amplitude of the angular difference fields which can be used for 

characterizing the material constraint caused by mismatch conditions. It can be seen from 

(10) that M is a function of the plastic hardening property of mismatch material n2 and the 

mismatch ratio, m. 
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Equa t ion  (10) applies for  all mismatch  cases cons idered  and is mos t  accura te  in the range  

- 4 5  ° ~< 0 ~< 0 ° (in the reference  material).  Smal l  scale yie lding for  the validity o f  the above  

formula t ions  is assumed.  

Equa t ion  (10) indicates that the stress fields for  the interface c rack  can be charac ter ized  by  

two parameters  J and M .  
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for the cases with nl  = n2 = 0.1. 

4.2. HOW TO DETERMINE THE M 

Figures 8, 11 and 14 show that Mij are very close to each other except for Mrr when the 

m is larger than 1.5 or under plastic hardening mismatch conditions. The absolute value 

of MrT is larger than the other components. However, the ratio between Mrr and the other 

components, for example, M], is rather constant, about 1.15, see Figure 15. Therefore, once M 

is determined from the other components, M ~  can be obtained, for example, by multiplying 

a constant, if more accurate formulation than (10) is required. 
The M can be determined by evaluating the maximum principal stress at a fixed normalized 

distance, for example, r/(J/cro) = 2, for a mismatch case and comparing it with the homo- 
geneous small scale yielding solution for the same part of material under investigation. The 
amplitude of the angular difference field is the M. The maximum principal stress is chosen 

for evaluating the M, because the distribution of .~ has a maximum point in each side of the 

interface and the maximum values are very close to each other. It will not make large errors 

when the M is evaluated by the maximum difference value at the mismatch material side. 

The evaluation of the homogeneous small scale yielding solution can be made by the HRR 

field or numerical solution. In our calculations, the numerical solution for the small scale 

yielding homogeneous field has been used. As the same nature of the Q fields [8, 9], the value 
of ~//is slightly affected by the choice of the reference field. If the reference field is changed 

from our numerical solutions to the HRR solutions, a small change must be applied to the M. 
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i , 

D i s c u s s i o n s  

Resul t s  above  have demons t r a t ed  that the smal l  scale y ie ld ing  stress fields in the b i -mate r ia l  

in terface  c rack  tip can  be separated into a field cont ro l led  still by the J and  ano ther  field 
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characterized by the M.  In the following some issues related to the M fields are summarized 

and discussed. 

5 . 1 .  W H A T  ARE THE M FIELDS.'? 

M field is the field caused by material mismatch across the interface. It is a non-singular field. 

The field itself is complicated, but can be approximately separated into two parts, the first is 

practically independent of the normalized radial distance to the crack tip and the second part 

is an angular function which depends only on the property of the reference material. Once 

the reference material is chosen, the angular functions are known. In a practical application, 

the exact forms of the angular functions are not the most important, once the value of M is 

determined. 
M is the dimensionless amplitude of the M fields. Together with J ,  the stress status in a 

bi-material interface crack can be determined. 
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5.2. THE SIGNIFICANCE OF THE M FIELDS 

Cleavage fracture is usually controlled by critical levels of  the hoop (opening) stress ahead of  

the crack tip acting over microstructurally significant distances. In a small scale yielding bi- 

material crack, the stress distribution and maximum stress are influenced by M alone while the 
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scale of microstructurally significant distance is scaled by the J.  By using a micromechanics 

criterion for the cleavage fracture, for example the RKR criterion [12], the J - M  theory can 

predict variation of the cleavage toughness with mismatch properties [13]. In a weldment, 

if, for example, the HAZ is identified as the most critical material for cleavage fracture, the 

effect of changing the weld material properties on the HAZ stress field and toughness can 

be assessed. The application of the J - M  theory to the assessment of the fracture behavior of 
weldments has been carried out and reported elsewhere [14, 15]. 

5.3. COMPARISON OF THE Q FIELDS AND THE M FIELDS 

Q [8, 9] measures the constraint by geometry while M signifies the constraint by material 

property mismatch. Mis introduced in this paper within the scope of small scale yielding and 

under the condition of zero Q. 

There is a difference between the Q fields [8, 9] and the M fields. The Q fields were 

established by higher-order asymptotic analysis and are symmetric and do not change the 

shape of the stress contours but the size. Although M field is self-similar, it is not symmetric 

about the interface and will change both the shape and size of the stress contours. 

An important problem which has not been discussed here is the combination of the con- 

straints caused by geometry and the material mismatch. It is observed that the stress fields 

in the dual constraint case are still separable under certain conditions. A framework called 
J -Q-M theory has been formulated [16]. 

5.4. O N E  LIMITATION OF THE M FIELDS 

There is a limitation to the application of the J - M  theory, (10). The limitation is about the 

stress-strain curves of the two materials. The general mismatch case reported in the paper had 

m = 1 .5 ,  n l  = 0 .1 ,7 / ,  2 = 0.2. It means that the low yield strength material has low plastic 

hardening capacity and the two stress-strain curves will never cross. Another general case with 
m -- 1.5, nl = 0.2, n2 --- 0.1 has been analyzed. This case implies that the low yield strength 
material has higher plastic hardening capacity and the two curves cross at a plastic strain about 

0.08 which is nearly 40 times the yield strain of the low yield strength material. The same 
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procedure as described in Section 3 has been used in subtracting the difference fields. Different 

distributions of  the different fields, especially for Crrr, were obtained and these different fields 

could not be normalized using the same functions as the other cases. Therefore, it is indicated 

that the J - M  theory (10) is limited to the cases where the stress-strain curve does not cross 

each other. 
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