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Two-Parameter Equations of State
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Eight new two-parameter equations of state, all of which can be
considered as modifications of the van der Waals equation, are
proposed and their thermodynamic consequences at subcritical
temperatures are investigated using Maxwells’ construction. The
results are compared with empirical data. The basic idea is to write
the equation of state as [P][V]=RT, in which the term [P] is taken
as P+4-f(V,T) and the term [V] is taken as the analogous term in
some equation of state for hard spheres. The conclusion is that, in
the region from the triple point to slightly below the critical point
(0.56 <T'|T 4 <0.95), an equation of state with HV,T)=a/V?,
and a more elaborate form for [V], such as that obtained from the
first five terms in the virial-expansion for the hard sphere gas, repre-
sents no significant improvement over van der Waals equation of
state. In contrast hereto, modifying f(V, T') to read aT-V*(V - 3b/2)™2
or a(l4a/5bRT)(V +3b/2)~2 and retaining the van der Waals form
of [V] (i.e. V—b) produces an equation of state which represents a
vast improvement over that of van der Waals, in particular with
respect to reproducing the empirically known values for the critical
compressibility factor, the molar volume of the gas, and the entropy
of evaporation (Troutons’ rule).

Although empirical equations of state have been used extensively by many
authors, since van der Waals proposed his famous equation, such equa-
tions have only recently come into prominence from a theoretical point of
view. The recent interest in equations of state of the van der Waals type is
due to the papers by Kac, Uhlenbeck and Hemmer,! and by Lebowitz and
Penrose 2 which show that, under certain conditions on the intermolecular
potential, one might expect a van der Waals-like equation with the Maxwell
construction to be an exact equation of state.

It is clear that, from a purely empirical or technical point of view, an
equation of state with a larger number of parameters could be more useful
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since one can, for a specific substance, make the agreement between the
predicted and the experimental values arbitrarily good by simply increasing
the number of parameters. The literature on such empirical equations is
abundant and we refer to the book by Partington ® for an extensive review
of the early work and to the book by Hirschfelder, Curtiss and Bird 4 for a
review of the equations of current interest. From a theoretical point of view,
a two-parameter equation is more interesting than a many-parameter equation
primarily because it leads to a principle of corresponding states, which is
known to hold experimentally for simple substances. Secondly, two parameters
is the smallest number possible in an equation which exhibits the characteristics
of a phase transition. Thirdly, in view of what was said above, for certain
(hypothetical) systems there just may exist an exact two-parameter equation
of state.

An equation of state which is used to study phase-transition and two-
phase regions should be judged by its ability to reproduce the empirical rela-
tionships which hold for the noble gases and some other substances with
reasonably low molecular weights. These empirical relationships are

PV,
2. = Rﬁ,ﬁ; = 0.29 (1)
DPevap = (529——531/t) (2)
Vg™t = 14+ F(1—6)+F1— )P (3)
Vgas 7 = 1+3(1—£)—F (1113 (4)
. ASevap . 1—t¢\0.38 tO
Aoy = = A8°(1—_t(;> v ®)

In these equations, small letters denote dimensionless quantities. p,v,t are
made dimensionless by dividing P, V, and T by the corresponding critical
values, and s is the entropy measured in units of R. A further discussion of
eqns. 1—4 can be found, for instance, in the book by Guggenheim,® and, for a
discussion of eqn. 5, we refer to textbooks in chemical engineering.® If in
eqn. 5 one sets 4s, = 10.4 and ¢, = 0.65 (the approximate reduced temperature
for the normal boiling point), one obtains Trouton’s rule. Any two-parameter
equation of state (with a correct mathematical form) will give a numerical
value of z, the critical compressibility factor (eqn. (1)). Expressions
equivalent to those of eqns. 2—4 are obtained using the Maxwell construc-
tion, ¢.e. choosing pevap(t) so that

f # (p—Pevap)dv = 0

Ylig
where oy, and vgs are the smallest and largest roots in the equation
P(v,1) = Pevap. By this construction the pressure in the loop is replaced by
an average value, and this, of course, corresponds to setting the chemical
potential of the liquid equal to that of the vapour. Finally, a relation analogous
to that of equn. 5 is obtained by using the Clapeyron-Clausius equation
Pevap (8) == ASevap(Vgas—iiq) 12, or from the expression
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2
ASevap = 2 f #° (0p[0),dv (6)
Ulig
in which one inserts (dp/dt), which can be obtained easily from the reduced
equation of state.

Comparison of the classical two-parameter equations with empirical data
from the condensation region has been carried out earlier by Ree 7 * who found
that van der Waals equation reproduced vapour pressure data quite well,
Berthelot’s equation reproduced the densities fairly well, and that none of
the equations lead to the correct value for the heat of vaporization. In addition
to this, it is well known that Dieterici’s equation of state, although it is in
general a very poor equation, reproduces the empirical value of z, correctly.

Before describing the modifications of the van der Waals equation which
we are going to suggest, we shall very briefly review the statistical mechanical
basis of the van der Waals equation.

STATISTICAL MECHANICAL CONSIDERATIONS

A rigorous derivation of the equation of state must start from the parti-
tion function; and, for simplicity in the argument, we shall use the canonical
ensemble. We then have

1
Q= NI f.../e‘U/deql...dan (7)

where U(g,, ..., ¢sn) is the potential energy of the gas. From this we easily
get
dln @

P =k —p (8)

Using statistical mechanics, three important results have been obtained
for the one-dimensional case. First of all, the equation

P(L~—NIl) = RT (9)

which is often called Tonks’ equation ® is valid exactly for N rods of length
! in a one-dimensional box of length L. Secondly, no condensation can occur
in a one-dimensional system if the two particle interaction has a finite range.?
Thirdly, for a system in which the potential has an infinite range, phase
transition is possible even in one-dimensional systems.! As mentioned in the
introduction, the exact treatment of the third case leads to the van der Waals
equation; but this, unfortunately, does not tell much about real gases.

In order to get a simple approximate equation of state from eqn. (7),
one must make very crude approximations. If one assumes that the molecules
can be treated as hard spheres, i.e. if the potential between two molecules is

* Simultaneously with the work of Ree, essentially the same work was carried out by Dr.
Dennis Rohan; but it remained unpublished since Ree’s paper was submitted first. A laboratory
report by Thor A. Bak and Dennis Rohan entitled ‘“Two-parameter Equations of State™ is
available. We are very much indebted to Dr. Rohan for these preliminary calculations.
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zero, except at contact when it rises to infinity, then we have the result that
exp(—U/kT) is 1 except when two or more spheres touch, in which case it
vanishes. The volume for which the integrand vanishes is approximately equal
to b=Nw,, where v, is a volume related to the volume of the molecular sphere;
and we therefore have

1 N
Q= NTAEN (V—b) (10)

which leads to the 3-dimensional Tonks’ equation. This equation is only
approximately valid even if the molecules actually were hard spheres, since
the excluded volume cannot be taken into account in this simple fashion.
This is also found experimentally as a dependence of the effective excluded
volume on the total volume of the gas. The equation does, however, provide
a reasonable interpolation formula between the ideal case and the completely
compressed gas, if b is considered as an empirical parameter.

From the form of eqns. 7 and 8 it is seen that, if the intermolecular potential
can be split up into a strongly repulsive core and a weakly attractive part,
it is likely that the equation of state to a good approximation can be written as

[P][V]= RT (11)

in which the factor [P] essentially only depends on the attractive forces and
the factor [V] only depends on the repulsive forces. If we assume that the
potential consists of a hard core and an attractive part with a fairly long
range, we can argue that U must be approximately constant outside the region
where the hard cores touch each other and equal to

N2 _

Here u is an average value of the two-body potential (u<C0), and the factor
% is inserted to avoid counting the particles twice.
This argument leads to

1 N2y -
@ = yyg = ~3pi7) 0 (13)
and to van der Waals equation with
0 — NaP %
T2

(14)

where Nay is Avogadro’s number.

For a potential with finite range, the molecules must primarily interact
with other molecules close to it; and the distribution of molecules is not as
“random” as it would be with long-range forces, since clustering of molecules
now will occur at low temperatures. This means that U should be modified
in two ways. When the volume of the gas is very small, the number of particles
near a certain particle cannot simple be proportional to N/V; and, when the
temperature is low, the assumed constant value of U is increased. Since the
total range of temperatures we shall consider is only within a factor 3 to

Acta Chem. Scand. 23 (1969) No. 5



TWO-PARAMETER EQUATIONS OF STATE 1737

4 of the lowest temperature, almost any functional dependance of 7' will do;
and, to get something simple, we set

N2
(V- obyT™

where U, is a proportionality factor which absorbs all our approximations,
4 a pure number of the order 1, and » a pure number which will also probably
be of the order 1.

Another possibility is to set

. N2 na/bR
U=V (14" (16)

where a/bR has the dimension of a temperature and » is a pure number.
In light of what was said above, this is just another approximation formula,
intended to work in a rather narrow range.

In accordance with what has been said above, we now suggest the following
three [P] terms:

U=U0, (15)

P+ % (17)
a(l+na/bRT)
e o

These terms can be combined with [V] terms which stem from a more rigorous
treatment of the hard sphere gas, as already suggested by Longuet-Higgins
and Widom 2 and by Guggenheim.®® The most obvious thing to do, perhaps,
is to use the virial expansion for a hard sphere gas of which several terms are
now known. Using up to the fifth virial coefﬁeient we get

b4 -1
[V] = V(1+ 43 . V2+0 .2829 — V3 +o 105 V4) (20)

Another possibility would be to use Thiele’s solution !¢ of the Percus-Yevick
equation for hard spheres. This leads to

V= (V—b'P3(Vet+ Vb 4-b'2) (21)

if we use the compressibility equation, which presumably is the more accurate
one. A series expansion shows that the parameter b’ is related to b by &'=b/4.
We can now combine either of the [V] factors given by eqns. (10), (20), or
(21) with either of the [P] factors given in eqns. (17)—(19). This leads to a
total of 9 equations of state of which one is the familiar van der Waals’ equa-
tion. The equations of state and the numbering of them, which we shall use
from now on, is shown in Table 1. It should be remarked, of course, that the
equations in which n and § oceur, strictly speaking, are not two-parameter
equations. However, once the dimensionless parameters n and J are given
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numerical values, we are left with two-parameter equations of state for
which the theorem of corresponding states holds. The way of fixing » and ¢
is described in detail in the following section.

THE CALCULATION SCHEME

The calculations involve two steps: 1. The calculation of the coefficients
in the reduced equation, and 2. The calculation of the thermodynamic quan-
tities given in eqns. (1)—(5). The first step is trivial in the case of equation
1.1; but, for some of the more complicated equations, it can only be done
numerically. In the four-parameter equations, this step also requires that the
values of # and & have been determined beforehand. They were determined
in the following way: » and J were given a series of sets of numerical values.
Each set (n,d) gave us a two-parameter equation of state for which the reduced
equation of state and z. could be calculated. This was done numerically,
using a computer program. Using these reduced equations of state and the
Maxwell construction, we computed the thermodynamical quantities given
in eqn. (2)—(5) at a definite temperature, £==0.65, the normal boiling point.
This temperature lies in the middle of the temperature interval of interest.
The values of n and 6 which gave the best agreement between these values
and the empirical values, as found from eqns. (1)—(5) inserting ¢ equal to
0.65, were chosen as the final values of » and §. Since the square of the devia-
tions from the empirical values, considered as a function of # and J, showed a
rather shallow minimum, the final values of » and ¢ could be taken as round
numbers. Final values of # and § are given in Table 1 together with the ther-
modynamical quantities (2., Vgs, Vg, Pevap AN ASevap) at t=0.65 for all
nine equations of state. Table 2 gives, for comparison, the empirical values

Table 2. Average empirical values of the thermodynamic quantities given in eqns. (1)—(5)
at t=0.65. The temperature, t=10.65, is chosen here as in Table 1 because this, roughly
speaking, corresponds to the reduced temperature at the normal boiling point.

Zer 0.29
Pevap 0.055
Vlig 0.4
Vgas - 50
A3eyap 10.4

of the thermodynamical quantities, also at £=0.65. Table 3 gives the reduced
equations of state. With » and J fixed as described, we then calculated the
thermodynamical quantities for several temperature values in the range
0.35<t<C1, the spacing between { values being 0.050 in the range from 0.35
to 0.95 and 0.001 in the range from 0.98 to 0.999. The results are given
as the curves: log ;Pevap versus 1 (Figs. la, b, and ¢), v and vges ! versus ¢
(Figs. 2a, b and ¢) and finally ASevap versus ¢ (Figs. 3a, b, and c). Also, the
empirical curves are given (heavy lines).
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DISCUSSION

We shall first see if we can improve on the van der Waals equation by
replacing the factor V—b with the ones given in eqn. (20) or eqn. (21), ¢.e.
we compare eqns. 1.1, 1.2, and 1.3.

0 ~ 0

a —

2 11 &

i .~ >
b o

‘_O_ [=)
o . =
S5t A gt

31
10 — 1 10 [ N

Fig. la, b and c. A plot of the logarithm to

the reduced vapour pressure, log,, Pevaps

versus reduced reciprocal temperature, 1.

— Calculated curves with indication of the
number of the equation of state.

— Empirical curve as caloulated from
eqn. (2).

The vapour pressure curves given in Fig. la, b and ¢ show clearly that
there is an improvement especially in the case of eqn. 1.3. Since the vapour
pressure predicted by the van der Waals equation is too high as is the liquid
volume (Fig. 2a, b, and ¢), it is perhaps not so surprising that equation 1.3
also represents an improvement with respect to that effect. However, in
this case, the improvement results in a value for vy, which is about as much
too small as that of van der Waals is too large. The gas volumes (Fig. 2a, b,
and c) are considerably improved both by eqn. 1.2 and 1.3 as are the entropies
of evaporation (Fig. 3a, b, and ¢). As can be seen, they are still far too small.

We shall then see what changes we get by altering the [P] term. Roughly
speaking, introducing the [P]’s from eqns. (18) and (19) in any of the equs.
1.1, 1.2, and 1.3 give qualitatively the same changes: The vapour pressure
and the liquid volume drop, the gas volume increases, and the entropy of
evaporation increases. In the near critical region, this represents, in all cases,
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tig. 2a, b and c. A plot of the reciprocal

reduced volumes of the gas vy, (left

branch) and of the liqud wv;,™ (right

branch) versus reduced temperature ¢.

— Calculated curves with indication of the
number of the equation of state.

— Empirical curve as calculated from
eqns. (3) and (4).

improvements; but, at lower temperatures, the effects of modifying the [P]
term in this way appear to be too large. At sufficiently low temperatures,
therefore, eqns. 1.2 and 1.3 appear to be superior. It should be mentioned
that, even if the introduction of the modified [P] terms makes the agreement
with the empirical curves significantly better in the region nearest to the
critical point, none of the equations of state given here are satisfactory in
this region. The reason for this is that for simple liquids it is known that as
(p, v)=>(1, 1) the following asymptotic relationship is valid:! 1—p=|v—1}5.
In all equations studied here we get the same result as for the van der Waals

equation, namely 1—p=|v—13,

Acta Chem. Scand. 23 (1969) No. 5
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Fig. 3a, b and c. A plot of the entropy of

in units of the gas

constant R versus reduced temperature ¢,

— Calculated curves with indication of the
number of the equation of state.

— Empirical curve as calculated from

evaporation Aseyap

eqn. (6).
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If we limit ourselves to the region 0.95>{>>0.56, i.e. to temperatures
from a little below the critical temperature to about the triple point, we see
that the eqns. 2.1 and 3.1 are the best. Table 4 shows the maximum devia-
tion between predicted and average empirical values for these two equations;
and, from this, it appears that eqn. 2.1 is slightly better than eqn. 3.1.

Table 4. The maximum deviations between calculated values and empirical averages in

the region 0.56<?<0.95, in per cent of the empirical average.

Equation 2.1

Equation 3.1

Ze 3 3
pevap 35 50
Viig 40 40
Vgas 20 10
ASeyap 30 30

Acta Chem. Scand. 23 (1969) No. 5



1744 BJERRE AND BAK

pd el et
WO OLEIS G W

REFERENCES

Kae, M., Uhlenbeck, G. E. and Hemmer, P. C. J. Math. Phys. 4 (1963) 216.
Lobowitz, J. L. and Penrose, O. J. Math. Phys. T (1966) 98.

Partington, J. R. An advanced treatise on physical chemistry, Longmans, London
1949, Vol. 1, pp. 660—745.

Hirschfelder-Curtiss-Bird, Molecular theory of gases and liquids, Wiley, New York
1954.

Guggenheim, E. A. Thermodynamics, North Holland Publ. Co., Amsterdam 1949,
pp. 166—169.

. Watson, K. M. Ind. Eng. Chem. 23 (1931) 360; 35 (1943) 398.

. Ree, F. H. J. Chem. Phys. 36 (1962) 3373.

. Tonks, L. Phys. Rev. 50 (1936) 955.

. See, e¢.g. van Hove, L. Physica 16 (1950) 137.

. Thiele, E. J. Chem. Phys. 39 (1963) 474.

. Green, M. 8. et al. Phys. Rev. Letters 18 (1967) 1113.

. Longuet-Higgins, H. C. and Widom, B. Mol. Phys. 8 (1964) 549.
. Guggenheim, E. A. Mol. Phys. 9 (1965) 43.

Received October 25, 1968.

Acta Chem. Scand. 23 (1969) No. 5



