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Abstract

The distance transform of a binary image is a classic tool

in computer vision and it has been widely used in the field

of Topological Data Analysis (TDA) to study porous media.

A common practice is to convert grayscale images to binary

ones to apply the distance transform. In this work, by con-

sidering the threshold decomposition of a grayscale image,

we prove that threshold decomposition and distance trans-

form together to formulate a two-parameter filtration. This

would offer the TDA community a concrete example to ap-

ply multi-parameter persistence on digital image analysis.

We demonstrate our method on the firn dataset.

1. Introduction

Topological data analysis (TDA) is a rising field at the

intersection of Mathematics, Statistics, and Machine Learn-

ing [9, 3, 33, 5]. Tools from TDA have proven successful

in analyzing a variety of scientific problems and datasets

(see e.g. [25] for a list of application areas). The develop-

ment of the persistent homology is the main driving force in

TDA (see e.g. introductory texts [6, 35]). In classical persis-

tent homology, we track changes in homology over a one-

parameter filtration, or a single sequence of spaces satisfy-

ing a nested subset relation ordered by inclusion. Recently,

a more general form of persistent homology, multiparame-

ter persistent homology has been studied [11, 19, 4, 27, 20].

Similar to the classic filtration, multiparameter persistence

uses a multi-parameter filtration. However, to the best of

our knowledge, multi-parameter filtration in the computer

vision literature is limited. In this paper, we provide a con-
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crete two-parameter filtration for 2D or 3D digital images.

Our motivation for this study is the analysis of firn data.

Firn is a type of porous media that is formed at the top

of glaciers and ice sheets where snow melting rarely oc-

curs. This area of firn, or old snow layers, comprises meta-

morphosing ice particles and interconnected pore space.

Understanding how the underlying microstructure of the

firn changes with depth is a difficult, yet important, task

that is required for better interpretation of satellite remote

sensing signals and ice core paleoclimate records. A non-

destructive method for retrieving firn microstructural infor-

mation is x-ray micro-computed tomography (micro-CT).

Micro-CT imaging of firn sample produces a stack of 2-

dimensional cross-sectional images in greyscale, that repre-

sent the 3-dimensional volume of the sample.

There have been several studies that analyze porous me-

dia with tools in TDA. For instance, in [21], authors de-

velop statistical inference of persistent homology over 3D

rock images to predict fluid flow; in [15], authors develop a

new index based on persistent homology to characterize the

degree of rock heterogeneity; in [13], authors use persis-

tent homology to relate microstructure and fluid trapping in

sandstones; in [30], authors study pore space and fluid phase

characterization in sands; in [26], authors study percolating

length scales; in [17], authors study evolution of a cell alu-

minium foam. The common pipeline of these work is to (1)

convert grayscale images to binary ones, (2) apply distance

transform (defined in Section 2.2) to those binary images,

and (3) use persistent homology to study transformed im-

ages.

In this paper, we extend the above pipeline by expanding

(1); we consider all possible binary images obtained from

threshold decomposition. For each resulting binary image,

we proceed down the pipeline. Most importantly, we prove

that the thresholding decomposition and distance transform

formulate a two-parameter filtration. Thus, our main con-

tribution to the field results in a new tool for practitioners to

use in applications and many concrete examples for those

researching multiparameter persistence to use while testing

and exploring theories.
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Our paper is outlined as follows. We introduce neces-

sary mathematical backgrounds for this work, including no-

tations, distance transform, persistent homology, and two-

parameter filtration in Section 2. In Section 3, we prove

our main result – the combination of distance transform and

thresholding operation forms a two-parameter filtration. Fi-

nally, in Section 4, we extract useful information from the

two-parameter filtration and apply it to the firn data.

2. Background and Notation

This section is split into three parts. First, we review

notations and basic properties of digital images used in this

paper. Next, we introduce the distance transform of digital

images and its connection to the filtration of images. We

follow notations in the work [29, 28, 22]. Finally, we give a

brief introduction to persistent homology.

2.1. Digital Images

We use R to denote the set of all real numbers. The set of

all non-negative real numbers is denoted by R≥0 = {a ∈
R : a ≥ 0}. Similarly, Z≥0 is the set of all non-negative

integers.

An image domain in Z2 means a non-empty and finite

subset of Z2. Let P be an image domain in Z2. An (digital)

image is referred as a function f : P → R≥0. The set of all

images on P is denoted by IP . An image f ∈ IP is called

binary if it has range {0, 1}. Typically, 0 and 1 represent

black and white color, respectively. The set of all binary

images on P ⊆ Z2 is denoted by BIP . An image f ∈ IP
which is not binary is called a grayscale image. Based on

this setting, we have BIP ⊆ IP . One can also define an

order in IP . For two functions f, g : P → R, we say that

f ≤ g if and only if f(p) ≤ g(p) whenever p ∈ P .

For illustration, we also use the following convention to

represent an image f on the grid P :

P =
• •
• • and f =

a b
c d

(1)

where a, b, c, d ∈ R≥0. In this case, P is a 2-by-2 grid. and

the corresponding pixel values are a, b, c, b, respectively.

Let f ∈ IP . The support of f is defined by

supp(f) = {p ∈ P | f(p) ̸= 0}. (2)

In particular, the support of a binary image is the set of all

white pixels.

Given a grayscale image f ∈ IP , the binary image

thresholded at t is defined as

ft(p) :=

{
0 if f(p) ≤ t,

1 otherwise
(3)

(a) Image f (b) Image f79 (c) Image f194

Figure 1. An example of the thresholding operator. (a) A greyscale

image f which has size 800 × 600 pixels. The range of the pixel

values of f is {0, 80, 195, 227, 255}. Figures (b) and (c) are im-

ages created by applying thresholds 79 and 194 on the image f .

for every p ∈ P ⊆ Z2. Let f be an 8-bit grayscale image,

the threshold decomposition of f is the collection of all pos-

sible binary images, f0, f1, · · · , f255. One may verify the

following relation

ft ≤ fs, if s ≤ t. (4)

The following properties are used in the paper.

Proposition 1 ([29], Property 1.11). Let f, g ∈ IP be im-

ages. If f ≤ g, then g−1(0) ⊆ f−1(0). In addition, if

f, g ∈ BIP are binary images, then f ≤ g if and only if

g−1(0) ⊆ f−1(0).

The following proposition is an alternate form of Propo-

sition 1.

Proposition 2. For f, g ∈ IP . If f ≤ g, then supp(f) ⊆
supp(g). In addition, if f, g ∈ BIP are binary images, then

supp(f) ⊆ supp(g) if and only if f ≤ g.

Proposition 3 ([14], Lemma 1). For images f, g ∈ IP ,

f ≤ g if and only if ft ≤ gt for every t ∈ R≥0.

For example, the image f in Figure 1 contains two balls

with different pixel values, where parts near the center of a

ball have darker colors (i.e., lower pixel values). As a to-

pographic map, different thresholds capture objects in dif-

ferent depths. In Figure 1-(b), the threshold 79 detects the

darkest parts of two balls. On the other hand, the threshold

194 identifies all gray regions of the left ball as a single one

and erodes the pixels of the value 227 in the right ball.

Figure 1 shows that different thresholds detect different

objects. In this case, the sizes of the two balls lead to dif-

ferent distances between them. The distance transform in

image processing provides a way to describe this relation-

ship between local objects in digital images. In this work,

we would combine the thresholding and distance transform

techniques to study the firn data.

2.2. Distance Transform

In this subsection, we will review the notations for the

distance transform which we follow [29, 28, 22] and discuss

its properties.
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Let P ⊆ Z2 be an image domain. Let d be a metric on

P . The common choices of d are ∞-norm defined by

d∞((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}, (5)

or q-norm defined by

dq((x1, y1), (x1, y2)) := (|x1 − x2|q + |y1 − y2|q)1/q .
(6)

In particular, d∞ is also known as Chebyshev distance [2],

d1 is known as the taxicab metric [18], and d2 is known as

the Euclidean distance.

The definition of the distance transform is as following.

Definition. Let P ⊆ Z2 be an image domain, f ∈ IP , and

d be a metric on P . A distance transform with respect to

metric d is a function Td : IP → IP which is defined by

Td(f)(x) = min{d(x,y) : y ∈ supp(f)}, ∀ x ∈ P. (7)

By switching the support of an image, the anti-distance

transform can be defined.

Definition. Let P ⊆ Z2 be an image domain, and d : P ×
P → R≥0 be a distance function. An anti-distance trans-

form with respect to metric d is a function T̃d : IP → IP
defined by

T̃d(f)(x) = min{d(x,y) : y ∈ P \ supp(f)}
= min{d(x,y) : y ∈ P, f(y) = 0}, ∀ x ∈ P.

(8)

Remark. We note that Td(f) (resp. T̃d(f)) is not defined

here if supp(f) = ∅ (resp. P \supp(f) = ∅). We omit these

cases of images. However, one may consider the extended

real number system to solve this logic issue [24].

Distance and anti-distance transforms are tools for inves-

tigating the distribution of pixels. In this paper, we mainly

consider distance and anti-distance transforms applying on

binary images. In this case, as functions, these transforms

would send each binary image to a grayscale one, i.e.

f ∈ BIP =⇒ Td(f) ∈ IP . (9)

Example 1. Consider image f : P → {0, 1} with P ⊆ Z2

defined by

f =
1 1 1
1 0 0
1 0 0

with P =
• • •
• • •
• • •

(10)

and d2. Then

Td2
(f) =

0 0 0
0 1 1
0 1 2

and T̃d2
(f) =

√
2 1 1
1 0 0
1 0 0

. (11)

As shown in Example 1, each entry in Td2(f) (resp.

T̃d2
(f)) is the minimal distance of current pixel to a white

(resp. black) component in image f . Combining two dis-

tance transforms Td(f) and T̃d(f) leads to the Signed Eu-

clidean Distance Transform (SEDT) [34]. Specifically, let

f ∈ BIP , the SEDT is Td(f) := Td(f)− T̃d(f). Since we

consider Td(f) and T̃d(f) separately, our main result will

also hold for SEDT.

Filtration of objects (or sets) is crucial for constructing

persistent homology in TDA [23, 8]. We call a sequence of

images f1, f2, ..., fn ∈ IP a filtration of images if

f1 ≤ f2 ≤ · · · ≤ fn. (12)

There several methods for obtaining a filtration of sets from

a sequence of images. For instance, one may consider the

preimages of zeros of images in (12):

f−1
n (0) ⊆ · · · ⊆ f−1

2 (0) ⊆ f−1
1 (0). (13)

On the other hand, one can construct a filtration of sets by

considering their supports:

supp(f1) ⊆ supp(f2) ⊆ · · · ⊆ supp(fn). (14)

The following proposition is useful for constructing fil-

tration of images from distance transform.

Proposition 4. Let P ⊆ Z2 be an image domain, d a metric

on P , and f, g ∈ IP . Then the following hold:

(a) Td(g) ≤ Td(f) if supp(f) ⊆ supp(g);

(b) T̃d(f) ≤ T̃d(g) if supp(f) ⊆ supp(g).

Hence Td(g) ≤ Td(f) if and only if supp(f) ⊆ supp(g).

Proof. (a) If x ∈ P , then Td(g)(x) = min{d(x,y) :
y ∈ supp(g)}. Because supp(f) ⊆ supp(g), Td(g)(x) =
min{d(x,y) : y ∈ supp(g)} ≤ min{d(x,y) : y ∈
supp(f)} = Td(f)(x). Because P \ supp(g) ⊆ P \
supp(f), (b) follows by the same arguments as in (a).

Conversely, if supp(f) ⊈ supp(g), then there is an x ∈
P such that f(x) > 0 and g(x) = 0. This shows that

Td(f)(x) = 0 and Td(g)(x) > 0. Hence Td(g) ≰ Td(f).

Remark. We note that the filtrations in (13) and (14) only

work for the case of f1, ..., fn ∈ IP . Because Td(fi) may

contains negative entries, (13) and (14) may not hold. How-

ever, by Proposition 4, we may obtain a filtration of sets

supp(fn) ⊆ · · · ⊆ supp(f2) ⊆ supp(f1) if Td(f1) ≤
Td(f2) ≤ · · · ≤ Td(fn).

Figure 2 illustrates how the distance transform captures

the distance information in digital images. In this figure,

images in (c) and (d) are the heat maps of binary images in
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(a) Image f79 (b) Image f194

(c) Heat map T̃d(f79) (d) Heat map T̃d(f194)

(e) Image T̃d(f79)50 (f) Image T̃d(f194)50

Figure 2. An example of the distance transforms on images. (a)

and (b) are the images f79 and f194 defined in Figure 1. (c) and

(d) are the heat maps T̃d(f79) and T̃d(f194) of the images f79 and

f194. Images in (e) and (f) are obtained by applying the threshold

50 on the heat maps in (c) and (d). The distance d used here is the

Euclidean distance.

(a) and (b). By viewing each heat map as a greyscale image,

the value of a pixel in a heat map made by the anti-distance

transform is the minimal distance from the pixel to the black

regions in the original binary image.

For example, in Figure 2, colors in T̃d(f79) represent the

values of minimal distances between pixels to black regions

in f79. For the fixed threshold 50, T̃d(f79)50 is a binary

image where pixels in T̃d(f79)50 are black if they have dis-

tance values ≤ 50.

The set of black pixels in f79 is contained in the set of

black pixels in T̃d(f79)50. In this case, the information of

connected components in f79 and T̃d(f79)50 are the same.

On the other hand, T̃d(f194)50 changes the number of con-

nected components in f194 since the balls in f194 are finally

merged into a single component.

Homology, a mathematical tool developed in algebraic

topology [10, 12, 32], can measure this topological informa-

tion. As the thresholds change, one greyscale image f may

uncover various topologies. It motivates us to integrate the

persistent homology into this framework. The framework

of changing the 2-parametric thresholds derives a double

sequence of images. In this paper, we call this double se-

quence a bi-filtration of images and prove that it satisfies the

set inclusion relation (Proposition 5).

2.3. Persistent Homology

Homology is a tool from Algebraic Topology that allows

topologists to assign abstract topological spaces to com-

putable vector spaces [10, 12, 32]. We will not define it

here, but for our purposes, homology helps us count the

number of holes in a topological space. For example, if

X is a topological space, H0(X) helps us count the number

of 0-dimensional holes, or connected components, of X .

To be more precise, H0(X) produces a vector space whose

dimension, denoted β0 is called the zeroth Betti number.

In a similar way, H1(X) produces β1, a count of the one-

dimensional holes in X , and H2(X) produces β2, which

counts the number of “air pockets” in X . The index and

heuristic continue for Hn, n ∈ N. In TDA, we typically

concern ourselves only with H0, H1, and H2.

On the other hand, persistent homology [7, 3] lets us

compute and track homology over related spaces. A fil-

tration of topological spaces is an increasing sequence of

topological spaces

X1 ⊆ X2 ⊆ · · · ⊆ Xm. (15)

For a given non-negative integer n ∈ Z≥0, we can compute

Hn(Xi) for i = 1, . . .m. Due to the subset relations, we

are guaranteed linear maps fij : Xi → Xj , i ≤ j between

the resulting spaces.

We say a homology class α is born at b if we have α ∈
Hk(Xb) and α /∈ im fb−1,b. We say that α born at b dies

at d, d ≥ b if fb,d−1(α) /∈ im fb−1,d−1, but fb,d(α) ∈
im fb−1,d, i.e. if it merges with a previous class. In the case

where a class does not die, we assign it a death value of ∞.

We collect the birth-death pairs (b, d) for each class ap-

pearing in the filtration into a summary called a persis-

tence diagram, or just diagram associated to the filtration,

{Xi}mi=1, which we will denote by D({Xi}mi=1).
To apply persistent homology to images, we note that we

can assign topological spaces, called cubical sets to binary

images. Moreover, we can use a homology theory called cu-

bical homology to compute homology on such spaces [16].

Thus for a given grayscale image, our filtration is exactly

the threshold decomposition across all threshold values.

From here, the persistent homology discussion above ap-

plies.

We use images in Figure 3 to explain the geometric

meaning of the persistence diagrams of a filtration. For the

image f in Figure 1, the collections of black pixels in im-

ages T̃d(f79)j , j = 1, 2, ..., 255 form a filtration of cubes.

The barcode (1, 78) in the 0th persistence diagram of this

filtration is an approximation for the (half of) distance be-

tween the balls in f79.

In this paper, we focus on filtrations induced by fi for

i = 1, 2, ..., 255. We will prove in the next section that

filtrations associated with different binary images fi’s also
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(a) f79 (b) T̃d(f79)20 (c) T̃d(f79)40 (d) T̃d(f79)60 (e) T̃d(f79)80

Figure 3. An example of a filtration made by applying different thresholds on a transformed image T̃d(f79) where f is defined as in Figure

1. The 0th persistence diagram of this filtration is {(1,+∞), (1, 78)}.

satisfy the set-inclusion relations, and hence form a bi-

filtration of cubes.

3. Two-parameter Persistence via Distance

Transform

In this section, we introduce how to construct a bi-

filtration by applying distance transforms and thresholding

on a digital image.

Before defining bi-filtration of sets, we first define an

partial ordered ≤ on Z2. Given two vectors u = (x1, y1)
and v = (x2, y2), we define u ≤ v if and only if x1 ≤ x2

and y1 ≤ y2.

Definition ([4]). Let N be a subset of Z2, a bi-filtration of

sets is a collection {Su}u∈N of sets indexed by N which

satisfies Su ⊆ Sv whenever u ≤ v.

Let P ⊆ Z2 be an image domain and f ∈ IP . For

s ≤ t ∈ R≥0, we have ft ≤ fs where ft and fs are

binary images. By Proposition 2, supp(ft) ⊆ supp(fs).
Therefore, for a distance function d : P × P → R≥0,

if t1 ≥ t2 ≥ · · · ≥ tl ≥ 0, we can consider images

T̃d(ft1) ≤ T̃d(ft2) ≤ · · · ≤ T̃d(ftl). On the other hand,

if a1 ≥ a2 ≥ · · · ≥ ak ≥ 0, then T̃d(fti)a1 ≤ T̃d(fti)a2 ≤
· · · ≤ T̃d(fti)ak

for each i ∈ {1, 2, ..., l} by Proposition 3.

Finally, we obtain the net

T̃d(ft1)a1 ≤ T̃d(ft1)a2 ≤ · · · ≤ T̃d(ft1)ak

≥ ≥

... ≥

T̃d(ft2)a1
≤ T̃d(ft2)a2

≤ · · · ≤ T̃d(ft2)ak

≥ ≥

... ≥

T̃d(ft3)a1
≤ T̃d(ft3)a2

≤ · · · ≤ T̃d(ft3)ak

≥ ≥

... ≥

...
...

...
...

≥ ≥

... ≥

T̃d(ftl)a1 ≤ T̃d(ftl)a2 ≤ · · · ≤ T̃d(ftl)ak

(16)

of binary images. Alternatively, if we define

Ũ(ti,aj) =
(
T̃d(fti)aj

)−1

(0) (17)

we have the bi-filtration

Ũ(t1,a1) ⊇ Ũ(t1,a2) ⊇ · · · ⊇ Ũ(t1,ak)

⊇ ⊇ ...

⊇

Ũ(t2,a1) ⊇ Ũ(t2,a2) ⊇ · · · ⊇ Ũ(t2,ak)

⊇ ⊇ ...

⊇

Ũ(t3,a1) ⊇ Ũ(t3,a2) ⊇ · · · ⊇ Ũ(t3,ak)

⊇ ⊇ ...

⊇

...
...

...
...

⊇ ⊇ ...

⊇

Ũ(tl,a1) ⊇ Ũ(tl,a2) ⊇ · · · ⊇ Ũ(tl,ak)

(18)

of black pixels in binary images. This defines a bi-filtration

over the index set

N = {(ti, aj) : i = 1, ..., l, j = 1, 2, ..., k}. (19)

where (t, a) ≤ (s, b) in N is defined by t ≤ s and a ≤ b.
We summarize the main result as the following proposi-

tion by computing filtrations for T̃d and Td:

Proposition 5. Let P ⊆ Z2 be an image domain, d a dis-

tance function on P , and f ∈ IP . For s ≤ t and a ≤ b in

R≥0, the following order relations hold:

Td(ft)b ≤ Td(ft)a

≤ ≤

Td(fs)b ≤ Td(fs)a

, (20)

T̃d(ft)b ≤ T̃d(ft)a

≥ ≥

T̃d(fs)b ≤ T̃d(fs)a

, (21)

and
Td(ft)b ≤ Td(ft)a

≤ ≤

Td(fs)b ≤ Td(fs)a
. (22)

In particular, if Ũ(α,β) :=
(
T̃d(fα)β

)−1

(0), then (21) de-

fines a bi-filtration of sets:

Ũ(t,b) ⊇ Ũ(t,a)

⊆ ⊆

Ũ(s,b) ⊇ Ũ(s,a)

. (23)
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(a) Image f

(b) Ũ(194,100) (c) Ũ(194,50)

(d) Ũ(79,100) (e) Ũ(79,50)

Figure 4. A toy example of the distance transform bi-filtration (18)

of images of the size 800 × 600 pixels. In this bi-filtration, we

consider the sets of black pixels. The darker the image, the larger

the set. The based image f is defined as in Figure 1.

Proof. Because s ≤ t, ft ≤ fs. By Proposition 2,

supp(ft) ⊆ supp(fs). Therefore, Td(fs) ≤ Td(ft) and

T̃d(ft) ≤ T̃d(fs) by Proposition 4. Hence Td(fs) ≤ Td(ft).
The row relations in (20), (21), and (22) follow from Propo-

sition 2.

Example 2. Consider grayscale image

f =
3 2 2
2 0 0
2 0 0

with P =
• • •
• • •
• • •

. (24)

Let d2 be the 2-norm distance function on P . For s = 1 and

t = 2, we have

ft =
1 0 0
0 0 0
0 0 0

and fs =
1 1 1
1 0 0
1 0 0

. (25)

Hence

Td2(ft) =

0 1 2

1
√
2

√
5

2
√
5

√
8

, Td2(fs) =
0 0 0
0 1 1
0 1 2

,

T̃d2
(ft) =

1 0 0
0 0 0
0 0 0

, T̃d2
(fs) =

√
2 1 1
1 0 0
1 0 0

.

(26)

For a = 0.5 and b = 1.4,

Td2(ft)b =
0 0 1
0 1 1
1 1 1

, Td2(ft)a =
0 1 1
1 1 1
1 1 1

,

Td2
(fs)b =

0 0 0
0 0 0
0 0 1

, Td2
(fs)a =

0 0 0
0 1 1
0 1 1

.

(27)

Similarly, for the anti-distance transform:

T̃d2
(ft)b =

0 0 0
0 0 0
0 0 0

, T̃d2
(ft)a =

1 0 0
0 0 0
0 0 0

,

T̃d2(fs)b =
1 0 0
0 0 0
0 0 0

, T̃d2(fs)a =
1 1 1
1 0 0
1 0 0

.

(28)

This induces the bi-filtration (23).

Note that the nets of preimages of zero induced by (20)

and (22) are not bi-filtration since the index orders be-

tween index set Z2 and sets of pixels are not consistent.

However, by re-defining the partial orders on Z2, one may

obtain different bi-filtrations. For example, if we define

U(α,β) = supp(Td(fα)β) = Z2 \ (Td(fα)β)
−1

(0) and

(x1, y1) ≤′ (x2, y2) if and only if x1 ≤ x2 and y1 ≥ y2,

then for s ≤ t and a ≤ b,

U(t,b) ⊆ U(t,a)

⊆ ⊆
U(s,b) ⊆ U(s,a)

(29)

is a bi-filtration for the new partial order ≤′ on Z2. In other

words, the index order on Z2 could be freely modified for

different tasks. By choosing suitable indexes, homology of

bi-filtrations induced by equations (20), (21), and (22) pro-

vide concrete examples of multi-persistence. As we showed

in Example 1, except the topological barcodes from thresh-

olding, the persistent homology on the bi-filtration may re-

veal additional geometric information for images.

4. Application to Firn

Understanding the number and average size of pores

within a firn layer is important for modeling air flow through

the firn column. As firn layers are buried, they undergo den-

sification with depth due to the overburden pressure of the

accumulating snow at the surface. This causes the number

of pores, as well as the volume of those pores, to shrink

with depth. Ultimately, the firn layers reach the density of

glacial ice at the bottom of the firn column, and the intercon-

nected pore space is transformed into individual closed-off

bubbles. These bubbles trap a direct sample of atmospheric

air, and make up an important paleoclimate record of past
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Figure 5. Illustration of the distance transform bi-filtration (18). In this bi-filtration, we consider the sets of black pixels. The darker the

image, the larger the set.

Figure 6. The workflow for extracting a distance transform persis-

tence diagram

atmospheric composition within the glacial ice. A better un-

derstanding of the size and number of pores with depth in

the firn will help to improve the age estimates of the trapped

atmospheric samples within those bubbles.

4.1. Description of the dataset

The firn dataset used in this study comes from a firn core

drilled at the NEEM Drilling Camp, Greenland in 2009.

From the main core, 1x1x1.5 cm samples were cut at se-

lected depths and scanned with the micro-CT. Reconstruc-

tions of the micro-CT data resulted in a stack of approxi-

mately 900 cross-sectional images representing the volume

of the sample. Each cross-sectional image is approximately

500x500 pixels with a pixel resolution of 15 µm. Here we

analyze the samples from 7, 23, 47, 59, and 78 m depth,

which span the full range of depths in the NEEM firn col-

umn.

4.2. Results

The firn images are grayscale images whose pixel values

are integers between 0 and 255. Given a grayscale image,

for each integer t ∈ {0, 1, . . . 255}, we can threshold the

image to extract a binary image. On each of these threshold

images, we apply the distance transform. Next, we com-

pute persistent homology on these images, and extract the

relevant statistics from the resulting diagrams. Figure 6 il-

lustrates the common practice, where (a) is a firn image, (b)

is a thresholded binary image, (c) the distance transform of
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Figure 7. This displays nt vectors for five depths of firn-core sam-

ples. t = 4i for i = 1, 2, 3, · · · , 64. For each depth, 10 images

were sampled.

the (b), and (d) is the persistence diagram of (c).

In this work, we consider the bi-filtration {Ũ(t,a)} in

(18). Figure 5 shows an example of this bi-filtration. For

each t, we consider the persistence diagram along the verti-

cal path, i.e. D({Ũ(t,a)}Ma=1). For each persistence diagram

along the vertical path, we use the number of points in the

diagram and the total lifespan,
∑

(b,d)∈D d− b, i.e.

nt = #D({Ũ(t,a)}Ma=1); (30)

Lt =
∑

(b,d)∈D({Ũ(t,a)}
M
a=1)

d− b. (31)

We consider ti = 4i for i = 1, 2, 3, · · · , 64. Hence, for

each image, both nt and Lt are of 64-dimensional vector.

Both of nt and Lt reveal something about the underlying

image. The nt vector reveals how many generators there

were and can help us count the number of contiguous ice or

air regions. The Lt vector gives us an idea of how big these

contiguous regions are. Figure 7 shows a plot of the nt

vector for 10 sample images of five different depths of ice-

core samples. We note the image shows a nice separation of

these values by depth. Similarly, Figure 8 shows a plot of

the Lt vector for the same 10 sample images of five differ-

ent depths of ice-core samples. We note the image shows a

nice separation of these values by depth. We also note that

it takes about 120 seconds to process one slice and produce

a vector. In the demonstrations and experiments, the per-

sistence diagrams were computed by the software GUDHI

[31]. The distance transforms were computed with OpenCV

[1].

4.3. Discussion

From Figure 7, we observe that the shapes of the point-

count curves vary with respect to depth. At each depth, the

ten curves from the ten randomly selected images in the

sample stack are very similar, yet not the same. The dif-

ferences between the ten curves for each sample are due

Figure 8. This displays Lt vectors for five depths of firn-core sam-

ples. t = 4i for i = 1, 2, 3, · · · , 64. For each depth, 10 images

were sampled.

to heterogeneity within the firn samples themselves. The

curves suggest that images at one sample depth have sim-

ilar characteristics, and that samples from different depths

are distinct.

Additionally, The group of point-count curves for sam-

ples 23, 47, 59, and 78m are unimodal while the curves for

sample 7m is bimodal. At very shallow depths in the firn

column, such as in sample 7m, the amount of ice- and pore-

space is relatively equal within the sample. On the other

hand, the ice-space dominates the firn microstructure for the

samples at greater depths because of their much larger den-

sities. Therefore, as we scan through the threshold values

for shallow firn samples, we can expect a bimodal distribu-

tion of the point count. The transition between bimodal and

unimodal point-count curves likely corresponds to a conse-

quential shift in firn density.

In Figure 8, we observe the maximum values of the

curves, which reveal the size and complexity of the ice

space for each firn sample. In general, as images become

darker and darker, as the threshold value increases, more

white holes will be formed. If these images contain a large

portion of white pixels, it will take a lot of effort to fill in all

the white regions, and therefore, the total lifespan would be

larger. Looking at the firn samples, the maximum count val-

ues are approximately 4000 for 7m (blue curves), 5000 for

23m (orange curves), 6000 for 47m (green curves), 6500 for

59m (red curves), and 8000 for 78m (purple curves). As we

go deeper in the firn column, the firn layers contain more ice

space and have increasingly simple structures. Therefore,

we expect the deeper samples to have larger point counts

than shallower samples, as we’ve seen here, because the

complexity decreases with depth and the portion of white

space (ice space) increases with depth.

References

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000.

4183



[2] C. D. Cantrell. Modern Mathematical Methods for Physicists

and Engineers. Cambridge University Press, 2000.

[3] Gunnar Carlsson. Topology and data. Bulletin of the Ameri-

can Mathematical Society, 46(2):255–308, 2009.

[4] Gunnar Carlsson, Gurjeet Singh, and Afra J Zomorodian.

Computing multidimensional persistence. Journal of Com-

putational Geometry, 1(1):72–100, 2010.

[5] Frédéric Chazal and Bertrand Michel. An introduction to

topological data analysis: fundamental and practical aspects

for data scientists. arXiv preprint arXiv:1710.04019, 2017.

[6] Herbert Edelsbrunner and John Harer. Computational topol-

ogy: an introduction. American Mathematical Soc., 2010.

[7] Herbert Edelsbrunner, David Letscher, and Afra Zomoro-

dian. Topological persistence and simplification. In Pro-

ceedings 41st Annual Symposium on Foundations of Com-

puter Science, pages 454–463. IEEE, 2000.
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