
Two-particle dispersion in turbulentlike flows

J. C. H. Fung* and J. C. Vassilicos†

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street,

Cambridge CB3 9EW, United Kingdom

~Received 24 February 1997; revised manuscript received 29 July 1997!

Kinematic simulations are non-Markovian Lagrangian models of dispersion that incorporate turbulentlike

flow structure. We investigate the conditions for two-particle dispersion to be local in a turbulentlike flow, and

the dependence of the Richardson constant GD on the topology of individual realizations of the flow.
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I. INTRODUCTION

Lagrangian calculations of average concentrations require
knowledge of one-particle statistics. However, if Lagrangian
calculations of concentration fluctuations and concentration
covariances are to account for turbulent mixing associated
with relative dispersion, then such calculations must incor-
porate some features and properties of two-particle statistics
@1#. The calculation of concentration covariances is impor-
tant in the prediction of reaction rates in chemical reactors
and in the atmosphere because chemical reaction rates de-
pend on concentration covariances and not on average con-
centrations. The calculation of concentration fluctuations is
also important for air-quality control, combustion, and pol-
lutant dispersal in geophysical flows.

Perhaps the most important statistic of two-particle dis-
persion ~certainly the most frequently studied! is the mean
square distance between two fluid elements ~also referred to

as particles in this paper!, D2(t), which is of course a func-
tion of time t . In certain circumstances, such as downstream

of a linear concentration gradient @1#, D2(t) is the only two-
particle statistic needed to calculate concentration fluctua-

tions. In general, D2(t) is one of the fundamental quantities
of interest in the theory of turbulent dispersion. In a series of
papers starting in 1926, Richardson @2# studied the turbulent

diffusivity (d/dt)D2(t) as a function of the distance D be-
tween two particles advected by atmospheric turbulence. Ri-

chardson’s empirical finding, (d/dt)D2;(D2)2/3, implies

D2;t3 ~neglecting the initial distance D0 between pairs of

particles under the assumption that D0
2
!D2 at a time t that is

sufficiently large!. Obukhov @3# and Batchelor @4# derived
Richardson’s dispersion law theoretically by applying Kol-

mogorov’s similarity arguments to D2(t) and obtained

D2(t);et3 in an intermediate inertial range of times t ~e is
the average rate of dissipation per unit mass of fluid!. When
the time t is much larger than correlation integral time scales,

D2(t);t because the two particles move apart independently

@4,5#. When the time t is so small that the particles have only

moved in approximate straight lines @4,5#, D2(t)'D0
2

1(eD0)2/3t2.
One way to formulate the Obukhov-Batchelor similarity

theory of relative dispersion is in terms of the ‘‘locality as-
sumption,’’ and this assumption is of central concern in this
paper. The locality assumption states that, in the inertial
range, the dominant contribution to the turbulent diffusivity

(d/dt)D2(t) at time t comes from ‘‘eddies’’ of size

(D2)1/2(t). Hence, (d/dt)D2(t) is a function of D2 and e

only, and by dimensional arguments, (d/dt)D2(t)

;e1/3(D2)2/3. Provided D0 is below the inertial range of
length scales, an integration over time yields

D2~ t !'GDet3, ~1!

where GD is a universal dimensionless constant @6#.
The value of GD is important for quantitative studies of

turbulent dispersion and turbulent concentration fluctuations.
The only experimental measurement of GD known to the
present authors is that of Tatarski @6#. Unfortunately, Tatar-
ski’s measurements and estimations are fraught with uncer-
tainties and there is no point in referring to the actual value
that he assigned to GD . Nevertheless we can perhaps say,
with some level of confidence, that according to Tatarski’s
measurements, GD is a number between O(1022) and
O(1021) ~see the discussion in Fung et al. @7#!.

To this day, with the one exception of kinematic simula-
tions, no turbulence theory or model gives such a small value
of GD . Two-point closures such as LHDIA @8,9# and
EDQNM @10# give values between 2.42 and 3.5. Early sto-
chastic models @11,12# lead to GD5O(10) and more recent
stochastic models for two-particle dispersion @13,14# give
GD5O(1). However, kinematic simulations of turbulentlike
velocity fields yield GD between O(1021) and O(1022)
~Fung et al. @7# Sabelfeld @15#, Elliott and Majda @16#!. Ki-
nematic simulations differ from Lagrangian stochastic mod-
els in the qualitative nature of the velocity fields that they
generate. Lagrangian stochastic models generate velocities
that look like Brownian random walks ~with or without drift!
in velocity phase space, whereas kinematic simulations gen-
erate smoother velocity fields in every realization of the tur-
bulentlike flow. Indeed, kinematic simulations are non-
Markovian Lagrangian models of dispersion that incorporate
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turbulentlike flow structure. It may also be instructive to
compare particle trajectories generated by a kinematic simu-
lation ~Fig. 1! with the photographs of particle trajectories in
turbulent flows reproduced in van Dop et al. @17#. Fung et al.

@7# attempt to explain their low value of GD in terms of the
eddying, streaming, and straining regions @see Fig. 10~a!#
that appear in individual realizations of their turbulentlike
flows. Particle pairs should move together in eddying and
streaming regions and only separate abruptly ~Fig. 1! when
they meet a straining region @see Fig. 10~a!#. Hence, in con-
trast to Lagrangian stochastic models, the particles are most
of the time moving together, which may explain why kine-
matic simulations generate smaller values of GD than La-
grangian stochastic models. Elliott and Majda @16# are
mostly concerned with the prowess of their numerical code
and make no attempt to explain their low value of GD . How-
ever, they do emphasize that their velocity field is fractal and
that, following the suggestion in Sabelfeld @15#, the time
dependence of their turbulentlike velocity field is introduced
by a constant-velocity sweeping of an otherwise frozen ve-
locity field.

In this paper an attempt is made to address the following
two questions:

~i! What parameters of the velocity field influence the
inertial range power-law behavior of the turbulent relative

separation of particles, i.e., D2(t);t3?
~ii! How does GD depend on the parameters and the to-

pology of individual flow realizations?
In the next section we describe the turbulentlike velocity

field that we generate to study two-particle dispersion and we
discuss the consequences that the locality assumption has on

this velocity field’s relative dispersion properties. The results
of our simulations are presented in Sec. III and we conclude
in Sec. IV.

II. THE TURBULENTLIKE VELOCITY FIELD AND THE

LOCALITY ASSUMPTION

A. The velocity field

We follow the approach of Turfus and Hunt @18#, Sa-
belfeld @15#, and Fung et al. @7# and generate on the com-
puter an incompressible two-dimensional ~2D! turbulentlike
velocity field u(x,t) that is identical to that of Vassilicos and
Fung @19#, i.e.,

FIG. 2. ~a! Plot of u i
2(x0 ,t)/u i

2(x0 ,t50) against t/Th ~solid line

for i51 and dashed line for i52! demonstrating that the flow field

is stationary in time. In this particular plot p55/3, 2p/L51.1,

2p/h51860, D05h/2, and vn5lkn
(32p)/2 with l50.5, and the

wave numbers kn are geometrically distributed with Nk579. Simi-

lar stationary behaviour is observed for an algebraic distribution of

wave numbers and for different values of the above parameters. The

ensemble average is calculated over 2000 realizations. ~b! Log-log

plot of the structure function D11(r)5@u1(x1r ,y ,t)2u1(x ,y ,t)#2

against r for p55/3. The dashed line has a 2/3 slope for compari-

son, indicating that D11(r) has a 2/3 slope over about two decades.

The ensemble average is over 2000 realizations. The plot has been

obtained for the same parameter values as ~a! ~similar behavior is

observed for an algebraic distribution of wave numbers!.

FIG. 1. Kinematic simulation of the flight of two particles ~a

thick line and a thin line with symbols! in a turbulentlike velocity

field with a k25/3 energy spectrum generated as explained in Sec.

II A. The particles are initially at points A and B and move closely

together until they suddenly separate at two well-identifiable in-

stances, presumably because of hitting a straining region. The tra-

jectories of both particles are also visibly much smoother than

Brownian paths and not dissimilar to the turbulent trajectories pho-

tographed in Dop et al. @17#.
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u~x,t !5 (
n51

Nk

@An cos~kn•x1vnt !1Bn sin~kn•x1vnt !# ,

~2!

where Nk is the number of modes in the simulations and the
Cartesian coordinates of An , Bn , and kn are given by An

5An(cos fn ,2sin fn), Bn5Bn(2cos fn ,sin fn), and kn

5kn(sin fn ,cos fn). The angles fn are random and uncorre-
lated with each other and the velocity field ~2! is incompress-
ible because An•kn5Bn•kn50 for all n . The positive am-
plitudes An and Bn are chosen according to

An
2
5Bn

2
5E~kn!Dkn , ~3!

where E(k) is a prescribed Eulerian energy spectrum of the
form

E~k !5E0L~kL !2p ~4!

in the range 2p/L5k1<k<kNk
52p/h and such that E(k)

50 outside this range. Dkn5(kn112kn21)/2 for 2<Nk

<Nk21, Dk15(k22k1)/2 and DkNk
5(kNk

2kNk21
)/2. The

distribution of wave numbers kn is either algebraic or geo-
metric, i.e.,

kn5 H k1na

k1an21

~algebraic!

~geometric!,

where a and a are dimensionless numbers that are functions
of L/h and Nk because kNk

52p/h . @Hence a

5ln(L/h)/ln Nk and a5(L/h)1/(Nk21), respectively.#
The frequencies vn in Eq. ~2! determine the unsteadiness

associated with wave mode n . We experiment with two dif-
ferent models of unsteadiness: ~i! a model @7,19# where the

unsteadiness frequency vn is proportional to the eddy turn-
over time of wave mode n , i.e.,

vn5lAkn
3E~kn!, ~5!

where l is a dimensionless constant, and ~ii! a model @16,18#
where all the wave modes are advected with a constant ve-
locity U , i.e.,

FIG. 3. Log-log plot of the mean square displacement of fluid

elements from a fixed point in an isotropic stationary and homoge-

neous turbulentlike flow ~2!. The solid dots are the computational

result and the dashed lines represent different slopes, i.e., x1
2}t2

when t!TL and x1
2}t when t@TL . The ensemble average is over

2000 realizations. The plot has been obtained for the same param-

eter values as Fig. 2~a! ~similar behavior is observed for an alge-

braic distribution of wave numbers and different values of l!.

FIG. 4. The Lagrangian autocorrelation function R11
L (t) against

t5t/Th . From this graph, TL is obtained to be TL'143Th in good

agreement with Fig. 3. This plot has been obtained for the same

parameter values as Fig. 3.

FIG. 5. PDF of the separation vector component D1 /s at dif-

ferent times, t5858Th ~dot-dashed line!, t51716Th ~dotted line!,

and t54290Th ~solid line!. At the largest time t54290Th , the data

agree very closely with the Gaussian distribution of the same stan-

dard deviation ~circles! but cannot be fitted by a Gaussian at the

earlier times of this plot. This plot has been obtained for Nk

5100, p55/3 and a geometric distribution of wave numbers ~simi-

lar results are obtained with an algebraic distribution!. The un-

steadiness parameter l50.5 and the other parameters of the turbu-

lentlike flow are p55/3, 2p/L51.1, 2p/h51860, and D05h/2.
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vn5Ukn . ~6!

The turbulentlike velocity fields simulated here are sta-
tionary in time @see Fig. 2~a!# and their spatial structure func-

tion D11(r)5@u1(x1r ,y ,t)2u1(x ,y ,t)#2;rp21 over a sig-
nificant range of length scales ~see Fig. 2~b!#.

This kinematically simulated velocity field is 2D in the

sense that it has two components. There are of course no

dynamics, whether 2D or 3D, in such simulations. Instead,

we prescribe the power p that characterizes the energy spec-

trum’s scaling, and in this paper values of p are chosen be-
tween p51 and p53. The advantage of studying a 2D rather
than a 3D flow is that flow topology is significantly simpler

FIG. 6. Log-log plots of D2/D0
2 against t/Th , where Th5h/AE0. These plots have been obtained for p55/3, 2p/L51.1. 2p/h

51860. D05h/2, and unsteadiness parameter vn5lkn
(32p)/2 with l50.5. The averages were calculated over 2000 particle pairs and

TL /Th51693, where TL5L/AE0. The wave numbers kn are distributed either algebraically ~AD! or geometrically ~GD!. ~a! GD and Nk

579, ~b! AD and Nk520, ~c! AD and Nk540, ~d! AD and Nk579, ~e! AD and Nk5125 and ~f! AD and Nk5158. The dashed line is a line

with slope equals to 3.
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in 2D. However, the results obtained in this paper’s study of
2D turbulentlike flows should not be extrapolated to 3D tur-
bulentlike flows without further analysis, which is beyond
this paper’s scope.

B. The locality assumption

The mean square distance D2(t) between two fluid ele-
ments that are advected by the turbulentlike velocity field ~2!
is a function of the following parameters:

D2
5D2~ t ,L ,h ,D0 ,E0 ;p ,Nk ,l ! ~7a!

if the unsteadiness is simulated as in Eq. ~5! and

D2
5D2~ t ,L ,h ,D0 ,E0 ,U;p ,Nk! ~7b!

if the unsteadiness is simulated as in Eq. ~6!. The first set of
parameters in Eq. ~7! is a set of dimensional parameters,
while the second is a set of dimensionless parameters. In
either case, dimensional analysis is inconclusive unless a
strong additional assumption is introduced. In the present

context the locality assumption states that in the limit where
the Reynolds number Re;(L/h)4/3 tends to infinity and in an

intermediate range of times, max(h,D0)/AE0!t!L/AE0,

the only dimensional parameters affecting D2 are t and

the energy density at k5A1/D2, i.e., E(A1/D2)

5E0L(L2/D2)2p/2. Hence, in these limits, Eq. ~7a! may be
replaced by

D2
5D2„t ,E~A1/D2!;p ,Nk ,Re,l… ~8a!

and Eq. ~7b! by

D2
5D2S t ,E~A1/D2!;p ,Nk ,Re,

U

AE0

D . ~8b!

At this stage dimensional requirements yield @20#

D2
5GD~E0L12p!2/~32p !tg, ~9!

where

FIG. 7. Linear plots of the power g defined in Eq. ~9! against t/Th , where Th5h/AE0. These plots have been obtained for the same

parameter values as Fig. 6 and a geometric distribution of wave numbers with Nk579 ~except for ~a! and ~b! where the highest wave number

is 2p/h54000 and Nk587!. ~Similar results are obtained with an algebraic distribution of wave numbers.! ~a! p51.2, ~b! p51.4, ~c! p

51.6667, and ~d! p51.8, respectively. The dashed line has a value equal to 4/(32p) for comparison. The values of g oscillate slightly

around 4/(32p) thus confirming the validity of Eq. ~10!. The values of g are calculated by taking the logarithmic derivative of D2 versus

t .
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g5

4

32p
. ~10!

It is only for p,3 that Eqs. ~9! and ~10! can be deduced
from Eq. ~8! and more generally from the locality assump-
tion. @The locality assumption can also be formulated for

(d/dt)D2 but in two different ways: either (d/dt)D2

5 f „D2,E(A1/D2)… or d/dtD2
5 f „t ,E(A1/D2)…, where the

dependence on dimensionless parameters is implicit in func-

tion f . Both formulations lead to Eqs. ~9! and ~10! by dimen-

sional arguments provided that p,3. However, when p53

the first formulation leads to ln(D2/D0
2);AE0t/L , while the

second leads to ln(D2/D0
2);(AE0t/L)4/3. The consequences

of the locality assumption when p.3 are absurd.# Note that
Eqs. ~9! and ~10! are equivalent to Eq. ~1! when p55/3

because g53 and (E0L12p)2/(32p)
5(AE0)3/L , which ispro-

FIG. 8. Linear plots of the power g defined in Eq. ~9! against t/Th , where Th5h/AE0. These plots have been obtained for Nk579,

p55/3 and a geometric distribution of wave numbers ~similar results are obtained with an algebraic distribution!. The unsteadiness

parameter l is varied from 0.1 to 3.0 and the other parameters of the turbulentlike flow are the same as in Fig. 6, i.e., 2p/L51.1, 2p/h
51860, and D05h/2.
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portional to e in high Reynolds number equilibrium turbu-
lence @21#. In this derivation, the constant GD is a function of

the dimensionless numbers p , Nk and either l or U/AE0.
In the following section we investigate the conditions un-

der which Eqs. ~9! and ~10! are valid, and by induction the
conditions under which the locality of two-particle disper-
sion is valid in a turbulentlike velocity field. These are con-
ditions on the topology and temporal structure of individual
realizations of the flow. We also investigate the dependence

of GD on dimensionless parameters of the flow by which
token we attempt to reach some insight into the dependence
of GD on the topology and temporal structure of the flow.

III. RESULTS

Particle trajectories x(t) are obtained by integrating

d

dt
x~ t !5u„x~ t !,t… ~11!

FIG. 9. Linear plots of the power g defined in Eq. ~9! against t/Th , where Th5h/AE0. These plots have been obtained for Nk579,

p55/3 and a geometric distribution of wave numbers ~similar results are obtained with an algebraic distribution!. The unsteadiness

parameter U/AE0 is varied from 0.1 to 2.0 and the other parameters of the turbulentlike flow are the same as in Fig. 6, i.e., 2p/L51.1,

2p/h51860, and D05h/2.
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FIG. 10. Instantaneous streamline pattern of the turbulentlike velocity field ~2! with p55/3 as one zooms into smaller scales of the

velocity field. This is achieved by simultaneously increasing Nk and focusing into inserted smaller regions of the field. ~a! Nk52, where we

also point at eddying, straining, and streaming regions. ~b! Magnified picture of the square region marked inside ~a! with Nk54. ~c!

Magnified picture of the square region marked inside ~b! with Nk58. ~d! Magnified picture of the square region marked inside ~c! with

Nk516. ~e! Magnified picture of the square region marked inside ~d! with Nk532. ~f! Magnified picture of the square region marked inside

~e! with Nk564. ~g! Magnified picture of the square region marked inside ~f! with Nk5128. ~h! Magnified picture of the square region

marked inside ~g! with Nk5256. In all these plots 2p/L52 and the distribution of wave numbers is geometric, kn5(2p/L)2n21. A similar

fractal-eddy structure is also observed for algebraic distributions of wave numbers, but one needs to go up to a much higher number of

zoom-in iterations and values of Nk to repeatedly see the eddying region breaking up into two or more smaller and inserted eddying regions.
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numerically with an adaptive step-size control scheme for
fourth-order Runge-Kutta @22# where the time step is always
smaller than all the time scales of the velocity field ~see Ref.
@19# for details.! When u(x,t) is given by a turbulentlike
velocity field such as Eq. ~2! the particle trajectories are gen-
erated by a Lagrangian model of turbulent dispersion called
kinematic simulation ~KS!, which incorporates turbulentlike
flow structures, namely, eddying, straining, and streaming
regions.

A. One-particle dispersion

We start with a simple demonstration of the dispersive
power of the turbulentlike velocity field Eq. ~2!. Figure 3 is a
log-log plot of the one-particle mean square displacement of
the first component ~same for the second component because

of isotropy! x1
2 as a function of time. This figure illustrates

the result ~which we verified for a large variety of parameters

p , Nk , and l or U! that x2;t2 for small t and x2;t for large
t , well in agreement with classical predictions by Taylor
@23#. We also calculate the Lagrangian autocorrelation func-

tion R11
L (t)5u1

L(t)u1
L(t1t)/u8

2 where u1
L(t)5u1„x(t),t…,

x(t) is given by Eq. ~11! and u8 is the root-mean-square
intensity of one-component turbulence fluctuations. An ex-

ample is given in Fig. 4. From R11
L (t) we derive TL

5*0
`R11

L (t)dt , and verify that x2'u8
2t2 for t!TL and x2

'2u8
2TLt for t@TL in complete agreement with Taylor’s

formulas @23#.
We now turn to the study of two-particle dispersion in

turbulentlike velocity fields ~2!. The separation vector D be-
tween two particles has two components, D5(D1 ,D2) and

D
2
5D1

2
1D2

2. In Fig. 5 we plot an example of the PDF of

D1 /s for various times, where s2(t) is the variance of the
component separation D1 at time t . This PDF is the same as
that of D2 /s because of isotropy and is markedly non-
Gaussian except at very late times when it is very well fitted
by a Gaussian distribution of variance 4u8

2TLt , as indeed

expected because D1
2'2x2'4u8

2TLt at these large times.

Note that the plotted PDF is normalized to have unit vari-
ance, thus better illustrating the non-Gaussian effects at early
times. The remainder of this paper is concerned with two-

particle dispersion in the range of times where the PDF of D1

is not Gaussian.

B. Locality scaling

Figure 6 shows examples of log-log plots of D2 versus
time t where the power law ~9! and ~10! is observed to be
well defined over nearly two decades irrespective of the
number of modes Nk or the distribution of the wave numbers
kn ~whether algebraic or geometric!. More important for the
existence of a well-defined locality scaling ~9! and ~10! seem
to be the ratio L/h and the parameter governing the unsteadi-
ness, l or U . Indeed, we find that the scaling ~9! and ~10! is
not well defined unless the Reynolds number Re5(L/h)4/3 is
large enough and in Fig. 6 Re'20 145. Figure 6~c! shows
that the locality scaling is well defined at such high a Rey-
nolds number even with as few as Nk540 modes. However,
it is also found that if Nk is excessively low, that is below 20
at the high Reynolds number of Fig. 6~b!, the locality scaling
~9! and ~10! does not hold ~note that the slope in Fig. 6~b! is
larger than 3!. These observations are relevant because it is
important to know that the locality scaling ~9! and ~10! can
be observed with as few as 40 modes of randomly chosen
directions.

Figure 7 testifies to the validity of Eqs. ~9! and ~10! for
four different values of p . In these figures the Reynolds
number is as high as in Fig. 6, with kh54000, Nk587 for ~a!
and ~b!, and with kh51860, Nk579 for ~c! and ~d!. The
unsteadiness parameter is carefully chosen to be l50.5 so
that Eqs. ~9! and ~10! are valid over a significant range.

The existence and extent of a locality scaling depend cru-
cially on the parameter l or U governing the unsteadiness of
the flow. In Figs. 8 and 9 the power g defined in Eq. ~9! is
plotted as a function of time t for different values of l ~Fig.
8! and U ~Fig. 9!; the dotted horizontal line marks the con-
stant value of g according to Eq. ~10!. As illustrated by these
figures we find that Eqs. ~9! and ~10! are valid when l is

around 0.25 to 0.5 or U/AE0 near 0.25. For smaller values of

l or U/AE0, the power law D2;tg seems to hold but the
power g is not given by Eq. ~10!; and for larger values of l

or U/AE0, the power law ~9! and ~10! does not hold over a
significant range of times.

FIG. 10 ~Continued!.
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FIG. 11. Instantaneous streamline pattern of the turbulentlike velocity field ~2! with p55/3 as one zooms into smaller scales of the

velocity field. In contrast to Fig. 10, here we plot the full L by L field at Nk5128 and then successively magnify smaller regions of the field.

~a! A full L by L field. ~b! Magnified picture of the square region marked inside ~a!. ~c! Magnified picture of the square region marked inside

~b!. ~d! Magnified picture of the square region marked inside ~c!. ~e! Magnified picture of the square region marked inside ~d!. ~f! Magnified

picture of the square region marked inside ~e!. In all these plots 2p/L51 and the distribution of wave numbers is geometric, kn

5(2p/L)1.1n21. A similar fractal-eddy structure is also observed for algebraic distributions of wave numbers, but one needs to go up to a

much higher number of zoom-in iterations and values of Nk to see eddying region breaking up into smaller eddying regions a sufficient

number of times.
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The condition l50.5 for the existence of the locality
scaling ~9! and ~10! means that the turbulentlike velocity

field should be neither frozen @vn!Akn
3E(kn)# nor effec-

tively structureless @vn@Akn
3E(kn)# . The condition U

;AE0 can perhaps be interpreted in similar terms and in fact
Elliott and Majda @16# enforce the same condition to obtain
the locality scaling ~9! and ~10! over eight to twelve decades.
@We note, however, that Sabelfeld @15# obtains a scaling ~9!
and ~10! with U50 in a 3D turbulentlike velocity that is
therefore frozen. 3D velocity fields are topologically differ-
ent from 2D velocity fields and the conditions on l and U for
the scaling ~9! and ~10! to be valid can be significantly dif-
ferent.#

We noted in the previous section that the locality assump-
tion does not imply a power law such as Eq. ~9! if p>3.
There is in fact a dramatic difference in the topology of the
flow below and above p53. For p,3 turbulentlike velocity
fields such as those considered here have a fractal-eddy
structure ~see Figs. 10 and 11!, which we schematically in-
terpret as consisting of cat’s eyes within cat’s eyes ~Fig. 12!.
This fractal-eddy structure is most readily revealed by zoom-
ing into eddy regions of the flow, but it can also be seen by

zooming into other regions. When zooming into streaming
regions, for example, what appears is either a better resolved
streaming region or small eddies that are not resolved with-
out appropriately zooming in. The fact that one can zoom
into particular locations of a streaming region without seeing
the fractal-eddy structure of the flow is not uncharacteristic
of fractal structures. One of the most commonly cited ex-

FIG. 12. Schematic interpretation of the fractal-eddy structure

revealed in Figs. 10 and 11. The streamline pattern consists of in-

creasingly small cat’s eyes. More and smaller cat’s eyes are formed

in the field as h decreases and Re5(L/h)4/3 increases.

FIG. 13. Linear plot of GD against the power p . The parameters

of the turbulentlike flow are the same as in Fig. 7. The value of GD

at time t is obtained by fitting a straight line to the curves similar to

Fig. 6 over a small interval around t and GD is given by the inter-

section of this straight line with the x axis. Similar behavior is

observed for an algebraic distribution of wave numbers.

FIG. 14. Linear plot of the straining-region density rsr against

the power p . The straining-region density is the fraction of the area

where II.II rms , where II rms is the root-mean-square value of II for

the particular value of p . The straining-region density is obtained

by averaging II over 50 realizations and over a uniform grid of 200

by 200 ~i.e., 40 000 points! in an area of 5L by 5L . This particular

plot has been obtained for the same parameter values as Fig. 6.

Similar behavior is observed for an algebraic distribution of wave

numbers.

FIG. 15. Linear plot of GD against t/Th , where Th5h/AE0.

This plot has been obtained for the same parameter values as Fig. 6,

in particular p55/3 and l50.5. The solid line corresponds to a

geometric distribution of wave numbers and Nk579. All the other

lines correspond to an algebraic distribution, which Nk540

~dashed!, Nk579 ~dot-dashed!, Nk5125 ~triple-dot–dashed! and

Nk5158 ~dotted!.

57 1687TWO-PARTICLE DISPERSION IN TURBULENTLIKE FLOWS



amples of a fractal is the triadic Cantor set and one cannot
see its fractal structure if one zooms into the wrong empty
regions between points of the set, and such empty regions
exist at all scales. For p>3 ~not shown here for economy of
space! however, such a fractal-eddy structure does not exist
and no extra topological feature is uncovered by zooming
into increasingly small scales inside eddies.

C. Richardson’s constant GD

Richardson’s constant GD is well defined when the power
law ~9! is well defined, and when p55/3 the power law ~9! is
best defined for l around 0.5 in which case GD turns out to
be O(1022).

In the derivation of the locality scaling ~9! and ~10! from
the locality assumption ~8! the constant GD depends on the
unsteadiness but is also a function of the dimensionless pa-

rameters p and Nk . The dependence of GD on p and Nk

throws some light onto the dependence of GD on the topol-

ogy of individual realizations of the flow. In Fig. 13 we plot

the dependence of GD on p for l50.5 and see that GD

decreases quite sharply from p51.2 to p51.8. As p in-

creases the largest eddying regions in individual realizations

of the turbulentlike flow grow in size relative to the fixed

outer length scale L ~see Vassilicos and Fung @19#!. As dem-

onstrated in Fig. 14, these larger eddying regions seem to

occur at the expense of a smaller number of straining regions

per unit area of the flow. In Fig. 14 we plot the straining-

region density against the exponent p and show that this

straining-region density decreases with increasing values of

p . Following the arguments of Fung et al. @7#, the value of

GD should therefore be smaller because the density of strain-

ing regions is smaller. Hence, the decreasing value of GD

with p is consistent with the idea @7# that particle pairs move

together in eddying and streaming regions and separate vio-

lently in straining regions.

At a fixed Reynolds number Re5(L/h)4/3, GD is an in-
creasing function of Nk , which does, however, appear to
asymptote to a constant independent of Nk when Nk is larger
than about 100 ~see Figs. 15 and 16; for Nk5500 and all
other parameters as for these figures, we obtain GD

50.0082 and GD50.015, respectively, for the algebraic and
geometric distributions of wave numbers, thus corroborating
the asymptotic values in Fig. 16.! It may be unexpected to
find that GD can differ by as much as a factor of 2 for
different distributions of wave numbers kn ~Figs. 15 and 16!.
We refer the reader to Sec. II C in Vassilicos and Fung @18#
where it is explained how, for the same energy spectrum,
subtle differences in wave-number distribution can dramati-
cally change the topology of a field, and in particular the
spatial distribution of maxima and minima of that field ~Vas-
silicos and Fung @18# discuss the examples of Weierstrass,
Riemann, and other such functions consisting of sums of sine
waves!. Such changes in topology may be expected to affect
two-particle dispersion quantities such as GD , but we leave

FIG. 16. Linear plot of GD against the number Nk of wave

modes. Parameter values are the same as for Fig. 15. Algebraic

distribution of wave numbers ~d!, geometric distribution of wave

numbers ~j!.

FIG. 17. Linear plots against the number Nk of wave modes of ~a! the skewness S and ~b! the flatness F of the Lagrangian distributions

of second invariants II sampled along the particle trajectories. Parameter values are the same as for Figs. 15 and 16, in particular p55/3 and

l50.5. Algebraic distribution of wave numbers ~d!, geometric distribution of wave numbers ~j!.
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for subsequent study this sensitive dependence of GD on the
details of the wave-number distribution. However, we do
attempt to gain some understanding of the dependence of GD

on Nk .
We sample the values of the second invariant II

5(]u i /]x j)(]u j /]x i) along particle trajectories and calcu-
late the skewness @Fig. 17~a!# and the flatness @Fig. 17~b!# of
II from this Lagrangian sample. The average ^II& over this
Lagrangian sample is ^II&50, and therefore the skewness is
S5^II3&/^II2&3/2 and the flatness is F5^II4&/^II2&2, where
the angle brackets denote averages over the Lagrangian
sample of second invariants II . In Fig. 17 we plot S and F

against Nk and see that S decreases towards a constant value
around 21.1 whereas F increases towards somewhere be-
tween 8.5 and 9. A negative value of the skewness of II that
is smaller than 21.0 strongly suggests that during their flight
particles visit eddying regions much more often than other
regions @24,25#. However, a flatness of II that is much larger
than 3 ~the flatness of a Gaussian distribution! implies that
extreme values of II , whether positive or negative, are more
likely than for a normal ~Gaussian! process. Hence, as Nk

increases, more eddying and straining regions are visited by
the particles @24,25#, and even though the behavior of the
skewness S indicates that particles are more often in eddying
regions than in straining regions, the increase of GD with Nk

is consistent with the increase in the frequency of straining
region visits that is reflected in the flatness of II . The fact
that S decreases rather than increases with Nk is consistent
with the low value of GD , which remains O(1022) ~when
p55/3! for all values of Nk . A sharp increase of S with Nk

would have resulted in much higher values of GD because
straining regions would have then been visited more often
than eddying regions.

IV. SUMMARY OF CONCLUSIONS

The summary of our conclusions is as follows:

~i! The locality scaling D2
5GD(E0L12p)2/(32p)t4/(32p) is

valid over the largest possible range provided that p,3 and
that the unsteadiness is neither too strong nor too weak, spe-

cifically l'0.5 or U'0.25AE0.
~ii! Individual realization of turbulentlike flows are topo-

logically different above and below p53. When p,3, 2D
turbulentlike flows have a fractal-eddy structure that consists
of cat’s eyes within cat’s eyes as schematically illustrated in

Fig. 12. When p>3 no fractal-eddy structure exists, and
eddying regions are simple without extra topological features
appearing by zooming into increasingly small scales inside
them.

~iii! When p55/3, GD5O(1022) as in Tatarski’s mea-
surements @6#. However, GD can change by a factor of 2
simply by changing the distribution of modes in wave-
number space. GD is a decreasing function of p and an in-
creasing function of the number of modes, Nk . The low
value of GD and the ways of these dependencies are consis-
tent with the idea ~proposed by Fung et al. @7#! that two-
particle dispersion is effectively happening in bursts ~see Fig.
1! when particle pairs meet straining regions. This idea is
investigated quantitatively by measuring the skewness S and
the flatness F of the second invariant II sampled along par-
ticle trajectories. The skewness S decreases to a constant
value of 21.1 and the flatness F increases to a constant
value between 8.5 and 9.0 with increasing Nk . Particles are
therefore more often in eddying regions than in straining
regions, but also more often in both eddying regions and
straining regions for increasing values of Nk .

This paper is an attempt to articulate together the three
central issues of this paper: the locality assumption, the
fractal-eddy structure, and the straining regions’ role in sepa-
rating particle pairs in bursts. For 2D turbulentlike flows, we
propose to sharpen the locality assumption that ‘‘in the iner-
tial range, the dominant contribution to the turbulent diffu-

sivity (d/dt)D2(t) comes from ‘‘eddies’’ of size

(D2)1/2(t),’’ where the word ‘‘eddies’’ has no clear topologi-
cal meaning, by replacing it with: ‘‘in the inertial range, the
dominant contribution to the turbulent diffusivity

(d/dt)D2(t) comes from straining regions of size (D2)1/2(t);
these straining regions are embedded in a fractal-eddy struc-
ture of cat’s eyes within cat’s eyes and therefore straining
regions exist with a variety of length scales over the entire
inertial range.’’
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Moscow 5, 453 ~1941!.

@4# G. K. Batchelor, Q. J. R. Meteorol. Soc. 76, 133 ~1950!.

@5# G. K. Batchelor, Proc. Cambridge Philos. Soc. 48, 345 ~1952!.

@6# V. I. Tatarski, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 4, 551

~1960!.

@7# J. C. H. Fung, J. C. R. Hunt, N. A. Malik, and R. J. Perkins, J.

Fluid Mech. 236, 281 ~1992!.

@8# R. H. Kraichnan, Phys. Fluids 9, 1937 ~1966!.

@9# T. S. Lundgren, J. Fluid Mech. 111, 27 ~1981!.

@10# M. Larcheveque and M. Lesieur, J. Mecanique 20, 113 ~1981!.

@11# E. A. Novikov, Sov. Phys. JETP 17, 1449 ~1963!.

@12# S. Grossman and I. Procaccia, Phys. Rev. A 29, 1358 ~1984!.

57 1689TWO-PARTICLE DISPERSION IN TURBULENTLIKE FLOWS



@13# D. J. Thomson, J. Fluid Mech. 210, 113 ~1990!.

@14# M. S. Borgas and B. L. Sawford, J. Fluid Mech. 279, 69

~1994!.

@15# K. Sabelfeld, Monte Carlo Methods ~Springer-Verlag, Berlin,

1991!.

@16# F. W. Elliott and A. J. Majda, Phys. Fluids 8, 1052 ~1996!.

@17# H. van Dop, F. T. M. Nieuwstadt, and J. C. R. Hunt, Phys.

Fluids 28, 1639 ~1985!.

@18# C. Turfus and J. C. R. Hunt, Advances in Turbulence

~Springer-Verlag, Berlin, 1986!.

@19# J. C. Vassilicos and J. C. H. Fung, Phys. Fluids 7, 1970 ~1995!.

@20# P. Morel and M. Larcheveque, J. Atmos. Sci. 31, 2189 ~1974!.

@21# G. K. Batchelor, The Theory of Homogeneous Turbulence

~Cambridge University Press, Cambridge, 1953!.

@22# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

terling, Numerical Recipes: The art of Scientific Computing

~Cambridge University Press, New York, 1986!.

@23# G. I. Taylor, Proc. London Math. Soc. Ser 2, 20, 196 ~1921!.

@24# A. A. Wray and J. C. R. Hunt, in Proceedings of IUTAM

Symposium on Topological Fluid Mechanics, edited by H. K.

Moffatt and A. Tsinober ~Cambridge University Press, Cam-

bridge, 1990!.

@25# J. C. H. Fung, J. C. R. Hunt, R. J. Perkins, A. A. Wray, and D.

D. Stretch, in Proceedings of the Third European Turbulence

Conference, Stockholm, 1990, edited by Johansson and Al-

fredsson ~Springer-Verlag, Berlin, 1991!.

1690 57J. C. H. FUNG AND J. C. VASSILICOS


