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Abstract 19 

Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of 20 

full-length RNAs using long reads reveals the true complexity of processing. However, the relatively high 21 

error rates of long-read sequencing technologies can reduce the accuracy of intron identification. Here 22 

we apply alignment metrics and machine-learning-derived sequence information to filter spurious splice 23 

junctions from long read alignments and use the remaining junctions to guide realignment in a two-pass 24 

approach. This method, available in the software package 2passtools 25 

(https://github.com/bartongroup/2passtools), improves the accuracy of spliced alignment and 26 

transcriptome assembly for species both with and without existing high-quality annotations. 27 

 28 

Keywords 29 

splicing, long read sequencing, spliced alignment, RNA-seq, gene expression, transcriptome assembly, 30 

machine learning, nanopore  31 
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Background 32 

Understanding eukaryotic genomes requires knowing not only the DNA sequence but also which RNAs 33 

are transcribed from it. Eukaryotic transcription by DNA-dependent RNA polymerase II is associated with 34 

multiple alternative RNA processing events that diversify the coding and regulatory potential of the 35 

genome. Alternative processing choices include distinct transcription start sites, the alternative splicing 36 

of different intron and exon combinations, alternative sites of cleavage and polyadenylation, and base 37 

modifications such as methylation of adenosine. Patterns of alternative processing can be extensive. For 38 

example, more than 90% of human protein-coding genes have at least two splice isoforms(1). Changes 39 

in RNA processing can reflect the reprogramming of gene expression patterns during development or in 40 

response to stress or result from genetic mutation or disease. Consequently, the identification and 41 

quantification of different RNA processing events is crucial to understand not only what genomes 42 

encode but also the biology of whole organisms(2). 43 

The sequencing of RNAs (RNAseq) can reveal gene expression patterns in specific cells, tissues or whole 44 

organism. The success of this approach depends upon sequencing methodology and the computational 45 

analyses used in interpreting the sequence data. High-throughput sequencing of RNA rarely involves 46 

direct RNA sequencing (DRS): instead, copies of complementary DNA (cDNA) produced by reverse 47 

transcription of RNA molecules are sequenced(2). However, template strand switching by reverse 48 

transcriptase (RT) during the copying process can produce spurious splicing patterns and antisense RNA 49 

signals(3, 4). Three current technologies use RT-based RNA sequencing library preparation: Illumina, 50 

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). Illumina RNAseq can generate 51 

hundreds of millions of highly accurate short sequencing reads, each representing a 50–250 nt fragment 52 

of full-length RNA(2). Methods exist for quantifying known alternative splicing events from short 53 

reads(5). However, when the transcript models are unknown, for example in a non-model organism or a 54 

mutant or disease with altered RNA processing, new transcript models must be generated, either de 55 

novo or with the aid of the reference genome. Because Illumina reads are short, they are unlikely to 56 

overlap multiple splice junctions, meaning that phasing of splicing events is difficult and requires 57 

complex computational reconstruction(6-8). PacBio and ONT can sequence full-length cDNA copies 58 

without fragmentation, thus allowing whole transcript isoforms to be identified unambiguously(2). Most 59 

recently, ONT introduced a direct sequencing method for RNA(9-11). Using this approach, it is now 60 

possible to capture information on the splicing, 5ʹ and 3ʹ ends, poly(A) tail length, and RNA modifications 61 

of full-length RNA molecules in a single experiment, without RT-associated artefacts(11). 62 
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The development of technologies for sequencing full-length RNA molecules makes the identification of 63 

authentic processing events possible in principle, but software tools are also needed to interpret the 64 

RNA processing complexity. PacBio and ONT sequencing reads have a higher error rate than Illumina(10-65 

14). Consequently, alignment accuracy for long sequence reads at splice junctions is often 66 

compromised(9-11). This is a problem for genome-guided transcriptome annotation because the 67 

incorrect identification of splice junctions leads to mis-annotated open reading frames and incorrectly 68 

truncated protein predictions. In addition, if alignment errors are systematic (i.e. occur for transcripts 69 

with specific characteristics), then quantification of transcripts will be compromised. Even with 70 

completely error-free reads, alignment at splice junctions is often confounded by multiple equally 71 

plausible alternatives(15). Accordingly, computational methods for improving the splice-aware 72 

alignment of long reads are required. 73 

Software tools for long and short RNAseq data analysis incorporate several approaches to address the 74 

challenges presented by pre-mRNA splicing. Biologically relevant information can aid the alignment of 75 

transcriptomic sequences to the genome. For example, the vast majority of eukaryotic splicing events 76 

occur at introns bordered by GU and AG motifs. Making RNAseq read aligners aware of these sequence 77 

features (as is the case for the commonly used spliced aligners STAR(16), HISAT2(17) and minimap2(18)) 78 

can significantly improve the alignment of reads at splice junctions. In addition, where genome and 79 

transcriptome annotations exist, many alignment tools allow users to provide sets of correct splice 80 

junctions to guide alignment(16-19). Introns containing these guide splice junctions are penalised less 81 

than novel introns, resulting in fewer alignment errors. For long reads, software tools such as FLAIR(10) 82 

use post-alignment correction to improve splice junction detection and quantification. Post-alignment 83 

correction tools take long-read alignments and guide splice junctions from either a reference annotation 84 

or a set of accurate short RNAseq reads(10). Introns from long-read alignments which are not supported 85 

by the guide splice junction set are “corrected” to the nearest supported junction within a user-defined 86 

range. It is unclear whether such post-alignment corrections confer any benefit over providing guide 87 

splice junctions during alignment. Small errors in spliced alignment can also be corrected during 88 

reference-guided transcriptome assembly. Tools such as StringTie2(6) and pinfish (Oxford Nanopore 89 

Technologies) identify clusters of similarly aligned reads and correct them to the median junction 90 

positions, before outputting annotations. 91 

Two-pass alignment has also been used to improve splice junction detection and quantification(16, 19, 92 

20). In a two-pass alignment approach, splice junctions detected in a first round of alignment are scored 93 
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less negatively in a second round, thereby allowing information sharing between alignments. This 94 

approach has been useful for short-read data, where RNA fragmentation may occur close to splice 95 

junctions during sequencing library preparation. The two-pass approach enables these short junction 96 

overhangs to be aligned to splice junctions detected in other alignments(20). Splice junctions detected 97 

in a first pass may also be filtered to remove false positives before second-pass alignment. Existing tools 98 

for splice junction filtering, such as finesplice and portcullis(21, 22), use machine learning with training 99 

on a range of junction metrics. A model is trained from high-confidence positive and negative examples 100 

from training data and then applied to classify the remaining splice junctions at the decision boundary. 101 

Splice junctions are then filtered to remove junctions predicted to be spurious. Subsequent second-pass 102 

alignment guided by these filtered junctions can then improve the accuracy of alignment(22). 103 

In this study, we develop a method for filtered two-pass alignment of the relatively high-error long reads 104 

generated by techniques such as nanopore DRS. The resulting software, which we have named 105 

2passtools, uses a rule-based approach to identify probable genuine and spurious splice junctions from 106 

first-pass read alignments. These can then be used to train a logistic regression (LR) model to identify 107 

the biological sequence signatures of genuine splice junctions. We found that integrating the alignment 108 

and sequence information extracted in this manner produced the largest improvement in splice junction 109 

alignment and subsequent genome-guided annotation. As a result, we can improve the utility of long-110 

read sequencing technologies in revealing the complexity of RNA processing and annotating newly 111 

sequenced organisms. 112 

 113 

Results and Discussion 114 

Reference-splice-junction-aware alignment is more accurate than post-alignment junction correction 115 

For sequencing experiments designed to interpret RNA from model organisms, a set of reference splice 116 

junctions will already be available (e.g. from Ensembl). We therefore asked how providing these 117 

reference splice junctions to minimap2 to guide alignment performed compared with post-alignment 118 

correction of junctions with FLAIR(10). For this analysis, we used four nanopore DRS datasets generated 119 

from Arabidopsis seedlings(11) and four datasets generated from human cell lines(10). Several types of 120 

probable alignment error were identifiable in these data, including failure to align terminal exons and 121 

short internal exons, spurious terminal exons, and large insertions to the reference genome (Fig. 1). 122 

Because these datasets are likely to contain novel splice junctions which do not appear in reference 123 
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annotations, we simulated full-length reads (i.e. with no 3ʹ bias(11)) using the Arabidopsis and human 124 

reference transcriptomes, AtRTD2(23) and GRCh38(24), respectively. Simulated reads were then 125 

mapped to the corresponding reference genome using minimap2(18), either with or without guidance 126 

from reference splice junctions. Alignments of simulated reads were found to have similar error profiles 127 

to genuine nanopore DRS read alignments (Fig. S1). Reads mapped without reference splice junctions 128 

were then corrected using FLAIR with reference splice junctions. 129 

Although nanopore DRS has some systematic errors in base-calling (particularly at homopolymers), the 130 

majority of sequencing errors occur stochastically(25). In contrast, we found that alignment errors were 131 

often repeated at similar locations in the alignments of independent reads from equivalent mRNA 132 

transcripts (Fig. 1, Fig. 2A). A common alignment error at splice junctions is failure of a short exon to 133 

align correctly. Instead, fragments of the exon are aligned to the ends of flanking exons, resulting in a 134 

single incorrectly defined intron. A clear example of such an alignment error was detected at the short 135 

(42 nt) exon 6 of Arabidopsis FLM (AT1G77080; Fig. 2A). Minimap2 uses a modified form of the Smith–136 

Waterman algorithm for performing local alignment(18, 26). This method scores alignments using 137 

bonuses for matches to the reference sequence and penalties for mismatches or the opening of 138 

insertions, including introns. Incorrect alignment of FLM exon 6 is likely to occur because the bonus for 139 

aligning a short exon with sequencing errors is not sufficient to overcome the penalty for opening the 140 

two flanking introns(18). Overall, we found that only 19.3% of simulated FLM reads aligned to the 141 

correct transcript isoform. Because the sequence distance between the alignment and the genuine 142 

reference splice junctions was so great, FLAIR was unable to perform post-alignment correction at FLM 143 

exon 6, resulting in the reporting of incorrect introns (Fig. 2A). In all, 40.3% of simulated FLM reads were 144 

aligned to the correct transcript isoform after FLAIR correction of splice junctions using the reference 145 

annotation. However, providing reference splice junctions to minimap2 during alignment resulted in the 146 

correct identification of FLM exons and introns in most cases: 92.1% of simulated FLM reads were 147 

aligned to the correct transcript isoform. We conclude that for loci with complex splicing patterns, 148 

reference-splice-junction-guided alignment performs better than post-alignment correction. 149 

Without guidance from a reference annotation, we found that a median of 73.2% of Arabidopsis reads 150 

and 44.4% of human reads mapped correctly to the splice junctions of the transcript they were 151 

simulated from (Fig. 2B). The difference between the two organisms may be explained by biological 152 

differences between the two species (e.g. in intron size, number of exons per transcript, number of 153 

intronless transcripts). After post-alignment correction of splice junctions using FLAIR, the number of 154 
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correctly identified transcripts detected was improved (median of 87.9% and 63.6% for Arabidopsis and 155 

human reads, respectively; Fig. 2B). This came at the cost of a small increase in alignment of reads to 156 

incorrect reference transcript splice junctions: from a median of 1.79% to 2.62% for Arabidopsis and 157 

from 3.86% to 5.45% for human (Fig. S2A). This misclassification may affect the relative quantification of 158 

transcripts for some genes, with implications for differential transcript usage analysis. Reference 159 

annotation-informed alignment with minimap2 performed better than FLAIR, with a median of 93.8% of 160 

Arabidopsis reads and 73.2% of human reads aligning correctly at the splice junctions of the transcript 161 

they were simulated from (Fig. 2B), albeit with misclassification rates of 2.61% and 5.49% respectively 162 

(Fig. S2A). We conclude that there is a clear benefit to providing reference splice junctions during 163 

alignment of long reads with relatively high sequence error rates, and that this is preferable to post-164 

alignment correction. 165 

 166 

Alignment metrics enable identification of genuine splice junctions 167 

In newly sequenced organisms, suitable reference annotations to guide alignment may not be available. 168 

We therefore asked how the spliced alignment of nanopore DRS reads might be improved in the 169 

absence of reference annotation. Naïve two-pass alignment has been successfully used to improve the 170 

spliced alignment of short reads(20). We applied this approach with our real and simulated nanopore 171 

DRS reads. Splice junctions identified by a first-pass alignment of reads were selected and used (without 172 

filtering) to inform a second-pass alignment. The method was compared with reference-guided 173 

alignment with minimap2, since we find this to be the gold-standard for aligning reads using information 174 

from a reference annotation. We found that using the naïve two-pass approach, the median percentage 175 

of simulated Arabidopsis DRS alignments which matched the splice junctions of the reference transcript 176 

they were simulated from could be increased slightly from 73.2% to 75.8% (Fig. S2B). The increase was 177 

similar for reads simulated from human DRS alignments: from 44.4% to 47.3% (Fig. S2B). 178 

We next considered whether further improvements in two-pass alignment could be obtained by filtering 179 

out likely false-positive splice junctions from first-pass alignments. This would allow us to provide more 180 

refined guide junctions for second-pass alignment (Fig. 3A). A similar approach worked for short reads 181 

when splice junctions were filtered by using junction metrics to train a classifier in the portcullis 182 

software tool(22). By using the presence or absence of a splice junction in the reference annotation as a 183 

ground truth, we considered a range of novel or previously introduced junction metrics(21, 22), 184 
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including junction alignment distance, supporting read count, intron motif and the presence/absence of 185 

nearby splice donor and acceptor sites with higher supporting read counts (Fig. S3A-D). 186 

The junction alignment distance (JAD) is defined as the minimum distance to the first mismatch, 187 

insertion or deletion on either overhang of a read alignment splice junction. This metric is used by both 188 

finesplice and portcullis software tools(21, 22). For the simulated nanopore DRS read alignment datasets 189 

sequenced from Arabidopsis RNA, we found that 88.9% of splice junctions found in the reference 190 

annotation had at least one read alignment with a JAD of 4 nt, compared with only 10.1% of 191 

unannotated splice junctions (Fig. 3B). Consequently, using a threshold of at least one read with a JAD of 192 

4 nt, we could identify annotated splice junctions with an F1 score of 0.902 (Fig. S3A). Despite the high 193 

probability of at least some genuine unannotated splice junctions in the real Arabidopsis data(11), we 194 

found that the same JAD threshold could discriminate between annotated and unannotated splice 195 

junctions in real datasets to a similar degree (F1 score = 0.899). Similar results were also seen for 196 

simulated human datasets, where the same JAD threshold could discriminate between spurious 197 

unannotated and genuine annotated splice junctions (F1 score = 0.868). We conclude that the JAD 198 

metric is a powerful discriminator of genuine splice junctions across nanopore DRS datasets from 199 

different organisms. 200 

Of the other metrics we tested, the read count was predictive of genuine splice junctions at a threshold 201 

of >1 read (F1 score = 0.833; Fig. S3B). However, read count correlated strongly with the JAD 202 

(Spearman's ρ = 0.776), suggesting that it does not provide more information. The presence/absence of 203 

a canonical intron motif (i.e. GU/AG, GC/AG or AU/AG) had a very high recall, as 99.96% of annotated 204 

introns in the simulated alignments were canonical (Fig. S3C). However, the precision was poorer (F1 205 

score = 0.783). This is because in spliced alignment mode minimap2 prefers GU/AG motifs, meaning that 206 

67.1% of spurious splice junctions are also aligned so as to use canonical motifs. 207 

Finally, we developed a primary donor/acceptor metric similar to the one used in portcullis(22). This is 208 

calculated by identifying alternative donor or acceptor sites in a 20 nt window around each 209 

donor/acceptor and then determining whether they have greater read support than the current site. In 210 

case of a tie for read support (e.g. if all splice junctions have a read count of 1), the JAD is used to break 211 

the tie, i.e. sites with the largest maximum per-read JAD are considered most likely to be genuine and 212 

labelled as a primary site. We found that the primary donor and acceptor metrics were also predictive of 213 

genuine splice junctions (F1 scores = 0.842 and 0.785 respectively). By combining the metrics to select 214 

splice junctions which are both primary donors and acceptors, the F1 score can be increased to 0.918 215 
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(Fig. S3D). It is unclear why the primary donor score is more predictive than the primary acceptor score. 216 

A possible reason is that minimap2 is more likely to produce alignment errors at the donor site of splice 217 

junctions (e.g. in the case of failure to align small internal exons) or that there are more genuine 218 

alternative acceptor sites than donor sites. 219 

We chose to use the identified metrics to create a decision tree model, because these models are easy 220 

to interpret and can be kept simple (or pruned) to prevent overfitting. A five-node tree using the JAD, 221 

primary donor/acceptor and canonical intron motif metrics (Fig. 3C) was best able to predict genuine 222 

Arabidopsis splice junctions (F1 score = 0.935; Fig. 3D). The same decision tree also performed well in 223 

predicting genuine and spurious splice junctions from simulated human reads (F1 score = 0.934). This 224 

indicates that the model might generalise across nanopore DRS datasets from different organisms, 225 

despite their differences in splicing complexity. 226 

 227 

A combination of splice junction alignment metrics and sequence information improves authentic splice 228 

junction identification 229 

Genuine splice junctions have sequence biases which are defined by their interactions with spliceosomal 230 

uridylate-rich small nuclear RNAs(27). We next asked whether machine learning models could identify 231 

genuine splice junctions from the flanking genomic sequences alone. For example, genome sequence 232 

information might help identify genuine splice junctions with low read alignment coverage that fail to 233 

pass the JAD filter due to stochastic sequencing errors. We therefore extracted 128 nt sequences 234 

centred on unique donor and acceptor sites and used these to train LR or random forest models with 235 

labels generated by the first decision tree model (Fig. 4A). Using 6-fold cross-validation, we were able to 236 

train six models on 83.3% of the data each and use them to make predictions for the remaining 16.7%. 237 

Using this approach, we could generate predictions for all splice junctions, with no junction being used 238 

for both training and prediction from the same model. We found that LR and random forests performed 239 

similarly on the data, indicating that there are few important higher-order interactions (i.e. correlated 240 

sequence positions). We therefore proceeded with LR models. 241 

At a prediction threshold of 0.5, the LR model overclassified positive splice junctions. False positives may 242 

be sequences which could in principle act as splice junctions but do not in reality due to effects that the 243 

model cannot capture. One such effect could be the presence of alternative splice junctions which are 244 

preferentially processed. This is thought to occur under the “first-come-first-served” model of co-245 
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transcriptional splicing(28, 29). The model is also unlikely to be able to correctly identify the intron 246 

branchpoint motif because this can vary in position relative to the acceptor site(30). Nevertheless, we 247 

found that the LR model approach could predict genuine splice junctions from sequence data alone with 248 

comparable accuracy to the metric-based decision tree (Fig S4A-C). For example, for the simulated 249 

Arabidopsis datasets, using LR on donor and acceptor sequences (with a prediction threshold of 0.5) 250 

yielded an F1 score of 0.904 (Fig S4C), which was similar to the F1 score obtained with the JAD or 251 

primary donor/acceptor metrics. 252 

We next tested whether the information from the junction metrics and reference sequence model was 253 

complementary, i.e. if a combination of the two approaches could produce an improvement in splice 254 

junction prediction over each individual approach. Use of a second decision tree model, this time 255 

including the JAD metric, primary donor/acceptor metrics and new LR prediction scores (Fig. 4B), further 256 

increased the F1 score on splice junctions identified from simulated Arabidopsis read alignments to 257 

0.954 (Fig. 4C). For splice junctions from simulated human reads, we also saw an increase in the F1 score 258 

to 0.957. We conclude that an ensemble approach incorporating both junction metrics and sequence 259 

information works best for detecting and filtering spurious splice junctions from alignments. 260 

 261 

Two-pass alignment with filtered splice junctions improves transcript identification 262 

We next applied the two decision tree filtering methods to perform two-pass alignment of the simulated 263 

reads with minimap2(18). As a positive control, we compared the results to reference-guided alignment 264 

with minimap2, since this represents the best possible performance that could be achieved by two-pass 265 

alignment (i.e. if the filtered splice junction set perfectly matched the reference annotation). Using 266 

filtered splice junctions, the percentage of junctions identified in second-pass alignments that matched 267 

annotated splice junctions could be increased over first-pass alignment and naïve two-pass alignment 268 

(Fig. 5A). For example, using the simulated Arabidopsis datasets, the median percentage of read 269 

alignments matching the splice junctions of the reference transcript they were simulated from increased 270 

from 73.2% in the first pass, to 88.2% and 89.3% in a second pass, using the first and second decision 271 

tree methods respectively (Fig. 5A). Two-pass alignment rescued the large misalignments of exon 6 seen 272 

at FLM (Fig. S5A): overall, 86.8% of simulated FLM reads aligned to the correct reference transcript after 273 

filtered two-pass alignment compared with 19.3% for first-pass alignments. A global improvement in 274 

correct alignment was also seen in the simulated human datasets: from 44.4% in the first pass to 64.3% 275 

and 65.7% for the two decision tree methods, respectively (Fig. 5A). 276 
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Although two-pass alignment improved the number of reads aligning to the correct transcript model, we 277 

also detected a slight increase in the number of reads aligning to the wrong annotated transcript. In the 278 

simulated Arabidopsis reads analysis, reads aligned using the second decision tree model performed 279 

worst on this metric: 2.74% of reads aligned to the wrong isoform compared with only 1.79% of reads 280 

after first-pass alignment (Fig. S5B). To assess whether such misassignment affects the quantitation of 281 

transcripts, we calculated Spearman's correlation coefficient (ρ) for estimated versus known transcript 282 

level read counts for the simulated data (Fig. 5B). The results indicated that, despite this misassignment, 283 

two-pass aligned reads could be quantified accurately, with an overall improvement in median 284 

Spearman’s ρ for one-pass versus two-pass of from 0.876 to 0.916 for simulated Arabidopsis reads 285 

(Fig. 5B) and from 0.778 to 0.859 for simulated human reads (Fig. 5B). However, there may be corner 286 

cases where transcript misassignment could have consequences for transcript usage analysis. This 287 

should be considered for experiments where quantification is important. Overall, we conclude that two-288 

pass alignment using filtered junctions can improve both the detection of correct splicing patterns and 289 

the quantitation of nanopore DRS reads.  290 

 291 

Filtered two-pass alignment improves reference-guided annotation 292 

Summarising read alignments into annotations facilitates transcript level quantification of short and long 293 

reads and aids the interpretation of RNA processing complexity. We therefore asked whether two-pass 294 

alignment of spliced long reads with relatively high sequence error rates can improve the results of 295 

genome-guided annotation tools. Several software tools designed to produce annotations from long 296 

reads exist, including FLAIR(10) and pinfish (ONT), which were designed for nanopore DRS data; 297 

TAMA(31), which was designed for PacBio IsoSeq data; and StringTie2(6), which was designed as a 298 

technology-agnostic long-read assembly tool. 299 

We benchmarked our methods using StringTie2 because it is reported to be faster and more accurate 300 

than FLAIR on simulated nanopore DRS data(6). Using full-length reads simulated from real Arabidopsis 301 

and human nanopore DRS data, we could identify the intron-chain-level precision and recall of 302 

annotations assembled from reads processed using either one-pass or two-pass alignment. Here, 303 

precision is defined as the percentage of assembled transcripts whose combination of introns match a 304 

transcript in the reference annotation; and recall is defined as the percentage of annotated transcripts 305 

for which at least one read was simulated and whose combination of introns match a transcript 306 
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assembled from simulated reads. We assessed reads aligned using guide splice junctions from the 307 

reference annotation as a positive control. 308 

For both Arabidopsis and human datasets, two-pass alignment generally produced a clear improvement 309 

in both precision and recall of StringTie2 transcript assembly over first-pass alignment (Fig. 6A). Of the 310 

two decision tree methods produced, decision tree 2 (using junction sequence information) performed 311 

best (median F1 score was 0.699 for the Arabidopsis data and 0.629 for the human data). There was a 312 

particularly large increase in precision for reference annotation-guided alignment of at least 8.7% and 313 

9.6% over one-pass alignment for all Arabidopsis and human samples, respectively (Fig. 6A). 314 

We next considered whether two-pass alignment could improve the genome-guided transcriptome 315 

assembly performance of Stringtie2 on real datasets, using current reference annotations as a ground 316 

truth. However, it is important to note that there may be genuine transcript examples in the datasets 317 

that are not yet included in the reference annotation; if so, this will affect the measurement of 318 

precision. Furthermore, recall against the reference is likely to depend on the sequencing depth of 319 

samples. We therefore report the number of annotated transcripts assembled for each sample, rather 320 

than the recall. 321 

Two-pass alignment improved both the precision and the number of transcripts assembled for 322 

Arabidopsis, human and mouse samples(10, 11, 32) (Fig. 6B–D). This approach resulted in a median 323 

increase in assembly precision compared with one-pass alignment of 7.1% for Arabidopsis samples, 3.5% 324 

for human samples and 2.2% for mouse samples (median increase in annotated transcripts assembled 325 

per sample of 478.5, 257.5 and 238, respectively). We conclude that for organisms with complex 326 

patterns of pre-mRNA splicing, two-pass alignment can improve both the precision and number of 327 

correct (annotated) transcripts assembled by StringTie2 from real nanopore DRS data. 328 

When we applied the same approach to the yeast Saccharomyces cerevisiae, the results were very 329 

different (Fig. 6E). In this species, two-pass alignment resulted in a median increase of only three more 330 

annotated transcripts assembled per sample and an increased number of unannotated transcripts 331 

assembled, resulting in a median decrease of 0.8% in assembly precision. Splicing complexity in 332 

S. cerevisiae is relatively low: there are only 364 annotated introns in the Ensembl R64 annotation, most 333 

genes are intronless, and most introns are constitutive(33). This led to a high ratio of unannotated splice 334 

junctions in first-pass alignments (the median number of junctions identified was 8,056), suggesting that 335 

the vast majority of junctions in the dataset are spurious. Furthermore, most S. cerevisiae introns occur 336 
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close to mRNA 5ʹ ends, resulting in typically short upstream exons that present challenges to alignment 337 

software. Such a large ratio of spurious to genuine splice junctions is likely to affect the precision of 338 

junction filtering. Notably, even when the reference annotation was used to guide alignment, precision 339 

was only improved by a median of 1.9% (with a median of six more transcripts assembled correctly). 340 

Intron-containing genes are generally more highly expressed (many encode ribosomal proteins) than 341 

intronless genes(34). This may mean that the coverage of annotated transcripts is already good and, 342 

thus, that the number of true annotated transcripts assembled cannot be much improved. This result 343 

suggests that both reference annotation-guided and two-pass alignment methods have limited use for 344 

genome-guided transcriptome assembly in organisms with low complexity splicing. 345 

Finally, we considered whether filtered two-pass alignment could improve genome-guided annotation of 346 

nanopore DRS reads derived from sequencing cDNA copies and from PacBio IsoSeq data (Fig S6A-D). To 347 

assess this, we used the recommended alignment parameters for minimap2(18), but with the splice 348 

junction filtering parameters that were used for nanopore DRS data. Overall, the precision and recall of 349 

transcripts assembled from both nanopore cDNA and PacBio IsoSeq data for human, mouse and 350 

Arabidopsis samples could be improved using two-pass alignment. For human and mouse nanopore 351 

cDNA samples, two-pass alignment resulted in a median increase of 3.85% and 2.3% in assembly 352 

precision, respectively, compared with one-pass alignment (median increase in annotated transcripts 353 

assembled per sample of 609.5 and 420.0, respectively; Fig. S6A,B). For Arabidopsis and human PacBio 354 

IsoSeq samples, two-pass alignment resulted in a median increase of 8.45% and 1.35% in assembly 355 

precision, respectively, compared with one-pass alignment (median increase in annotated transcripts 356 

assembled per sample of 63 and 242.5, respectively; Fig. S6C,D). We conclude that a two-pass method 357 

can improve genome-guided transcript assembly of the high-error long reads produced using a range of 358 

sequencing technologies. 359 

 360 

Two-pass alignment can aid novel splice-isoform discovery in annotated species 361 

We have shown that a two-pass approach can improve the accuracy of spliced alignment in the absence 362 

of a reference annotation. However, even the most well-studied genomes are likely to be incompletely 363 

annotated, and so novel splice-junction discovery which builds upon existing annotations is also 364 

desirable. We therefore developed an alternative two-pass method which allows users to provide 365 

reference annotations. The annotation is used to train random forest models which can then predict 366 
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novel splice junctions. These models replace the pre-trained decision trees used in the annotation-367 

independent method. We refer to this method hereafter as annotation-aided two-pass alignment. 368 

If a reference annotation for a species is truly complete – i.e. there are no new splice-junctions to be 369 

discovered, then two-pass alignment can only reduce the accuracy of alignment by introducing false-370 

positive introns into the guide splice junction set. We therefore hypothesise that two-pass alignment 371 

will be useful when many genuine splice junctions are missing from the annotation, because genuine 372 

novel splice junctions added to the guide junction set will outweigh false-positives that are introduced. 373 

We refer to the percentage of genuine splice junctions that are unannotated as the level of annotation 374 

“missingness”. To test our hypothesis, we performed random subsampling of transcript isoforms in the 375 

Arabidopsis reference annotation to simulate an incomplete reference at a range of missingness levels, 376 

from 0.1% to 90% missing. We then performed annotation-aided two-pass alignment of the nanopore 377 

DRS dataset and assessed the predictive performance on splice junctions which were absent from the 378 

subsampled annotation. We found that the annotation-aided method performed best for medium 379 

missingness levels. For example, in Arabidopsis DRS data, when between 25% and 66% of reference 380 

isoforms were missing, the true positive rate / recall was high (minimum of 0.86), for a low false positive 381 

rate (maximum 0.15) and a high precision (minimum 0.85) (Figure 7A,B). This translates to a 1.3-3.9% 382 

improvement in the percentage of correctly aligned reads compared to reference-guided alignment 383 

(Figure 7C). At missingness levels of less than 25%, the false positive rate increased and precision 384 

decreased (Figure 7A,B). The reason for this decrease in performance is because as the reference 385 

annotation nears completion, the imbalance between genuine novel splice junctions and false positives 386 

caused by alignment errors increases. However, reductions in splice-junction level precision do not 387 

translate to a large drop in the percentage of correctly aligned reads – at 0.1% missingness, the 388 

reduction was 0.36% (Figure 7C). Furthermore, at lower levels of missingness, the recall remained high, 389 

with at least 96.7% of all genuine novel splice junctions being detected. At extremely high levels of 390 

annotation missingness, the recall of the two-pass filtering method begins to fall – at 90% missing, recall 391 

is only 0.12 (Figure 7B). This is likely to be because when the reference is extremely incomplete, it no 392 

longer represents a good training dataset, since a large proportion of junctions missing from the 393 

reference will be genuine. For reference missingness levels >75%, it was therefore better to perform 394 

two-pass alignment without the reference annotation (Figure 7C,D). With human RNA datasets, we 395 

found that annotation-aided two-pass alignment improved the percentage of correctly aligned reads 396 

when transcript isoform missingness was at least 25% (Figure 7D). This is likely due to the completeness 397 

of human annotation – more junctions are found in more than one transcript isoform. We conclude that 398 
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annotation-aided two-pass alignment is most useful when a high-quality annotation is available, but 399 

where the conditions of the experiment are expected to produce a significant number of novel splice 400 

junctions. 401 

 402 

Two-pass alignment discovers novel splice isoforms in the Arabidopsis RNA exosome mutant hen2-2 403 

To validate the annotation-aided two-pass approach, we performed a case study with Arabidopsis using 404 

the hen2-2 mutant. HEN2 functions as an accessory protein to the nuclear RNA exosome, and is required 405 

for the processing and degradation of specific classes of mRNAs and non-coding RNAs(35). As a result, 406 

many RNAs, some of which contain novel splice junctions, accumulate in the hen2-2 mutant compared 407 

to wild-type. Many of these transcripts are unannotated because exosome mediated decay means that 408 

they are effectively “hidden” in wild-type plants. We have previously performed Illumina RNAseq of 409 

hen2-2 mutants at relatively high depth(11). We therefore generated nanopore DRS reads from similar 410 

tissue and performed annotation-aided two-pass alignment to detect novel splice junctions. Of the 411 

17,521 unannotated splice junctions detected in first-pass alignment of the nanopore DRS data, only 412 

20% (3548) are supported by Illumina RNAseq, and only 24% (4210) passed filtering, indicating that the 413 

majority are spurious (Figure 8A). However, of those that pass filtering, 57% (2382) were supported by 414 

Illumina RNAseq. This represents 67% of the 3548 unannotated junctions which were supported by both 415 

nanopore DRS and Illumina RNAseq. For example, we detected novel isoforms of annotated genes, such 416 

as AT1G19396, where use of an alternative donor site in a large intron results in a novel exonic region 417 

(Figure 8B). We also detected completely unannotated transcripts, such as an antisense RNA at 418 

AT3G12140 with multiple novel splicing events (Figure 8C). We conclude that two-pass alignment is able 419 

to detect genuine novel introns in well-annotated species, under less well-annotated conditions. 420 

 421 

Conclusions 422 

RNA sequencing is a fundamental tool for understanding what genomes really encode. Technological 423 

approaches that directly sequence full-length RNA molecules substantially increase the useful 424 

information that RNA sequencing can provide. The challenges that alternative splicing, in particular, 425 

presents to the interpretation of high-throughput RNA sequencing data means that software 426 

development needs to accompany progress in sequencing technology. In this way, knowledge gained 427 
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from ambitious genome sequencing programmes such as the Earth BioGenome Project, which aims to 428 

characterise all eukaryotic life on Earth(36), can be maximised. We have shown that a two-pass 429 

alignment approach, informed by splice junction alignment metrics and machine learning of sequence 430 

features associated with splicing, can improve the accuracy of intron detection in long-read data. 431 

Knowledge of existing splice junctions can also be applied to aid the discovery of novel splicing events 432 

when annotations are incomplete - for example, in disease states with altered gene expression. 433 

Consequently, this approach can enhance the utility and realise the potential of long-read RNA 434 

sequencing. 435 

 436 

Methods 437 

Nanopore and PacBio data 438 

Four replicates of nanopore DRS reads derived from Arabidopsis Col-0 RNA were used (11). These 439 

datasets are available in FAST5 format from the European Nucleotide Archive under accession no. 440 

PRJEB32782. The first four listed replicates of DRS and cDNA sequencing reads derived from human cell 441 

line GM12878 were used: Birmingham DRS samples 1, 2, 3 and 5; Birmingham cDNA samples 1 and 2; 442 

Hopkins cDNA samples 1 and 2)(10). DRS datasets were downloaded in FAST5 format and cDNA datasets 443 

in FASTQ format using the links provided on GitHub (http://s3.amazonaws.com/nanopore-human-444 

wgs/rna/links/NA12878-DirectRNA_All.files.txt). Mouse DRS and cDNA datasets in FASTQ format (32) 445 

were downloaded from the European Nucleotide Archive (accession no. PRJEB27590). Yeast DRS 446 

datasets in FASTQ format (9) were downloaded from the European Nucleotide Archive (accession no. 447 

PRJNA408327). Human IsoSeq datasets in FASTQ format were downloaded from the PacBio AWS 448 

webserver (http://datasets.pacb.com.s3.amazonaws.com/2014/Iso-seq_Human_Tissues/list.html). 449 

Arabidopsis IsoSeq data in FASTQ format was downloaded from the European Nucleotide Archive 450 

(accession no. PRJNA371677). 451 

hen2-2 nanopore DRS data 452 

For newly sequenced nanopore DRS data, hen2-2 seeds were sown on MS10 medium plates, stratified at 453 

4°C for 2 days, germinated in a controlled environment at 22°C under 16 hr light/8 hr dark conditions 454 

and harvested 14 days after transfer to 22°C. RNA isolation and nanopore direct RNA sequencing were 455 

performed as described previously(11). 456 
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Preliminary data processing 457 

Pipelines for processing of data were written using snakemake version 5.10.0(37). FAST5 data was re-458 

basecalled locally using guppy version 2.3.1 (ONT). All alignments were performed using minimap2 459 

version 2.17-r963(18). Arabidopsis reads were aligned to the TAIR10 reference genome(38) and AtRTD2 460 

reference transcriptome(23). Human, mouse and yeast reads were aligned to the GRCh38, GRCm38 and 461 

R64–1-1 primary assemblies and to cDNA transcriptomes from Ensembl, respectively(24). Alignments to 462 

reference genomes were performed using spliced parameters. For DRS datasets, these were: -k14 -x 463 

splice  -L --cs=long. For nanopore cDNA and PacBio datasets the parameters used were -x splice -L --464 

cs=long. The maximum intron size (-G) was set at 10,000 nt for Arabidopsis samples, at 200,000 nt for 465 

human and mouse datasets and at 5,000 nt for yeast, to match the known intron length distributions in 466 

these organisms. For two-pass alignments using a guide splice junction set, a junction bonus (--junc-467 

bonus) of 12 was also used, as this was found to improve the percentage of correctly aligned simulated 468 

reads when performing reference-guided annotation, compared to the default (--junc-bonus 9). 469 

Alignments of DRS reads to the reference transcriptome were performed using splicing-free parameters, 470 

namely: -k14 --for-only -L --cs=long. 471 

Simulation of DRS reads 472 

To provide a ground truth with a complete set of known splice sites, sequences were simulated from the 473 

reference transcriptomes, with length and error profiles matching those of real DRS reads. This was 474 

done by modelling the length, homopolymer error and other error profiles of real reads. Only primary 475 

alignments were considered. The cs tags of reads aligned to the reference transcriptome were used to 476 

recreate pairwise alignments between each read and the reference, ignoring refskips. Alignments were 477 

inverted to match the 3ʹ → 5ʹ sequencing direction of nanopore DRS. Aligned basecalls at reference 478 

homopolymers of ≥5 nt in length were used to build a probability model of homopolymer calls given the 479 

reference homopolymer. To prevent these error profiles being modelled multiple times, the reference 480 

homopolymer was then replaced with the aligned basecall in the pairwise alignment. Next, the altered 481 

alignment was used to create a Markov chain model of basecalled sequence given the reference 482 

sequence. For each base in the reference sequence in the alignment, the aligned portion of the query 483 

sequence was identified. The "state" of the alignment (i.e. match, mismatch, insertion or deletion) was 484 

also identified. The probability of seeing a query sequence was calculated, given the current and 485 

previous four bases of the reference and the previous four states of the alignment. 486 
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The reference transcriptome was also used to simulate data using these models. The number of primary 487 

alignments in the real data for each reference transcript was used as the number of simulated reads per 488 

transcript. To simulate basecall errors, sequences were inverted to the 3′ → 5ʹ direction and reads were 489 

generated using Markov chain Monte Carlo simulations with the basecall model. The reference 490 

sequences were prepended with a 10 nt oligo(A) sequence to mimic a short poly(A) tail so that the initial 491 

state of the Markov chain was always "AAAAA" and "====" (i.e. four matches). Homopolymers in the 492 

simulated read were identified and replaced with randomly selected sequences from the homopolymer 493 

model. The read was then reverted to the 5ʹ → 3ʹ direction for mapping. Because we wanted to assess 494 

the alignment of full-length reads, we did not model or simulate the 3ʹ bias, which is inherent to 495 

nanopore DRS data. However, 10 nt of simulated read were subtracted from the 5ʹ end of reads to 496 

simulate loss of signal at the end of sequencing. 497 

Post-alignment splice junction correction with FLAIR 498 

BAM files were converted to the BED12 format using bedtools(39). BED12 files were then corrected 499 

using the reference GTF annotation with FLAIR correct version 1.4 and default settings(10). 500 

Junction metric calculations 501 

Splice junctions and junction metrics were extracted from aligned reads using the long form cs tag 502 

produced by minimap2 version 2.17(18) using pysam version 0.15.4. The per-read JAD was calculated as 503 

the length of the shorter of the two match operations immediately flanking refskip (splicing) operations. 504 

Where there were mismatches or indels immediately adjacent to refskips, a JAD of zero was assigned. 505 

The per-splice junction JAD was calculated as the maximum of the per-read JADs. Intron motifs were 506 

extracted from cs tags. For Arabidopsis, human and mouse samples, GU/AG, GC/AG and AU/AG splice 507 

junctions were all considered canonical. For yeast samples, only GU/AG splice junctions were considered 508 

canonical. To calculate the primary donor/acceptor metrics, interval trees of donor and acceptor sites 509 

were constructed using NCLS(40). Donors were assigned as primary donors if there were no alternative 510 

donor sites within 20 nt with higher read counts. Likewise, acceptors were considered primary if there 511 

were no alternative acceptors within 20 nt with higher read counts. Ties were broken using the JAD 512 

metric, i.e. the splice junctions with higher JADs were assigned primary status. Where there were still 513 

ties after read count and JAD comparisons, no splice junctions were assigned primary status. Splice 514 

junctions extracted from four replicates of Arabidopsis or human DRS reads were used to build decision 515 

tree models with scikit-learn version 0.22.1(41). A minimum depth of 4, minimum number of samples 516 

required to split a node of 1000, and minimum Gini impurity decrease required to split a node of 0.005 517 
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were used. The decision tree generated from Arabidopsis reads was a subtree of the human tree (i.e. it 518 

could be created by pruning the human tree), indicating that the decision function can generalise across 519 

samples. 520 

Reference sequence filtering using LR models 521 

Splice junctions obtained from a first-pass alignment were separated into lists of unique donor sites and 522 

unique acceptor sites. These were labelled as positive training examples if they participated in at least 523 

one donor/acceptor pair which passed the first decision tree function. Sequences of 128 nt for each 524 

splice junction (centred on the donor or acceptor site) were extracted from the reference genome using 525 

pysam version 0.15.4 and one hot encoded into four binary variables to create a 512-feature training 526 

dataset. LR models were trained using 6-fold cross-validation with scikit-learn version 0.22.1(41). For 527 

each fold, the model was used to generate out-of-bag predictions on the held-out data. The probabilities 528 

produced were then used in place of the canonical intron motif to produce the second decision tree, 529 

using a maximum depth of 6, a minimum number of samples of 1,000 and a minimum Gini impurity 530 

decrease of 0.003. Thresholds for splice scores in the tree were simplified to comprise only a high 531 

confidence threshold of 0.6 (for rescuing splice junctions failing the JAD metric threshold) and a low 532 

confidence threshold of 0.1 (for removing false positives from junctions passing the JAD metric 533 

threshold). 534 

Annotation-aided two-pass alignment 535 

For use cases where high quality annotations are already available, we developed an annotation-aided 536 

two-pass approach. Here, annotated junctions are provided along with read alignments. Annotated 537 

junctions are labelled as genuine. Unannotated junctions discovered in alignments are assumed to be 538 

mainly spurious. These labels are then used to train an extremely random forest model on junction 539 

metrics. Out-of-bag predictions for each junction are used as refined labels for LR models to detect 540 

splice junction sequence. A final extremely random forest model is trained on refined labels, using 541 

junction metrics and splice junction sequence scores determined by LR models. Positive examples which 542 

are not in the annotation will be a mixture of false positives and genuine novel splice-junctions. Any 543 

false negatives from the annotation are (optionally) retained. 544 

Evaluation of splice junction models 545 

Performance of the metrics and models was evaluated at splice junction level using the reference 546 

annotation as a ground truth. For simulated datasets, annotation is the absolute ground truth because 547 
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all reads are simulated using only splice junctions in the annotation. For real datasets, some “false 548 

positives” are likely to be genuine splice junctions and some junctions in the reference, which appear as 549 

false negatives, are actually incorrectly annotated or not expressed. Precision is defined as the number 550 

of true positives divided by the total number of positive predictions by the model, i.e. true positives ÷ 551 

(true positives + false positives). Recall is defined as the number of true positives divided by the total 552 

number of real positive examples in the dataset, i.e. true positives ÷ (true positives + false negatives). 553 

The F1 score is the harmonic mean of the precision and recall. 554 

Evaluation of alignments 555 

To evaluate alignments, we used the intron chain of reference transcripts as a ground truth. The intron 556 

chain is the pattern of linked splicing in a transcript, disregarding the transcription start and termination 557 

sites. Alignments of simulated reads were considered correct if they mapped correctly to the intron 558 

chain of the reference transcript they were simulated from, with no mistakes. Simulated reads that were 559 

mapped using intron chains not included in the reference or as being intron-less when they should have 560 

splicing were considered novel spurious alignments. Simulated reads that were mapped using the intron 561 

chain of a reference transcript other than the transcript they were simulated from were considered to 562 

be misassigned. For measures of quantification accuracy, alignment counts for transcripts were 563 

generated using the number of simulated reads that aligned with the same splice junctions as the 564 

reference transcript. Spearman's correlation coefficients were then calculated against the known input 565 

transcript counts for simulation. 566 

Reference-guided assembly 567 

Reference-guided transcriptome assemblies were produced using StringTie2(6) version 2.1.1 in long-568 

read mode, with otherwise default parameters. 569 

Evaluation of assemblies 570 

Reference-guided transcriptome assemblies were evaluated using the precision and recall of intron 571 

chains calculated using gffcompare with default settings(42). The input reference GTF files were filtered 572 

to include only transcript models for which at least one read had been simulated. 573 

Reference missingness analysis 574 

To simulate incomplete references, transcript isoforms were removed from the Araport11 (Arabidopsis) 575 

and GRCh38 (human) reference annotations at rates from 0.1% to 90%. These incomplete references 576 
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were then used to perform reference guided alignment of reads simulated using the full reference 577 

annotation. Splice junctions from read alignments were then filtered using the annotation-aided 578 

method, and reads were realigned using filtered junctions as a guide. Performance on splice-junctions 579 

was measured on junctions which were not present in the annotation (i.e. training set) only. 580 

Performance at read-alignment level was measured as the change in the percentage of correctly aligned 581 

reads compared to using only the incomplete reference annotation to guide alignment. 582 

Illumina RNAseq analysis 583 

hen2-2 Illumina RNAseq data was downloaded from PRJEB32782. Reads were mapped to the TAIR10 584 

genome using STAR, with a splice junction database built from the Araport11 annotation. Splice junction 585 

set intersections were identified in Python using pysam, and the visualised using upset plots. 586 

 587 

Declarations 588 

 589 

Availability of data and materials 590 

Code availability 591 

The methods used to filter splice junctions have been implemented in the “2passtools” python package, 592 

which is available on GitHub in repository https://github.com/bartongroup/2passtools. The software 593 

used to simulate reads is available on GitHub in repository https://github.com/bartongroup/yanosim. 594 

The scripts, pipelines and notebooks used to perform benchmarking and generate figures are available 595 

on GitHub in repository https://github.com/bartongroup/two_pass_alignment_pipeline.  596 

Data availability 597 

Basecalled and simulated nanopore DRS datasets are available from Zenodo at 598 

https://zenodo.org/record/3773729. Newly generated nanopore DRS FAST5 data has been made 599 

available on ENA under accession PRJEB41381. 600 
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Figure legends 713 

Fig. 1. Assessment of alignment errors in nanopore DRS datasets. Nanopore DRS read alignments at 714 

Arabidopsis AT5G05010 locus with different types of alignment error presented. Read alignments are 715 

shown in dark blue, with soft-clipped (unaligned) ends shown in light blue. Mismatches and indels of 716 

<30 nt are not shown. Insertions to the reference of > 30 nt are shown as orange carets. 717 

Fig. 2. Improved spliced alignment of simulated reads using annotation-guided alignment. A Reference-718 

guided alignment improves the identification of small exons in nanopore DRS reads. Gene track showing 719 

the alignment of a sample of simulated nanopore DRS reads at the Arabidopsis FLM gene. AtRTD2 720 

reference annotation, from which reads were simulated, is shown on top, with unguided minimap2 721 

alignments, FLAIR correction of unguided minimap2 alignments and reference-guided minimap2 722 

alignments shown below. Only reads where exon 6 failed to align in the initial unguided alignment are 723 

shown. Each read alignment is coloured based on the reference transcript it was simulated from, and 724 

reads are shown in the same order within each alignment method group. Mismatches and indels are not 725 

shown. B Reference-guided alignment improves the identification of correct transcripts globally. Boxplots 726 

with overlaid strip-plots showing the percentage of alignments which map exactly to the splice junctions 727 

of the transcript from which they were simulated, for unguided minimap2 alignments, FLAIR correction 728 

of unguided minimap2 alignments using reference annotation, and reference annotation-guided 729 

minimap2 alignments. Reads simulated from intronless transcripts which map correctly without splicing 730 

were not included in percentage calculations. Reads were simulated from Arabidopsis (left) and human 731 

(right) nanopore DRS data aligned to the AtRTD2 and GRCh38 reference transcriptomes, respectively. 732 

Fig. 3. Junction metrics can identify genuine splice junctions. A Outline of the two-pass method. B The 733 

JAD metric can discriminate between annotated and unannotated splice junctions in simulated nanopore 734 

DRS reads. Inverse cumulative density plot showing the distribution of per-splice junction maximum JAD 735 

values for annotated (blue) and unannotated (orange) splice junctions. C Flowchart visualisation of the 736 

first decision tree model. Nodes (decisions) and leaves (outcomes) are coloured based on the relative ratio 737 

of real and spurious splice junctions. D Confusion matrix showing the ratios of correct and incorrect 738 

predictions of the first decision tree model on splice junctions extracted from simulated Arabidopsis read 739 

alignments. 740 

Fig. 4. Machine learned sequence information improves identification of genuine splice junctions. A 741 

Outline of the LR model training process. Sequences from splice junctions were extracted from the 742 
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reference genome and used as training data (i.e. explanatory variables). Training labels (i.e. the response 743 

variable) were generated by the first decision tree model. Independent models were trained for 5ʹ donor 744 

and 3ʹ acceptor sites and cross-validation used to generate out-of-bag predictions for all sites. B Flowchart 745 

visualisation of the second decision tree model. Nodes (decisions) and leaves (outcomes) are coloured 746 

based on the relative ratio of real and spurious splice junctions. C Confusion matrix showing the ratios of 747 

correct and incorrect predictions of the second decision tree model on splice junctions extracted from 748 

simulated Arabidopsis read alignments. 749 

Fig. 5. Filtered two-pass alignment improves the identification and quantification of correct transcripts 750 

without a reference annotation. A Boxplots with overlaid strip-plots showing the percentage of 751 

alignments which map exactly to the splice junctions of the transcript from which they were simulated, 752 

for one-pass unguided minimap2 alignments, two-pass alignments using splice junctions filtered by 753 

decision trees one and two, and reference-annotation-guided minimap2 alignments. Reads were 754 

simulated from Arabidopsis TAIR10 + AtRTD2 (left) and human GRCh28 (right) nanopore DRS data. 755 

B Boxplots with overlaid strip-plots showing the Spearman's correlation coefficient for actual transcript 756 

level counts from simulated data against counts produced by the alignment methods described in A. Reads 757 

were simulated from Arabidopsis (left) and human (right) nanopore DRS data aligned to the AtRTD2 and 758 

GRCh38 reference transcriptomes, respectively. 759 

Fig. 6. Filtered two-pass alignment improves genome-guided annotation. A Scatterplot showing 760 

precision against recall for intron chains in genome-guided transcriptome annotations generated from 761 

alignments using StringTie2. Precision and recall scores were calculated against reference annotations 762 

filtered to include only transcripts for which at least one read was simulated. Reads were simulated from 763 

Arabidopsis (left) and human (right) nanopore DRS data aligned to the AtRTD2 and GRCh38 reference 764 

transcriptomes, respectively. B–E Stripplots with box-and-whiskers showing the number of correct 765 

transcripts assembled (left panels) and precision of transcripts assembled (right panels) for genome-766 

guided transcriptome assembly using StringTie2. Two-pass alignment improved the precision and number 767 

of transcripts assembled for real nanopore DRS data for B Arabidopsis, C human, D mouse and E yeast. 768 

For all boxplots, overlaid strip-plots are shown for individual samples. Each sample was assigned a unique 769 

marker so that the changes in each sample could be tracked between the one-pass, two-pass and 770 

reference-guided alignments. Box-and-whiskers not shown for samples with less than 4 data points. Y 771 

limits vary between figures since within-figure (i.e. same species and sequencing technology) comparison 772 

is more important than between-figure comparisons. 773 
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Fig. 7. Annotation-aided two-pass alignment rescues missing splice junctions. A ROC scatterplot and B 774 

precision/recall scatterplot showing true positive rate and false positive rate of novel splice junction 775 

classification in simulated Arabidopsis read alignments, at different rates reference annotation 776 

missingness. Annotated transcript isoforms were subsampled to simulate incomplete reference 777 

annotations, and these were used to inform annotation-aided two-pass alignment. C-D Line plots showing 778 

the improvement in the percentage of correctly aligned reads using two-pass alignment compared to 779 

reference-guided alignment at different reference annotation missingness rates for C Arabidopsis and D 780 

humans, respectively. Blue line shows improvement compared to reads aligned using two-pass method 781 

only. Orange line shows improvement compared to reads aligned using reference-annotation in first-pass, 782 

followed by annotation-aided junction filtering and second pass alignment. Shaded regions represent 95% 783 

confidence intervals. 784 

Fig. 8. Annotation-aided two-pass alignment identifies novel splice isoforms in hen2-2 mutants. A Upset 785 

plot showing the intersection of splice junctions detected using nanopore DRS or Illumina RNAseq, and 786 

presence in the AtRTD2 annotation. Horizontal bars show the overall number of junctions detected using 787 

each technology/annotation, whilst stacked vertical bars represent set intersections. For nanopore DRS 788 

data, splice junctions with one or more supporting read alignment are shown. For Illumina RNAseq, splice 789 

junctions with ten or more supporting read alignments are shown. Nanopore DRS junctions which are 790 

classified as spurious by the two-pass filtering method are labelled in blue, whilst junctions which are 791 

classified as genuine are labelled in orange. Set intersection bars not including nanopore DRS are shown 792 

in grey. B-C Gene track showing novel splice isoforms detected at B AT1G19396 and C AT3G12140 in hen2-793 

2 nanopore DRS data. AtRTD2 annotation is shown in black. Nanopore DRS reads are shown in blue 794 

(positive strand) or light blue (negative strand). Novel splice junctions are shown in orange. 795 

 796 
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Two-pass alignment using machine-learning-filtered splice 

junctions increases the accuracy of intron detection in long-

read RNA sequencing 
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Fig. S1. Simulation of nanopore DRS read alignments. A Violin plot showing the distribution 

of sequence identity scores for real and simulated Arabidopsis nanopore DRS reads. 

Simulated reads match the median sequence identity of real reads, although they do not 

capture the tails of high- and low-quality reads. B Insertion and deletion length distributions 

for real and simulated nanopore DRS reads. C Mismatch profiles for real and simulated 

nanopore DRS reads. 
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Fig. S2. Annotation-guided alignment improves spliced alignment of simulated reads. 

A Boxplots with overlaid strip-plot showing the percentage of alignments which do not map 

correctly to the splice junctions of the transcript from which they were simulated, for one-

pass unguided minimap2 alignments, FLAIR-corrected alignments and reference annotation-

guided minimap2 alignments. Reads that align to unannotated splice junctions or 

combinations of junctions (“Not in annot.”) are shown in orange. Reads which align to the 

incorrect annotated combination of splice junctions are shown in green. Reads were 

simulated from Arabidopsis (left) and human (right) nanopore DRS data aligned to the AtRTD2 

and GRCh38 reference transcriptomes, respectively. B Boxplots with overlaid strip-plot 

showing the percentage of alignments which map correctly to the splice junctions of the 

transcript from which they were simulated, for one-pass unguided minimap2 alignments, 

two-pass minimap2 alignment and reference annotation-guided minimap2 alignments. Reads 

were simulated from Arabidopsis (left) and human (right) nanopore DRS data aligned to the 

AtRTD2 and GRCh38 reference transcriptomes, respectively. 
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Fig. S3. Junction metrics can identify genuine splice junctions. A-D Confusion matrices 

showing the ratios of correct and incorrect predictions using: A a JAD threshold of 4 nt; B a 

count threshold of 1 nt; C the presence of a canonical U2 GU/AG, U12 GC/AG or U12 AU/AG 

intron motif; and D the primary donor/acceptor metric, defined as whether there are no 

alternate donor or acceptor sites with greater support (i.e. higher count or JAD) within 20 nt. 
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Fig. S4. Machine-learned sequence information can identify genuine splice junctions. A-C 

Confusion matrices showing the ratios of correct and incorrect predictions using: A an LR 

prediction threshold of 0.5 for splice site strength predictions made on donor site sequences; 

B an LR prediction threshold of 0.5 for splice site strength predictions made on acceptor site 

sequences; C a minimum prediction threshold of 0.5 for both splice donor and acceptor site 

sequences. 
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Fig. S5. Filtered two-pass alignment improves the identification and quantification of 

correct transcripts without a reference annotation. A Gene track showing alignment of a 

sample of simulated nanopore DRS reads at the Arabidopsis FLM gene. The AtRTD2 reference 

annotation, from which reads were simulated, is shown on top, with unguided minimap2 

alignments, two-pass minimap2 alignments using the second decision tree classification, and 

reference-annotation-guided alignments shown below. Only reads where exon 6 failed to 

align in the initial unguided alignment are shown. Each read alignment is coloured based on 

the reference transcript it was simulated from, and reads are in the same order within each 

alignment method group. Mismatches and indels are not shown. B Boxplots with overlaid 
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strip-plots showing the percentage of alignments which do not map correctly to the splice 

junctions of the transcript from which they were simulated, for one-pass unguided minimap2 

alignments, two-pass alignment with decision trees one and two, and reference annotation-

guided minimap2 alignments. Reads that align to unannotated splice junctions or 

combinations of junctions are shown in orange. Reads which align to annotated combinations 

of splice junctions which they were not simulated from are shown in green. Reads were 

simulated from Arabidopsis (left) and human (right) nanopore DRS data aligned to the AtRTD2 

and GRCh38 reference transcriptomes, respectively. 
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Fig. S6. Filtered two-pass alignment improves genome-guided annotation. A–D Stripplots 

with box-and-whiskers showing the number of correct transcripts assembled (left panels) and 

precision of transcripts assembled (right panels) for genome-guided transcriptome assembly 

using StringTie2. Two-pass alignment improved the precision and number of transcripts 

assembled from A human nanopore cDNA; B mouse nanopore cDNA; C Arabidopsis PacBio 

IsoSeq; and D human PacBio IsoSeq data. For all boxplots, overlaid strip-plots are shown for 

individual samples. Each sample was assigned a unique marker so that changes in the metrics 

could be tracked between the one-pass, two-pass and reference-guided alignments. Box-and-

whiskers not shown for samples with less than 4 data points. 
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