
Two Perceptually Motivated Strategies for Shape Classification

Andrew Temlyakov1, Brent C. Munsell1,2, Jarrell W. Waggoner1, and Song Wang1

1Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208, USA

2 Honeywell Automation and Control Solutions (ACS) Lab
Golden Valley, MN 55422, USA

{temlyaka, munsell, waggonej, songwang}@cec.sc.edu

Abstract

In this paper, we propose two new, perceptually moti-
vated strategies to better measure the similarity of 2D shape
instances that are in the form of closed contours. The first
strategy handles shapes that can be decomposed into a base
structure and a set of inward or outward pointing “strand”
structures, where a strand structure represents a very thin,
elongated shape part attached to the base structure. The
similarity of two such shape contours can be better de-
scribed by measuring the similarity of their base structures
and strand structures in different ways. The second strat-
egy handles shapes that exhibit good bilateral symmetry. In
many cases, such shapes are invariant to a certain level of
scaling transformation along their symmetry axis. In our
experiments, we show that these two strategies can be in-
tegrated into available shape matching methods to improve
the performance of shape classification on several widely-
used shape data sets.

1. Introduction

Accurately and reliably measuring the similarity of two
shape instances is a fundamental problem in computer vi-
sion and plays a central role in many shape-based vision
applications including shape matching, shape classification,
shape recognition, and shape retrieval. From 2D images,
closed contours aligned with object boundaries can be ex-
tracted as shape instances, which we also refer to as shape
contours. These extracted shape contours may demonstrate
a large amount of variation, have highly articulated shape
parts, involve global and/or local non-rigid deformations,
and contain partial occlusions. Even with such complexi-
ties, human vision can easily determine whether two shape
contours belong to the same shape class. However, develop-
ing computational models and methods that can accomplish
the same task has proven to be challenging.

Shape matching through nonrigid shape deformation is
a typical approach to measure shape similarity [6, 14, 10,
21, 13, 16]. In general, this approach measures the amount
of energy required to deform one shape contour into an-
other based on some physical or mathematical model. The
model is then optimized using methods such as dynamic
programming to obtain a set of corresponded points on the
two shape contours that minimize the deformation cost of
this model. However, this approach is often very sensitive
to strong, local shape variations that human vision may han-
dle very well. For example, the two shape contours shown
in Figs. 1(a) and (b) are similar in general, but their outward
parts, represented by the dashed curves, are quite different
from each other. A large deformation cost may be required
to match these two shape contours.
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Figure 1. (a-b) Shape contours with strong local variations that
may show low similarity using a deformable shape matching
method. (c-d) Shape contours with small structural changes that
may show low similarity using a medial axis matching method.

Another approach is to decompose each shape contour
into a set of shape parts [9, 24, 22]. This is typically
achieved by determining the medial axes of the shape con-
tour and then constructing a medial-axis tree, where a sub-
tree may represent a shape part. Using this approach, two
shape contours are similar when their medial axis trees are
structurally similar. In this case, the shape instances illus-
trated in Fig. 1 (a-b), may be well-matched because the
medial axes of the two shape instances are very similar.
However, medial axis identification is very sensitive to the



noise along the shape contour. For example, the shape con-
tour shown in Fig. 1(d) is a slightly varied version of the
shape contour shown in Fig. 1(c), but their medial axes,
represented by the dashed curves, have completely differ-
ent structures.

In this paper, we introduce two new, perceptually mo-
tivated strategies for improving the performance of shape
classification.

1.1. Overview of Strategy I

The first strategy aims to better handle the shape con-
tours that contain thin, elongated strand structures. Such
strand structures may point inward or outward. Two exam-
ples of shape contours with outward strand structures are
shown in Fig. 2(a) and (b), and an example of a shape con-
tour with inward strand structures is shown in Fig. 2(e).

(a) (b) (c) (d)
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Figure 2. (a-b) Two shape contours with outward strand structures.
(c-d) Base structure and strand structures of (a) after shape de-
composition. (e) A shape contour with inward strand structures.
(f) Base structure of (e) after removing inward strand structures.

In practice, outward strand structures usually describe
“leg” or “branch”-like shape components. In human percep-
tion, the exact geometry, such as the curvature and length
of strand structures, may not be important for shape recog-
nition and classification. For example, the shape contours
shown in Fig. 2(a) and (b) are of the same shape class (oc-
topus) and demonstrate high shape similarity in human per-
ception although their legs may be quite different from each
other in terms of geometry and size. This observation mo-
tivates us to handle such shape contours by decomposing
them into a base structure and a set of strand structures, as
illustrated in Fig. 2(c) and (d) respectively. When evalu-
ating the similarity between two such shape contours, we
can match their base structures and strand structures sepa-
rately. In particular, we apply a deformable shape matching
method to compare base structures. When matching strand
structures, we simply check whether these two shape con-
tours have a similar number of strands, omitting their de-
tailed geometry.

Inward strand structure can also be extracted by shape
decomposition (to be detailed in Section 2). By remov-

ing inward strand structures, we obtain a base structure as
illustrated in Fig. 2(f), which is actually the union of the
extracted inward structures and the original shape contour.
When the inward strand structures are small compared to
the structure described by the original shape contour, its re-
moval does not affect the general human perception of the
shape contour. For example, humans usually perceive the
shape contours in Fig. 2(e) and (f) to be of the same shape
class. This observation motivates us to handle such shape
contours by extracting and removing the inward structures
before shape matching and classification.

Besides the perceptual motivation, this strategy actually
combines the merits of both the deformable shape-matching
methods and the medial-axis-based structure matching
methods mentioned above. The reasons are twofold: (a) in-
stead of a general shape decomposition for consistent shape
components (which is very sensitive to local shape vari-
ation) we only use shape decomposition to identify thin,
elongated strand structures, which can be done robustly
and accurately, and (b) the base structures are simpler and
have fewer local variations than the original shape contour.
Therefore, the similarity of base structures can be more
accurately and robustly estimated by using a deformable
shape-matching method.

1.2. Overview of Strategy II

The second strategy aims to better handle shape contours
that show good bilateral symmetry. For such a shape con-
tour, a certain level of scaling along its symmetric axis or the
direction perpendicular to its symmetry axis usually does
not change the human perception of its shape. For example,
the three different shape contours shown in Fig. 3(a) (b) and
(c) all belong to the same shape class (tree) in human per-
ception. This motivates us to handle such shape contours
by identifying their symmetry axes and unifying their as-
pect ratio before quantitatively evaluating their shape simi-
larity. Here we define the aspect ratio of a symmetric shape
contour to be the ratio between the length and width of
its bounding box along the symmetry axis, as illustrated in
Fig. 3(a).

Strategies I and II can be used together to further im-
prove performance.

2. Proposed Method

In this section, we describe algorithms to implement the
two strategies discussed in Sections 1.1 and 1.2.

2.1. Algorithm for Strategy I

In this paper, we consider a shape component to be a
strand structure only if it satisfies three criteria: (a) it is a
branch attached to a single base structure, (b) it is of rel-
atively small size compared with the original shape struc-
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Figure 3. (a) A shape contour with good bilateral symmetry. Its
symmetry axis is shown with a dashed line and its bounding box
is shown with a dotted line. (b) The shape contour produced by
scaling (a) along the direction that is perpendicular to its symme-
try axis. (c) The shape contour produced by scaling (a) along its
symmetry axis.

ture, and (c) it is thin and elongated. For example, the
dashed curves in Fig. 4(a) describe two outward strand
structures and the dashed curve in Fig. 4(b) describes an
inward strand structure. However, the thin, elongated part
shown in Fig. 4(c) is not considered to be a strand struc-
ture because it is not a branch of the shape and is not at-
tached to a single base structure. The three thin, elongated
parts shown in Fig. 4(d) are also not considered to be strand
structures because they constitute a considerable area of the
original shape structure. If we treat them as three strand
structures, the remaining base structure would be too small
to contain meaningful information for shape matching.

(b)(a)

(c) (d) (e)

w
id

th

lengthar
ea

Figure 4. (a-b) Example shape contours with strand structures, (c-
d) example shape contours without strand structures, and (e) the
area, length, and width of a candidate strand structure, used for
determining a strand structure.

In this algorithm, we use a shape-decomposition algo-
rithm to first identify all the shape branches as candidate
strand structures and then select only candidates that satisfy

criteria (b) and (c) as strand structures. The remaining struc-
ture after removing all the strand structures is the base struc-
ture. Criterion (b) is satisfied if the ratio between the area of
the considered candidate strand structure and the area inside
the original shape contour is larger than a preset threshold
tR. Criterion (c) is satisfied if the ratio between the length
and width of the considered candidate strand structure, as
illustrated Fig. 4(e), is larger than a preset threshold tL.

To identify outward strand structures, we carry out shape
decomposition on the original shape contour. This is done
by first triangulating the shape contour and connecting the
centers of each triangle to construct a medial-axis tree [12].
Specifically, given a shape contour S, we sequentially and
uniformly sample n points P = {pi, i = 1, . . . , n}, where
pi = (xi, yi) represents the ith point along S. The points in
P are then triangulated into a set of triangles T = {Tk, k =
1, . . . , n − 2}, as illustrated in Fig. 5(a). By defining the
center of each triangle in T as a node, we can construct a
dual graph GT = (VT , ET ) [7], as shown by the red curves
in Fig. 5(b), which is a tree describing the medial axis of the
original shape contour.
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Figure 5. (a) Triangulation of a fly shape contour, (b) a dual graph,
i.e., medial axis (red curves), constructed from (a), (c) feature (red)
and leaf (blue) triangles, and (d) a shape tree constructed from the
feature and leaf triangles.

Given that each node in VT represents a triangle in T ,
further inspection reveals that each triangle in T can be
grouped into one of three categories: triangles with one
neighboring triangle, triangles with two neighboring trian-
gles, and triangles with three neighboring triangles. For the
purposes of this paper, we will denote triangles with three
neighbors as feature triangles and triangles with one neigh-
bor as leaf triangles, which are illustrated as red and blue
triangles in Fig. 5(c) respectively. We then construct a shape
tree G = (V, E) using only the nodes in VT that represent



feature and leaf triangles, as shown in Fig. 5(d), where each
edge e = (u, v) ∈ E indicates that there is a unique path be-
tween two nodes u and v in GT . We also denote the nodes
in V that represent feature triangles as feature nodes, and
the nodes in V that represent leaf triangles as leaf nodes.
We define the length of this edge to be the length of the cor-
responding path in GT . For example, the edge length be-
tween nodes 5 and 16 in Fig. 5(d) is length of the red path
between points 5 and 16 (shown as red dots) in Fig. 5(b).

In the shape tree, each path that links a leaf node uL and
a feature node uF represents a candidate strand structure.
We simply check each of these candidates using the above
criteria (b) and (c) to determine the final strand structures.
The length of a candidate strand structure is the length of the
corresponding edge in G and the width of a candidate strand
structure can be estimated by averaging the circumradii of
the triangles in T along the path between uL and uF .

To identify inward strand structures, we triangulate the
complement of shape contour S. More specifically, we con-
struct a square (or circular) boundary around S, as shown in
Fig. 6(b) and triangulate the region between S and this sur-
rounding boundary. However, this region will not be sim-
ple, which leads to a shape tree with cycles. To address
this problem, we find the closest pair of points between S
and the surrounding boundary, connect them into a line seg-
ment, and then remove a strip around the line segment from
the region between S and the surrounding curve. The re-
sulting region is simple and can be triangulated, as shown
in Fig. 6(b), to construct the acyclic medial axis and shape
tree, as shown in Fig. 6(c). The remaining work of iden-
tifying inward strand structures is exactly the same as the
above-mentioned algorithm for identifying outward strand
structures.
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Figure 6. (a) A shape contour S with an inward strand structure.
(b) Construct the complement of S by introducing a surrounding
boundary. A strip region at the middle left side is removed be-
fore triangulation. (c) The constructed shape tree for identifying
inward strand structures.

This strand identification algorithm can be incorporated
into any available shape classification method to improve
performance. Assume that we have arbitrarily choosen
such a method which can provide us with a matching cost
C(S1, S2) for any two shape contours S1 and S2. This
matching cost negatively measures the shape similarity and

is invariant under rotation, translation, and (uniform) scal-
ing transformations to any one of these two shape contours.
Also assume that the shape decomposition algorithm for
identifying outward strand structure decomposes Si into a
base structure Ei and ni outward strands, and the shape de-
composition algorithm for identifying inward strand struc-
ture decomposes Si into a base structure Fi (i = 1, 2) and
some inward strands. We use the following voting algo-
rithm to update the match cost C(S1, S2) to

φ1(S1, S2) = min{C(S1, S2),
C(E1, E2) · c(n1, n2), C(F1, F2)},

where c(n1, n2) = 1 if the outward strand structures identi-
fied from S1 and S2 match well and c(n1, n2) = ∞ other-
wise. In all our experiments, we simply make c(n1, n2) = 1
when both ni ≥ 2, i = 1, 2, which indicates that both shape
contours contain noticeable number of outward strand struc-
tures.

2.2. Algorithm for Strategy II

The second strategy handles shape contours that show bi-
lateral symmetry [8, 30, 3]. In this paper, we employ a sim-
ple exhaustive search algorithm to check whether a shape
contour S is symmetric and if so, identify its symmetry axis.
As in Strategy I, a set of n points P = {pi, i = 1, . . . , n}
are first uniformly sampled along S. For each pi, we find
the corresponding midpoint q̄i when traversing S starting
from and ending at pi. In a small neighborhood around q̄i,
we sample a set of points qi1,qi2, . . . ,qim on S surround-
ing q̄i, as illustrated in Fig. 7(a). Each line piqik splits
S into two parts Sl

ik and Sr
ik, k = 1, 2, . . . , m represent-

ing the left and right halves respectively. We then mirror
Sl

ik against the line piqik to get S̃l
ik. We denote the region

bounded by S̃l
ik and the line piqik to be Rl

ik and the region
bounded by Sr

ik and the line piqik to be Rr
ik . We measure

the likeliness of piqik being a symmetry axis of S by the
Jaccard coefficient,

ρ(piqik) =
|Rl

ik ∩ Rr
ik|

|Rl
ik ∪ Rr

ik|
, (1)

where | · | calculates the region area.
Among all n × m candidate symmetry axes piqik, i =

1, 2, . . . , n; k = 1, 2, . . . , m, we find the one with the max-
imal axis likeliness (1),

ρ(psqst) ≥ ρ(piqik),
∀i = 1, 2, . . . , n; k = 1, 2, . . . , m.

If ρ(psqst) is larger than a given threshold tρ1 ∈ [0, 1], we
consider S to be a symmetric shape, with a symmetry axis
psqst. We then find the line Nst that is normal to psqst

and passes the midpoints of the line segment psqst. We
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Figure 7. An illustration of shape symmetry detection in Strategy
II. (a) Exhaustively searching for the symmetry axis of a shape
contour. (b) An example of a shape with two perpendicular sym-
metry axes.

further check the axis likeliness of Nst: if ρ(Nst) is larger
than a given threshold tρ2 ∈ [0, 1], we claim that Nst is
another symmetry axis of S. In this strategy, we only han-
dle shape contours S with a single symmetry axis, i.e., S
satisfies ρ(psqst) > tρ1 and ρ(Nst) ≤ tρ2. For shape con-
tours that are also symmetric against Nst, as illustrated in
Fig. 7(b), we do not apply Strategy II because the aspect
ratio of the the shape contour may not be uniquely defined.

Given two shape contours S1 and S2, if we can identify a
single symmetric axis, say l1 and l2, from each contour, we
unify their aspect ratio before evaluating their shape simi-
larity. In particular, we treat one of them, say S1, as the
template and the other one, S2, as the target. We can find
a unique bounding box (i.e., a rectangle) for each by re-
quiring that one side of the bounding box be parallel to the
identified symmetry axis, as illustrated in Fig. 8(a) and (b).
We then scale the target shape contour S2 along its sym-
metry axis to a shape contour S′

2 such that it has the same
aspect ratio as the template, as illustrated in Fig. 8(c). Given
an available shape-classification method that measures the
matching cost C(S1, S2) between S1 and S2, we update the
matching cost to

φ2(S1, S2) = min{C(S1, S2), C(S1, S
′
2)}.

Note that if either S1 or S2 are not symmetric or contain a
second symmetry axis that is normal to the first symmetry
axis, we simply set φ2(S1, S2) = C(S1, S2) without apply-
ing Strategy II.

To use Strategy I and Strategy II together, we simply
combine the matching costs to obtain

φ(S1, S2) = min{φ1(S1, S2), φ2(S1, S2)}.

3. Experiments

We implement the previously-discussed methods in C++
using the OpenCV library. Contour triangulation from a set
of sampled points is implemented using the software devel-
oped by Shewchuk [23]. We selected the Inner Distance

(a) (b) (c)

Figure 8. (a-b) Two different symmetric shape contours and their
bounding boxes. (c) Scaling the shape contour (b) along its sym-
metric axis to make its aspect ratio identical to the aspect ratio of
shape contour (a).

Shape Context (IDSC) method [16] to measure the shape-
matching cost C(S1, S2) between two shape contours S1

and S2, largely because the source code is readily avail-
able online. Recently, Yang et al. [31] developed a new
approach to classify a large set of shape contours by extend-
ing pairwise shape matching to group-wise shape match-
ing in an unsupervised fashion. For this approach, a lo-
cally constrained diffusion process (LCDP) was developed
to enhance the similarity of two shape contours if they have
low matching cost with another shape contour. The LCDP
method also uses the IDSC method for measuring the pair-
wise shape similarity. LCDP achieves state-of-the-art shape
classification performance on several well-known data sets.
In our experiments, we attempt to show that the proposed
strategies can improve the performance of IDSC and, by
using IDSC augmented with the proposed strategies as the
pairwise matching method, the performance of LCDP can
be further improved.

In all our experiments, we uniformly sample n = 256
points on each contour. For Strategy I, we set the area
threshold tR = 0.12, and the length-width threshold tL =
3.0 for identifying outward structures and tL = 6.0 for
identifying inward structures. For Strategy II, we set the
axis likeliness thresholds tρ1 = 0.74 and tρ2 = 0.68.

3.1. MPEG-7 Data Set

We first test the proposed method on the widely used
MPEG-7 data set (specifically the MPEG-7 CE-Shape-1
Part B) [15] that defines 70 shape classes, where each shape
class contains 20 different shape contours in the form of bi-
nary images. In total, the MPEG-7 data set contains 1, 400
shape contours. A subset of the shape classes are illus-
trated in Fig. 9. We use Bullseye testing to evaluate the
performance of the shape classification. In this test, a shape
contour is selected from the data set as the template, and
matched to all 1, 400 shape contours in this data set. The 40
most similar shape contours (i.e. with the smallest matching
cost) are selected, and out of these 40, we count the number
of shape contours that are actually in the same shape class



as the template. This number is divided by 20 (the number
of shape contours in the template class) to obtain a classifi-
cation rate. This process is repeated by taking each of the
1, 400 shape contours as the template and obtain an average
classification rate as the performance.

Figure 9. Subset of shape classes in the MPEG-7 data set.

Table 1 shows the Bullseye testing results on the MPEG-
7 data set using the original IDSC method [16], the orig-
inal LCDP method [31] 1, the IDSC and LCDP methods
augmented with the proposed strategies, and other recently
published methods. By using the proposed strategies, the
shape classification rate of IDSC is improved from 85.40%
to 88.39% and the shape classification rate of LCDP is im-
proved from 92.36% to 95.60%. Table 2 compares the clas-
sification rate when using only Strategy I, only Strategy II
and both Strategy I and II together. Figure 10 shows sev-
eral examples of the shape contours in the MPEG-7 data
set that are decomposed into base and strand structures by
using Strategy I. Figure 11 shows several examples of the
symmetric shape contours in the MPEG-7 data set as deter-
mined by Strategy II.

Figure 10. Example strand structures, and base structures found
by the proposed method. The red curves represent the inward or
outward strand structure, and the black curve represents the base
structure.

3.2. Brown Database

Additionaly, we apply the proposed method to the Brown
database [22], specifically the second database, that defines

1Yang et al also report results of 97.21% on the MPEG-7 data set us-
ing supervised ghost points. In this paper our focus is on unsupervised
methods.

Method Rate
Proposed method + IDSC + LCDP 95.60 %

IDSC + LCDP + unsupervised GP [31] 93.32 %
IDSC + LCDP [31] 92.36 %

IDSC + LP [5] 91.61 %
Contour Flexibility [29] 89.31 %

Proposed method + IDSC 88.39 %
Shape-tree [13] 87.70 %

Triangle Area [2] 87.23 %
IDSC(EMD) [17] 86.56 %

Hierarchical Procrustes [18] 86.35 %
Symbolic Representation [11] 85.92 %

IDSC [16] 85.40 %
Shape L’Âne Rouge [20] 85.25 %

Multiscale Representation [1] 84.93 %
Polygonal Multiresolution [4] 84.33 %

Fixed Correspondence [27] 84.05 %
Chance Probability Function [26] 82.69 %

Curvature Scale Space [19] 81.12 %
Generative Model [28] 80.03 %

Table 1. Shape classification rate on the MPEG-7 data set.

Method Rate
IDSC [16] 85.40 %

Strategy I + IDSC 87.68 %
Strategy II + IDSC 86.41 %

Strategy I&II + IDSC 88.39 %
IDSC + LCDP [31] 92.36 %

Strategy I + IDSC + LCDP 94.85 %
Strategy II + IDSC + LCDP 93.80 %

Strategy I&II + IDSC + LCDP 95.60 %

Table 2. Shape classification rate on the MPEG-7 data set, when
using only Strategy I, only Strategy II, and both Strategy I and II.

Figure 11. Example symmetric shape contours in the MPEG7 data
set. Symmetric axes are shown in green.



Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Proposed method + IDSC + LCDP 99 99 99 99 99 99 99 99 99 99

IDSC + LP [5] 99 99 99 99 99 99 99 99 97 99
Shape-tree [13] 99 99 99 99 99 99 99 97 93 86

IDSC [16] 99 99 99 98 98 97 97 98 94 79
Shock-Graph Edit [22] 99 99 99 98 98 97 96 95 93 82
Generative Models [28] 99 97 99 98 96 96 94 83 75 48

Table 3. Shape classification result on the Brown database.

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
IDSC [16] 99 99 99 98 98 97 97 98 94 79

Strategy I + IDSC 99 99 99 98 99 99 99 97 96 84
Strategy II + IDSC 99 99 99 98 98 97 97 98 94 79

Strategy I&II + IDSC 99 99 99 98 99 99 99 97 96 84

Table 4. Shape classification results on the Brown data set, when using only Strategy I, only Strategy II, and both Strategy I and II.

9 shape classes as illustrated in Fig. 12, where each shape
class contains 11 different shape contours in the form of bi-
nary images. In total, the Brown database contains 99 shape
contours. As in [13, 5, 16], Table 3 reports the performance
as follows: one shape contour is selected from the data set
as the template and then matched to the remaining shape
contours. The top 10 best matches are checked and only
matches that are in the same shape class as the template are
counted as correct matches. This process is repeated by tak-
ing each one of the 99 shape contours in the whole data set
as the template. Then we check the total correct matches
for the i-th contour, i = 1, 2, . . . , 10, which are shown in
Table 3. Note that the maximum possible correct matches
in total for the i-th contour is 99. We can see that the LCDP
method, when augmented with the proposed two strategies,
achieves the maximum correct matches for each contour se-
lected as the template. Table 4 shows the results on this data
set by applying Strategy I, Strategy II and both Strategy I
and II to IDSC.

Figure 12. The nine shape classes in the Brown database.

3.3. Swedish Leaf Data Set

The Swedish leaf data set [25] contains isolated leaves
from 15 different Swedish tree species, with 75 leaves per
species. Examples from the 15 leaf species are shown in
Fig. 13. As in [16, 13, 31], we use the 1-nearest-neighbor
approach to measure the classification performance for this
data set where, for each leaf species, 25 samples are selected
as a template and the other 50 are selected as targets. Shape
classification results on this data set are shown in Table 5,

from which we can see that the integration of the proposed
strategies does not introduce significant improvement over
LCDP [31]. The reasons are twofold. First, the leaf shape
contours in this data set do not contain multiple strand struc-
tures. Second, most leaves in the same species are of a sim-
ilar aspect ratio. Therefore, the proposed strategies do not
introduce significant overall change to the original match-
ing cost of LCDP (or IDSC) and cannot further improve the
shape classification performance.

Figure 13. The fifteen leaf species in the Swedish leaf data set.

Method Rate
Proposed Method + IDSC+ LCDP 98.27 %

IDSC + LCDP [31] 98.20 %
Shape-tree [13] 96.28 %

IDSC [16] 94.13 %

Table 5. Shape classification rate on the Swedish leaf data set.

4. Conclusion

In this paper, we have suggested two new, perceptually
motivated strategies to improve shape similarity measures
and shape classification performance. In Strategy I, we de-
compose a shape contour into a base structure and a set



of inward or outward strand structures. We have shown
that the similarity of two such shape contours can be bet-
ter modeled by measuring the similarity of their base struc-
tures and the similarity of their respective strand structures
in different ways. In Strategy II, we unify the aspect ratio
of the the symmetric shape contours before evaluating their
shape similarity. Experiments on the widely used MPEG-7,
Brown, and Swedish leaf data sets illustrate that the pro-
posed strategies can improve the state-of-the-art shape clas-
sification performance.
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